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How did I get here?

Hi, I’m Isaac and I’m a logician.

Here is a chart of the math spectrum:

Pure math Applied mathLogic

Logic Operator algebras

Connes’ Embedding  
Problem

Quantum complexity  
theory

So how did I 
get here?

That’s more like it.



Computational 
Complexity



Computational complexity 
in a nutshell

• Basic question:  how “difficult’’ is some computational 
problem?


• Computational problem:  given some finite string z of 0’s 
and 1’s, should we say YES or NO?


• Of course, to be useful, may need to “code” real-world 
problems as strings.



Best-case scenario:  P
• Suppose that there is an “efficient” algorithm such that, upon input string z, 

decides whether or not the answer is YES or NO.


• Efficient means that the algorithm runs in polynomial time in the length of z, 
e.g. the length of z squared.


• Example:  Deciding whether or not a number is even belongs to P.
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Next best-case: NP
What if we cannot efficiently solve the problem directly, but 
at least we know a right answer when we see one?

Example:  Graph isomorphism 
• Too many pairings to check one at a time 
• Given a “proof” from some external Prover, a 

Verifier can efficiently and reliably verify the 
validity of the purported proof

VERIFIER
Z

YES

NOπ
Prover



Interactive Proofs:

An example

• What about graph non-isomorphism?  It does not obviously belong to NP.


• Consider the following interactive proof for this problem.


• Given ￼ , the verifier randomly picks one of the graphs (say ￼ ), then randomly 
picks a rearrangement ￼  of ￼  and sends this rearrangement to the prover.


• The prover then responds with their answer as to which graph the verifier randomly 
picked.


• The verifier accepts if the prover’s answer is correct.


• If ￼  and ￼  are not isomorphic, the prover has a strategy in which the verifier 
always accepts.  (The prover is all-powerful!)


• If ￼  and ￼  are isomorphic, the prover can do no better than guess, whence no 
strategy for the prover causes the verifier to accept more than half of the time.

(G, H) G
G′￼ G

G H

G H



Interactive proofs in general

VERIFIER
Z

YES

NOπ
Prover q (asked randomly)

• If the answer to z should be YES, then some strategy for the prover 
should lead to acceptance with high probability.  

• If the answer to z should be NO, then all strategies for the prover 
should lead to acceptance with low probability.  

• Probabilistic interactions are necessary, or else we are just back in 
NP.



MIP:  Many provers
• Why stop at one prover?


• Having multiple, cooperating, noninteracting provers allows for the use of 
police-style tactics, cross-checking one prover’s answers against the 
others, to efficiently verify exponentially long proofs.


• Theorem (Babai, Fortnow, Lund):  ￼MIP = NEXP



Nonlocal games

a b

￼  
Win or lose

D(x, y, a, b) = 1or0

x y

￼  randomly chosen 
questions

(x, y)



The classical value of a 
nonlocal game

• A strategy for Alice and Bob is a probability distribution 
￼ , called a correlation.


• Given a correlation ￼ , the expected value for winning the 
nonlocal game ￼  when they play according to ￼  is 
denoted ￼ .  So ￼  means they win 
the game 90% of the time if they play according to ￼ . 


• The classical value of ￼ , denoted ￼ , is the 
maximum of ￼  when Alice and Bob use classical 
strategies.

p(a, b |x, y)

p
𝔊 p

val(𝔊, p) val(𝔊, p) = . 9
p

𝔊 val(𝔊)
val(𝔊, p)



Classical strategies for 
nonlocal games

￼Aω

￼Bω

x

y

a

b

￼  (hidden variable)ω



MIP reformulated

• A problem belongs to MIP provided one  can effectively 
assign to each string ￼  a nonlocal game ￼  such that:


• If the answer upon input ￼  is YES, then ￼ .


• If the answer upon input ￼  is NO, then ￼ .

z 𝔊z

z val(𝔊z) = 1

z val(𝔊z) ≤
1
2



Quantum complexity



Quantum strategies

x y

a b

p(a, b |x, y) = ⟨(Ax
a ⊗ By

b)ψ, ψ⟩

ψ



Bell’s Theorem via the 
CHSH Game

• The CHSH game ￼  has as questions and answers bits ￼ :


• If either receives question ￼ , they win when their answers agree.


• If both receive question ￼ , they win when their answers disagree.


• Easy to check ￼ .


• However, using a quantum strategy based on the EPR pair 

￼ , one can see that the quantum value 

of the game satisfies ￼ .


• This is a version of Bell’s Theorem refuting that quantum mechanics 
could have a local hidden variable interpretation.

𝔊CHSH 0and1

0

1

val(𝔊CHSH) ≤
3
4

ψEPR =
1

2
( |00⟩ + |11⟩)

val*(𝔊CHSH) ≥
1
2

+
1

2 2
≈ 0.85



MIP*
• One can define the complexity class MIP* in the same 

way as MIP, using ￼  instead of ￼ .


• Theorem (Ito and Vidick):  Every problem in MIP is also in 
MIP*.  (Not obvious:  why can’t quantum provers 
“cheat”?)


• Theorem (Natarajan and Wright):  Every problem in 
NEEXP is also in MIP*.  Thus, MIP* contains problems not 
contained in MIP.


• Question:  How big is the class MIP*?

val*(𝔊z) val(𝔊z)



MIP*=RE!
• The halting problem ￼  is 

the problem that asks, given a 
Turing machine ￼ , will ￼  
halt on the empty input.


• Theorem (Turing):  ￼  is 
an undecidable problem.


• Theorem (Ji, Natarajan, 
Vidick, Wright, Yuen):  ￼  
belongs to MIP*!!!!!!

HALT

ℳ ℳ

HALT

HALT

https://www.quantamagazine.org/landmark-computer-science-proof-cascades-through-physics-and-math-20200304/


An important consequence

• Corollary:  There is no algorithm to compute ￼ , for 
otherwise ￼  would be solvable.


• There is, however,  an algorithm for finding 
￼  which converge to ￼ .


• Takeaway:  there does not exist an algorithm for finding 
￼  that converges to ￼ .

val*(𝔊)
HALT

r1 ≤ r2 ≤ ⋯ ≤ val*(𝔊) val*(𝔊)

s1 ≥ s2 ≥ ⋯ ≥ val*(𝔊) val*(𝔊)



Tsirelson’s problem
• Instead of considering quantum strategies with Alice 

and Bob each having their own “lab”, what about if they 
share a state ￼  from a single Hilbert space ￼ ?


• To be able to simultaneously measure, their 
measurement operators must commute:  
￼ .


• This leads to the notion of ￼ .


• Note that ￼ .


• Tsirelson’s problem*:  ￼ ?


• Corollary:  Tsirelson’s problem has a negative solution!


• Reason:  ￼  can be effectively approximated 
from above.

ψ H

Ax
aBy

b = By
b Ax

a

valco(𝔊)

valco(𝔊) ≥ val*(𝔊)

valco(𝔊) = val*(𝔊)

valco(𝔊)



The Connes 
Embedding Problem



Algebras of observables

Infinitely many electrons

One electron

M2(ℂ)

N electrons

M2(ℂ) ⊗ ⋯ ⊗ M2(ℂ) = M2N(ℂ)

￼ , the hyperfinite ￼  factorℛ II1



Tracial von Neumann 
algebras

• The algebras ￼ , ￼ , and 
￼  have some things in common:


• You can add, multiply, scale, 
and take ￼  of the elements.


• Closed under approxmation by 
“measurement probabilities.”


• Have a notion of trace:

￼ .


• Such algebras are called tracial 
von Neumann algebras.

M2(ℂ) M2N(ℂ)
ℛ

*

tr(a b
c d) =

1
2

(a + d)



Connes’ embedding 
problem (CEP)

The following quote appears in Connes’ 
landmark 1976 paper:


“We now construct an approximate 
imbedding of ￼  in ￼ . Apparently such an 
imbedding ought to exist for all ￼  factors 
because it does for the regular 
representation of free groups. However, the 
construction below relies on condition 6.”

N ℛ
II1

Connes Embedding Problem:  Are all 
tracial von Neumann algebras 

“approximable” by ￼ ?ℛ



A negative solution to CEP!
• ￼  implies that CEP is 

false!!!


• But how?


• Theorem (Kirchberg, 1992):  CEP 
is equivalent to the so-called 
QWEP problem.


• Theorem (Fritz, Junge et. al.):  
QWEP is equivalent to Tsirelson’s 
problem.


• But we just saw that Tsirelson’s 
problem is false!!  QED.

MIP* = RE

Huh?



Enter logic!!



Gödel’s Completeness 
Theorem

• Theorem:  ￼ .


• What does it mean for this to be a 
“theorem” of graph theory?


• Interpretation #1:  It is true in every graph.


• Interpretation #2:  It can be formally 
derived from the axioms of a graph.


• Gödel’s Completeness Theorem says these 
two interpretations of “theorem” are always 
equivalent!

∑v∈V
deg(v) = 2 ⋅ |E |



Theorem proving machines!

Interpretation #2 of the word “theorem” has the advantage of being 
“mechanical”.

Axioms

TheoremTheorem

Theorem

Theorem
Theorem



￼  implies failure of 
CEP redux (with Bradd Hart)
MIP* = RE

• If ￼ , then assuming 
CEP, we can show that this can 
be expressed as a “fact” ￼  true in 
all tracial von Neumann algebras.


• By the Completeness Theorem, 
this fact ￼  will eventually turn up 
in our “theorem proving machine”.


• We can thus effectively 
approximate ￼  from above, 
contradicting ￼ .

val*(𝔊) ≤ r

F

F

val*(𝔊)
MIP* = RE



Gödel’s Incompleteness 
Theorem

• Hilbert’s Program (1920s):  Can 
one “axiomatize” arithmetic?


• Silly solution:  make all theorems 
axioms!


• Better: can one find an “effective” 
set of axioms so that it is 
decidable whether a given 
statement is true or fale?


• No!  Gödel’s Incompleteness 
Theorem:  given any effective set 
of axioms, there will be true facts 
of arithmetic you cannot derive 
from these axioms.



A Gödelian refutation of 
CEP

• Perhaps it is too arrogant to assume all tracial von 
Neumann algebras are “approximable” by ￼ .


• Maybe only those with certain extra properties are 
“approximable” by ￼ .


• Our proof shows that this is not the case:  for any effective 
set of properties, there is a tracial von Neumann algebra 
with those properties that is not “approximable” by ￼ .


• We can use this Gödelian refutation of CEP to prove some 
extra results that the “standard” proof cannot.

ℛ

ℛ

ℛ



Thank you!
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