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How did | get here?

Hi, I'm Isaac and I’'m a logician. That’s morg
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Computational
Complexity



Computational complexity
In a nutshell

e Basic question: how “difficult” is some computational
problem?

e Computational problem: given some finite string z of 0’s
and 1’s, should we say YES or NO?

e Of course, to be useful, may need to “code” real-world
problems as strings.



Best-case scenario: P

Suppose that there is an “efficient” algorithm such that, upon input string z,
decides whether or not the answer is YES or NO.

Efficient means that the algorithm runs in polynomial time in the length of z,
e.g. the length of z squared.

Example: Deciding whether or not a number is even belongs to P.
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Next best-case: NP

What if we cannot efficiently solve the problem directly, but
at least we know a right answer when we see one?

Example: Graph isomorphism
e Too many pairings to check one at a time

e Given a “proof” from some external Prover, a
Verifier can efficiently and reliably verify the
validity of the purported proof
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Interactive Proofs:
An example

What about graph non-isomorphism? It does not obviously belong to NP.

Consider the following interactive proof for this problem.

Given (G, H), the verifier randomly picks one of the graphs (say G), then randomly
picks a rearrangement G’ of G and sends this rearrangement to the prover.

The prover then responds with their answer as to which graph the verifier randomly
picked.

The verifier accepts if the prover’s answer is correct.

e If G and H are not isomorphic, the prover has a strategy in which the verifier
always accepts. (The prover is all-powerful!)

e If G and H are isomorphic, the prover can do no better than guess, whence no
strategy for the prover causes the verifier to accept more than half of the time.



Interactive proofs in general
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e |f the answer to z should be YES, then some strategy for the prover
should lead to acceptance with high probability.

e If the answer to z should be NO, then all strategies for the prover
should lead to acceptance with low probability.

 Probabilistic interactions are necessary, or else we are just back in
NP.



MIP: Many provers

e Why stop at one prover?

 Having multiple, cooperating, noninteracting provers allows for the use of
police-style tactics, cross-checking one prover’s answers against the
others, to efficiently verify exponentially long proofs.

e Theorem (Babai, Fortnow, Lund): MIP = NEXP




Nonlocal games

(x, y) randomly chosen
questions

D(x,vy,a,b) = lor0
Win or lose




The classical value of a
nonlocal game

e A strategy for Alice and Bob is a probability distribution
p(a,b|x,y), called a correlation.

e Given a correlation p, the expected value for winning the
nonlocal game (% when they play according to p is
denoted val(®, p). So val((®, p) = .9 means they win
the game 90% of the time if they play according to p.

e The classical value of (%, denoted val((¥), is the

maximum of val(®, p) when Alice and Bob use classical
strategies.



Classical strategies for
nonlocal games

ﬁ “~_ @ (hidden variable)
x >

y > > b




MIP reformulated

e A problem belongs to MIP provided one can effectively
assign to each string z a nonlocal game (S§Z such that:

» If the answer upon input z is YES, then val(®,) = 1.

1
. If the answer upon input z is NO, then val(®,) < —.
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Quantum complexity



Quantum strategies




Bell’s Theorem via the
CHSH Game

The CHSH game & ;¢ has as questions and answers bits Oand]1:
* If either receives question 0, they win when their answers agree.

 If both receive question 1, they win when their answers disagree.

3
Easy to check val(® yqy) < 7

However, using a quantum strategy based on the EPR pair

Wgpr = ——=(]00 ) + |11 )), one can see that the quantum value

of the game satisfies Val*(@iCHSH) > — +—— ~ 0.85.
NG

This is a version of Bell’'s Theorem refuting that quantum mechanics
could have a local hidden variable interpretation.



MIP~

One can define the complexity class MIP* in the same
[ * "
way as MIP, using val (®,) instead of val(®,).

Theorem (Ito and Vidick): Every problem in MIP is also in
MIP*. (Not obvious: why can’t guantum provers
“cheat”?)

Theorem (Natarajan and Wright): Every problem in
NEEXP is also in MIP*. Thus, MIP* contains problems not
contained in MIP.

Question: How big is the class MIP*?



MIP*=RE!

e The halting problem HALT is
the problem that asks, given a

Turing machine , will /A
halt on the empty input.

e Theorem (Turing): HALT is
an undecidable problem.

e Theorem (Ji, Natarajan,
Vidick, Wright, Yuen): HALT

Alan designed the perfect computer


https://www.quantamagazine.org/landmark-computer-science-proof-cascades-through-physics-and-math-20200304/

An important consequence

e Corollary: There is no algorithm to compute val (), for
otherwise HALT would be solvable.

* There is, however, an algorithm for finding
r <r, < - < val (®)which converge to val ().

 Takeaway: there does not exist an algorithm for finding
S K
S| = 8§, = -+ > val (®) that converges to val ((9).



Isirelson’s problem

Instead of considering quantum strategies with Alice
and Bob each having their own “lab”, what about if they

share a state y from a single Hilbert space H?

To be able to simultaneously measure, their
measurement operators must commute:

A;B) = B A
This leads to the notion of val®’(®).
Note that val®’(®) > val ().

Tsirelson’s problem*: val®(®) = val (()?

Corollary: Tsirelson’s problem has a negative solution!

ICO

Reason: val™“(®) can be effectively approximated

from above.



The Connes
Embedding Problem



Algebras of observables

M;,(C)

One electron

woroncn §AEREEE44

N electrons
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X, the hyperfinite /1, factor 0008000000 0000008600

Infinitely many electrons



Tracial von Neumann
algebras

e The algebras M,(C), M,»(C), and
A have some things in common:

e You can add, multiply, scale,
and take * of the elements.

e Closed under approxmation by
“measurement probabilities.”

e Have a notion of trace:
a b 1
t =—(a+d).
! (c d) 2 (a )

e Such algebras are called tracial
von Neumann algebras.




Connes’ embedding
problem (CEP)

The following quote appears in Connes’
landmark 1976 paper:

“We now construct an approximate
imbedding of N in &£. Apparently such an

imbedding ought to exist for all //; factors

because it does for the regular
representation of free groups. However, the
construction below relies on condition 6.”

Connes Embedding Problem: Are all
tracial von Neumann algebras

“approximable” by % ?




A negative solution to CEP!

« MIP" = RE implies that CEP is
false!l!

e But how?

* Theorem (Kirchberg, 1992): CEP
IS equivalent to the so-called
QWEP problem.

e Theorem (Fritz, Junge et. al.): i
QWERP is equivalent to Tsirelson’s £
problem. -

 But we just saw that Tsirelson’s
problem is false!! QED.



Enter logic!!



Godel’s Completeness
Theorem

. Theorem: ) deg(v)=2-|E|.
Ve

e What does it mean for this to be a
“theorem” of graph theory?

e |Interpretation #1: It is true in every graph.

* |nterpretation #2: It can be formally
derived from the axioms of a graph.

e GOdel’'s Completeness Theorem says these
two interpretations of “theorem” are always
equivalent!



Theorem proving machines!

Interpretation #2 of the word “theorem” has the advantage of being

“mechanical’.
Axioms
Theorem -« o 5 i.“‘ i.gg » Theorem
, 0—0—_—19
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MIP = RE implies failure of
CEP redux (with Bradd Hart)

e If val (®) < r, then assuming
CEP, we can show that this can

be expressed as a “fact” F true in
all tracial von Neumann algebras.

By the Completeness Theorem,

this fact I will eventually turn up
In our “theorem proving machine”.

* We can thus effectively
b
approximate val (%) from above,
contradicting MIP" = RE.




Godel’s Incompleteness
Theorem

Hilbert’s Program (1920s): Can
one “axiomatize” arithmetic?

Silly solution: make all theorems
axioms!

Better: can one find an “effective”
set of axioms so that it is
decidable whether a given
statement is true or fale?

No! Godel’s Incompleteness
Theorem: given any effective set
of axioms, there will be true facts
of arithmetic you cannot derive
from these axioms.




A Godelian refutation of
CEP

Perhaps it is too arrogant to assume all tracial von
Neumann algebras are “approximable” by .

Maybe only those with certain extra properties are
“approximable” by &£.

Our proof shows that this is not the case: for any effective
set of properties, there is a tracial von Neumann algebra

with those properties that is not “approximable” by &£.

We can use this Godelian refutation of CEP to prove some
extra results that the “standard” proof cannot.



Thank you!
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