Elliptic Curves and Iwasawa Theory

Karl Rubin Department of Mathematics Stanford University Stanford CA 94305, USA rubin@math.stanford.edu

22 August 2002

The problem

Given an elliptic curve E, understand how the Mordell-Weil group E(F) varies as Fvaries.

Restrict to:

- subfields F of \mathbf{Z}_p (or \mathbf{Z}_p^d) extensions of a base field K (Iwasawa theory).
- $K = \mathbf{Q}$ or imaginary quadratic field (explicit constructions).

This lecture

This talk describes joint work with Barry Mazur.

It is a sequel to Mazur's 1983 ICM lecture in Warsaw. We will survey the progress since then, due to many people including:

> Bertolini & Darmon Cornut Greenberg Gross & Zagier Haran Hida Kato Kolyvagin Nekovář Perrin-Riou Vatsal

Example

Let E be the elliptic curve

$$y^2 + y = x^3 - x,$$

•
$$K = \mathbf{Q}(\sqrt{-7}),$$

• \mathbf{K}_{∞} is the unique \mathbf{Z}_{5}^{2} -extension of K,

•
$$K \subset F \subset \mathbf{K}_{\infty}$$
.

Let K_{∞}^+ and K_{∞}^- be the cyclotomic and anticyclotomic \mathbb{Z}_5 -extensions of K.

Theorem. rank $E(F) = [F \cap K_{\infty}^{-} : K]$.

In particular

• rank
$$E(K_{\infty}^{-}) = \operatorname{rank} E(\mathbf{K}_{\infty}) = \infty$$
,

• rank $E(K_{\infty}^+) = \operatorname{rank} E(K) = 1.$

Example

Keep the same E, but now

•
$$K = \mathbf{Q}(\sqrt{-26}).$$

 K_∞, K⁺_∞, and K⁻_∞ are the Z²₅-extension and cyclotomic and anticyclotomic Z₅extensions of K,

•
$$K \subset F \subset \mathbf{K}_{\infty}$$
.

Conjecture.

rank $E(F) = [F \cap K_{\infty}^{-} : K] + 2.$

This conjecture seems to be out of reach of current technology.

Method

Conjecture (Birch & Swinnerton-Dyer) If F is a number field,

(i) rank $E(F) = \operatorname{ord}_{s=1} L(E_{/F}, s)$,

(ii) a prediction for the first nonvanishing derivative $L^{(r)}(E_{/F}, 1)$ in terms of periods, heights of rational points, and other arithmetic information.

Iwasawa theory packages this kind of information, for *all* subfields of a \mathbf{Z}_p^d -extension, in *p*-adic *L*-functions.

This will be our approach.

The setup

Fix:

- an elliptic curve $E_{/\mathbf{Q}}$ of conductor N,
- a prime number p > 2,
- an imaginary quadratic field K of discriminant D < -4.

Assume:

- N, p, D are pairwise relatively prime,
- E has good, ordinary reduction at p,
- every prime dividing N splits in K,
- the Shafarevich-Tate groups of E over all number fields are finite.

Theorem (Nekovář). Under these assumptions, rank E(K) is odd.

The setup

- \mathbf{K}_{∞} : the (unique) \mathbf{Z}_p^2 -extension of K,
- K⁺_∞, K⁻_∞ ⊂ K_∞ the cyclotomic and anticyclotomic Z_p-extensions of K:

- Γ_{\pm} is the maximal quotient of Γ on which τ acts via ± 1 .
- $K^+_{\infty} \subset K(\mu_{p^{\infty}})$ is abelian over **Q**.

The setup

Iwasawa algebras:

• $\Lambda := \mathbb{Z}_p[[\Gamma]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, and if $K \subset F \subset \mathbb{K}_\infty$ $\wedge_F := \mathbb{Z}_p[[\operatorname{Gal}(F/K)]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, • $\mathbb{I}_F := \ker[\Lambda \to \Lambda_F]$, • $\Lambda_+ := \Lambda_{K_\infty^+}, \quad \Lambda_- := \Lambda_{K_\infty^-}$.

We have tensored the usual Iwasawa algebras with \mathbf{Q}_p .

- $\Lambda \cong \mathbf{Z}_p[[T_1, T_1]] \otimes \mathbf{Q}_p.$
- If F is a \mathbb{Z}_p -extension of K in \mathbb{K}_∞ then $\Lambda_F \cong \mathbb{Z}_p[[T]] \otimes \mathbb{Q}_p$ is a PID.

Growth of Mordell-Weil

Theorem (Mazur). If F is a \mathbb{Z}_p -extension of K, there is an integer $r(F) \ge 0$ (the "growth number") such that

 $\operatorname{rank} E(L) - r(F)[L:K]$

is bounded for $K \subset L \subset F$.

Conjecture (Mazur). $r(K_{\infty}^{-}) = 1$, and r(F) = 0 if $F \neq K_{\infty}^{-}$.

New tools (late 1980's):

- Gross-Zagier Theorem, relating Heegner points to derivatives of *L*-functions
- Kolyvagin's method of Euler systems, giving upper bounds for Selmer groups.

Growth of Mordell-Weil

Theorem (Kato, Rohrlich). $r(K_{\infty}^+) = 0$.

Corollary. r(F) = 0 for all but finitely many \mathbb{Z}_p -extensions F of K.

Theorem (Cornut, Vatsal). $r(K_{\infty}^{-}) = 1$.

Both theorems use Kolyvagin's theory of Euler systems to get upper bounds for $r(K_{\infty}^+)$ and $r(K_{\infty}^-)$.

The second theorem uses Heegner points to obtain a lower bound for $r(K_{\infty}^{-})$.

Universal norms

If $K \subset F \subset \mathbf{K}_{\infty}$, the universal norm module

$$U(F) := \mathbf{Q}_p \otimes \varprojlim_{K \subset L \subset F} (E(L) \otimes \mathbf{Z}_p)$$

is the projective limit with respect to norm maps, over finite extensions of K in F.

The anticyclotomic universal norm subgroup in $E(K) \otimes \mathbf{Q}_p$ is

 $E(K)^{\text{univ}} := \text{image}[U(K_{\infty}^{-}) \to E(K) \otimes \mathbf{Q}_{p}].$

Corollary. (i) $U(\mathbf{K}_{\infty}) = U(K_{\infty}^{+}) = 0$, (ii) $U(K_{\infty}^{-})$ is free of rank one over Λ_{-} , (iii) $\dim_{\mathbf{Q}_{p}}(E(K)^{\mathrm{univ}}) = 1$.

Universal norms

Let $\epsilon(E) = \pm 1$ be the sign of the action of complex conjugation τ on $E(K)^{\text{univ}}$.

Let r^{\pm} be the rank of the ± 1 eigenspace of τ on E(K):

• rank
$$E(\mathbf{Q}) = r^+$$
,

•
$$rank E(K) = r^+ + r^-$$
,

• since rank E(K) is odd, $r^+ \neq r^-$.

Conjecture (Sign Conjecture).

$$r^{\epsilon(E)} > r^{-\epsilon(E)}.$$

I.e., the anticyclotomic universal norms in $E(K) \otimes \mathbf{Z}_p$ are contained in the larger of $(E(K) \otimes \mathbf{Z}_p)^+$ and $(E(K) \otimes \mathbf{Z}_p)^-$.

Λ -modules

If M is a finitely generated Λ_F -module, then

$$M \xrightarrow{\sim} \bigoplus_{i} \Lambda_F / f_i \Lambda_F \tag{(*)}$$

with $f_i \in \Lambda_F$. The characteristic ideal

$$\operatorname{char}(M) := (\prod_i f_i) \wedge_F$$

of M is well-defined independently of the choice of the f_i in (*).

If M is a finitely generated over Λ , then we have the same definition except that the map (*) may have a kernel and cokernel which are finite dimensional over \mathbf{Q}_p .

Λ -modules

Every homomorphism χ : Gal $(F/K) \rightarrow \overline{\mathbf{Z}}_p^{\times}$ extends to a homomorphism $\chi : \Lambda_F \rightarrow \overline{\mathbf{Q}}_p$.

A *p*-adic *L*-function will typically be an element of some Λ_F , which when evaluated on characters in this way gives special values of *L*-functions.

Complex conjugation τ acts naturally on Γ , Γ_+ , and Γ_- .

If M is a Λ - (or Λ_{-} -) module, let $M^{(\tau)}$ be the abelian group M with new action of $\gamma \in \Gamma$ given by the old action of γ^{τ} .

p-adic heights

Let $\mathcal{U} = U(K_{\infty}^{-})$. The canonical (cyclotomic) *p*-adic height pairing $\langle , \rangle_{\text{cyc}}$ induces a homomorphism

$$\mathcal{U} \otimes_{\mathsf{\Lambda}_{-}} \mathcal{U}^{(\tau)} \longrightarrow \mathsf{\Gamma}_{+} \otimes_{\mathbf{Z}_{p}} \mathsf{\Lambda}_{-} \qquad (*)$$

which is " τ -Hermitian": for every lift $\tilde{\tau}$ of τ to Gal(\mathbf{K}_{∞}/K) we have

$$\langle \tilde{\tau} u, \tilde{\tau} v \rangle_{\rm CYC} \ = \ \tilde{\tau} \langle u, v \rangle_{\rm CYC}.$$

Conjecture (Height Conjecture). The map (*) is an isomorphism.

Heegner points

Fix a modular parametrization $X_0(N) \rightarrow E$.

The theory of complex multiplication provides a family of points in $X_0(N)(K^{ab})$.

These points give a free rank-one submodule of Heegner points $\mathcal{H} \subset U(K_{\infty}^{-})$.

 \mathcal{H} has a Λ_- -generator c, well-defined up to multiplication by ± 1 and by $\gamma \in \Gamma_-$.

The free, rank-one module $\mathcal{H} \otimes_{\Lambda_{-}} \mathcal{H}^{(\tau)}$ has a canonical generator

 $c \otimes c^{(\tau)} \in \mathcal{H} \otimes_{\Lambda_{-}} \mathcal{H}^{(\tau)} \subset \mathcal{U} \otimes_{\Lambda_{-}} \mathcal{U}^{(\tau)}.$

Heegner points

Define the *Heegner* L-function

$$\mathcal{L} := \langle c, c^{(\tau)} \rangle_{\text{cyc}} \in \Gamma_{+} \otimes_{\mathbb{Z}_{p}} \Lambda_{-}$$

where $c \otimes c^{(\tau)}$ is the canonical generator of $\mathcal{H} \otimes_{\Lambda_{-}} \mathcal{H}^{(\tau)}$.

The Height Conjecture is equivalent to:

Conjecture. \mathcal{L} is a generator of the submodule

$$\Gamma_+ \otimes \operatorname{char}(\mathcal{U}/\mathcal{H})^2 \subset \Gamma_+ \otimes \Lambda_-.$$

The analytic theory

The "two-variable" p-adic L-function (Haran, Hida) is an element $\mathbf{L} \in \mathbf{\Lambda}$ such that for $\chi: \mathbf{\Gamma} \to \bar{\mathbf{Z}}^{\times} \subset \bar{\mathbf{Z}}_p^{\times}$,

$$\chi(\mathbf{L}) = c(\chi) \frac{L_{\mathsf{H-W}}(E_{/K},\chi,1)}{\pi^2 \|f_E\|^2}$$

where

- $L_{\text{H-W}}(E_{/K},\chi,s)$ is the Hasse-Weil *L*-function,
- $c(\chi)$ is an explicit algebraic number,
- f_E is the modular form corresponding to E and $||f_E||$ is its Petersson norm.

The analytic theory

The image of $L \in \Lambda$ under the natural projections $\Lambda \to \Lambda_+$ and $\Lambda \to \Lambda_-$ gives "one-variable" *p*-adic *L*-functions

$$L_+ \in \Lambda_+$$
 and $L_- \in \Lambda_-$.

It follows from a functional equation satisfied by L that $L_{-} = 0$, i.e.,

$$\mathbf{L} \in \mathbf{I}_{K_{\infty}^{-}} = \ker[\Lambda \to \Lambda_{-}].$$

- $\bullet~\mathbf{L}$ ''vanishes on the anticyclotomic line''
- the image of L in ${\rm I}_{K^-_\infty}/{\rm I}_{K^-_\infty}^2$ is the "first derivative of L in the cyclotomic direction" .

Λ -adic Gross-Zagier Conjecture

Recall the Heegner L-function

$$\mathcal{L} = \langle c, c^{(\tau)} \rangle_{\text{cyc}} \in \Gamma_{+} \otimes \Lambda_{-}.$$

There is a natural Λ_{-} -isomorphism

$$\begin{array}{cccc} \mathsf{\Gamma}_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-} & \xrightarrow{\sim} & \mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2} \\ & \gamma \otimes \mathbf{1} & \mapsto & \gamma - \mathbf{1}. \end{array}$$
(*)

Conjecture (Perrin-Riou) "A-adic Gross-Zagier Conjecture." The inverse image of L under (*) is $d^{-1}\mathcal{L}$, where d is the degree of the parametrization $X_0(N) \to E$.

Λ -adic Gross-Zagier Conjecture

Theorem (Perrin-Riou). "*p*-adic Gross-Zagier." The images of $d^{-1}\mathcal{L}$ and L are identifed by the bottom map in

${\sf \Gamma}_+ \otimes_{{f Z}_p} {\sf \Lambda}$	$\xrightarrow{\sim}$	$\mathrm{I}_{K_\infty^-}/\mathrm{I}_{K_\infty^-}^2$
↓ -		↓ + /+2
$\Gamma_+ \otimes_{\mathbf{Z}_p} \Lambda_K$	\hookrightarrow	$\mathbf{I}_K/\mathbf{I}_K^2$
$F_+ \otimes \mathbf{Q}_p$	\hookrightarrow	$\Gamma\otimes \mathbf{Q}_p$

The image of L in the two-dimensional \mathbf{Q}_p -vector space Γ is the derivative of L. This theorem expresses that derivative as the height of a Heegner point.

The conjecture extends this to the entire anticyclotomic \mathbf{Z}_p -extension.

Two-variable *p*-adic regulator

Let $\mathbf{I} = \mathbf{I}_K$, the augmentation ideal of Λ , and recall $\Gamma \cong \Gamma_+ \oplus \Gamma_-$.

For every
$$r \ge 0$$

 $\mathbf{I}^r / \mathbf{I}^{r+1} \cong \operatorname{Sym}_{\mathbf{Z}_p}^r(\Gamma) \otimes \mathbf{Q}_p \cong \bigoplus_{j=0}^r \Gamma^{r-j,j}$
where $\Gamma^{i,j} = \mathbf{Q}_p \otimes (\Gamma_+^{\otimes i} \otimes \Gamma_-^{\otimes j}).$

Suppose $r = \operatorname{rank} E(F)$. Fix $P_1, \ldots, P_r \in E(F)$ which generate a subgroup of finite index t.

Two-variable *p*-adic regulator

Using the two-variable *p*-adic height pairing

 $\langle , \rangle_{\Gamma} : E(K) \times E(K) \longrightarrow \Gamma \otimes \mathbf{Q}_p,$

define the *two-variable p*-adic regulator

$$R_{p}(E,K) := t^{-2} \det \langle P_{i}, P_{j} \rangle_{\Gamma}$$

$$\in \operatorname{Sym}_{\mathbb{Z}_{p}}^{r}(\Gamma) \otimes \mathbb{Q}_{p}$$

$$\cong \bigoplus_{j=0}^{r} \Gamma^{r-j,j} \cong \mathbb{I}^{r}/\mathbb{I}^{r+1},$$

If $0 \leq j \leq r$ let $R_p(E, K)^{r-j,j}$ be the projection of $R_p(E, K)$ into $\Gamma^{r-j,j}$, so that

$$R_p(E,K) = \bigoplus_{j=0}^r R_p(E,K)^{r-j,j}.$$

Nondegeneracy of the height pairing

Recall that r^{\pm} is the rank of the ± 1 -eigenspace $E(K)^{\pm}$ of τ acting on E(K).

Proposition. $R_p(E, K)^{r-j,j} = 0$ unless j is even and $j \le 2 \min(r^+, r^-)$.

Conjecture (Maximal Nondegeneracy of the Height Pairing). If j is even and $j \le 2\min(r^+, r^-)$, then $R_p(E, K)^{r-j,j} \ne 0$.

The Maximal Nondegeneracy Conjecture, or more specifically the nonvanishing of $R_p(E,K)^{r-j,j}$ when $j = 2\min(r^+,r^-)$, implies the Sign Conjecture.

Selmer groups

If $K \subset F \subset \mathbf{K}_{\infty}$, let

$$\operatorname{Sel}_p(E_{/F}) \subset H^1(G_F, E[p^\infty])$$

be the *p*-power Selmer group and $\operatorname{III}(E_{/F})$ the Shafarevich-Tate group. Thus

$$0 \to E(F) \otimes \mathbf{Q}_p / \mathbf{Z}_p \to \operatorname{Sel}_p(E_{/F})$$
$$\to \operatorname{III}(E_{/F})[p^{\infty}] \to 0$$

Also write

$$\begin{split} \mathcal{S}_p(E_{/F}) &= \operatorname{Hom}(\operatorname{Sel}_p(E_{/F}), \mathbf{Q}_p/\mathbf{Z}_p) \otimes \mathbf{Q}_p. \\ \\ \text{If } [F:K] < \infty \text{ then (since } |\operatorname{III}(E_{/F})| < \infty) \\ \\ \mathcal{S}_p(E_{/F}) &= \operatorname{Hom}(E(F), \mathbf{Q}_p). \end{split}$$

Selmer groups

Theorem (Control Theorem). If $K \subset F \subset \mathbf{K}_{\infty}$

(i) the natural restriction map induces an isomorphism

$$\mathcal{S}_p(E_{/\mathbf{K}_{\infty}}) \otimes_{\Lambda} \Lambda_F \xrightarrow{\sim} \mathcal{S}_p(E_{/F}).$$

(ii) There is a canonical isomorphism

$$U(F) \xrightarrow{\sim} \operatorname{Hom}_{\Lambda_F}(\mathcal{S}_p(E_{/F}), \Lambda_F).$$

Let $S_p(E_{/K_{\infty}^-})_{\text{tors}}$ denote the Λ_- -torsion submodule of $S_p(E_{/K_{\infty}^-})$).

Main Conjectures

Conjecture (Mazur, Perrin-Riou)."Two-

Variable Main Conjecture." The two-variable *p*-adic *L*-function **L** generates the ideal char_{Λ}($S_p(E_{/K_{\infty}})$) of Λ .

Conjecture (Mazur&Swinnerton-Dyer, Perrin-Riou). "Cyclotomic and Anticyclotomic One-Variable Main Conjectures" (i) L_+ generates the ideal

$$\operatorname{char}_{\Lambda_+}(\mathcal{S}_p(E_{/K_{\infty}^+})) \subset \Lambda_+.$$

(ii) The image of ${\bf L}$ under

$$\mathbf{I}_{K_{\infty}^{-}} \to \mathbf{I}_{K_{\infty}^{-}}/\mathbf{I}_{K_{\infty}^{-}}^{2} \xrightarrow{\sim} \Gamma_{+} \otimes_{\mathbf{Z}_{p}} \Lambda_{-}$$

generates

$$\Gamma_+ \otimes \operatorname{char}_{\Lambda_-}(\mathcal{S}_p(E_{/K_{\infty}^-})_{\operatorname{tors}}).$$

Main Conjectures

Theorem (Kato, Rubin, Howard, Kolyvagin). Under mild additional hypotheses,

(i) $L_{+}\Lambda_{+} \subset \operatorname{char}_{\Lambda_{+}}(\mathcal{S}_{p}(E_{/K_{\infty}^{+}}))$, and if E has complex multiplication then equality holds.

(ii)
$$\operatorname{char}_{\Lambda_{-}}(\mathcal{U}/\mathcal{H})^{2}$$

 $\subset \operatorname{char}_{\Lambda_{-}}(\mathcal{S}_{p}(E_{/K_{\infty}^{+}})_{\operatorname{tors}}).$

Note: the Height Conjecture and the Λ -adic Gross-Zagier Conjecture predict that

$$\Gamma_+ \otimes \operatorname{char}_{\Lambda_-} (\mathcal{U}/\mathcal{H})^2 = L'\Lambda_-$$

where L' is the image of L in $\Gamma_+ \otimes_{\mathbb{Z}_p} \Lambda_-$.

Let V be a $\mathbb{Z}_p[[Gal(\mathbb{K}_{\infty}/K)]] \otimes \mathbb{Q}_p$ -module which is free of finite rank over Λ .

• $V^{(\tau)}$ denotes V with Λ -module structure obtained by composition with the action of τ ,

•
$$V^* = \operatorname{Hom}_{\Lambda}(V, \Lambda)$$
.

An orthogonal Λ -module is such a V with

• an isomorphism

$$\delta : \det_{\Lambda}(V^*) \xrightarrow{\sim} \det_{\Lambda}(V^{(\tau)})$$

• a Λ -bilinear τ -Hermitian pairing $\pi: V \otimes_{\Lambda} V^{(\tau)} \longrightarrow \Lambda$

or equivalently a map $V^{(\tau)} \to V^*$.

The discriminant $disc(V) = disc(V, \delta, \pi) \in \Lambda$ is the composition $\delta \circ det_{\Lambda}(\pi)$ $det_{\Lambda}(V^{(\tau)}) \rightarrow det_{\Lambda}(V^*) \rightarrow det_{\Lambda}(V^{(\tau)}).$ Let $M = M(V, \pi)$ be the cokernel of $0 \longrightarrow V^{(\tau)} \xrightarrow{\pi} V^* \longrightarrow M \longrightarrow 0.$

We assume that $disc(V) \neq 0$, so M is a torsion module.

If $K \subset F \subset \mathbf{K}_{\infty}$, recall that

$$\mathbf{I}_F = \ker[\mathbf{\Lambda} \twoheadrightarrow \mathbf{\Lambda}_F].$$

Define

$$V(F) := \ker[V \otimes \Lambda_F \xrightarrow{\pi \otimes 1} (V^{(\tau)})^* \otimes \Lambda_F]$$
$$= \{x \in V : \pi(x, V^{(\tau)}) \subset \mathbf{I}_F\} / \mathbf{I}_F V$$

and similarly

$$V^{(\tau)}(F) := \ker[V^{(\tau)} \otimes \Lambda_F \to V^* \otimes \Lambda_F].$$

We get an induced pairing

$$\pi_F : V^{(\tau)}(F) \otimes_{\Lambda_F} V(F) \longrightarrow \mathbf{I}_F / \mathbf{I}_F^2.$$

Recall the Selmer groups $\operatorname{Sel}_p(E_{/F})$ and $\mathcal{S}_p(E_{/F}) = \operatorname{Hom}(\operatorname{Sel}_p(E_{/F}), \mathbf{Q}_p/\mathbf{Z}_p) \otimes \mathbf{Q}_p.$

Proposition. Suppose V is an orthogonal Λ -module and $\varphi : M \xrightarrow{\sim} S_p(E_{/\mathbf{K}_{\infty}})$ is an isomorphism. Then for every extension F of K in \mathbf{K}_{∞} , φ induces an isomorphism

 $V(F) \xrightarrow{\sim} U(F)$

where U(F) is the module of universal norms.

Now take $F = K_{\infty}^{-}$.

Let \mathcal{A} be the largest ideal of Λ_{-} such that

•
$$\mathcal{A}^{\tau} = \mathcal{A}$$
,

• $\mathcal{A}^2 \subset \operatorname{char}_{\Lambda_-}(M \otimes \Lambda_-)_{\operatorname{tors}}$.

Define a submodule H of $V(K_{\infty}^{-})$ by

$$H = \mathcal{A} V(K_{\infty}^{-}).$$

Definition. The orthogonal Λ -module Vorganizes the anticyclotomic arithmetic of (E, K, p) if the following properties hold.

(a) $\operatorname{disc}(V) = \mathbf{L} \in \mathbf{\Lambda}$,

(b)
$$M \cong \mathcal{S}_p(E_{/\mathbf{K}_\infty})$$
,

(c) the induced pairing

$$V(K_{\infty}^{-}) \otimes V(K_{\infty}^{-})^{(\tau)} \to \mathbf{I}_{K_{\infty}^{-}}/\mathbf{I}_{K_{\infty}^{-}}^{2}$$

is surjective,

(d) the isomorphism $V(K_{\infty}^{-}) \cong U(K_{\infty}^{-})$ induced by (b) identifies $H \subset V(K_{\infty}^{-})$ with the Heegner submodule \mathcal{H} , and identifies the pairing of (c) with the *p*adic height pairing.

Question. Given E, K, and p satisfying our running hypotheses, is there an orthogonal Λ -module V that organizes the anticyclotomic arithmetic of (E, K, p)?

When E is $y^2 + y = x^3 - x$, $K = \mathbf{Q}(\sqrt{-7})$, p = 5, the answer is yes, with V free of rank one.

One could ask analogous questions with:

- Λ replaced by the localization of Λ at I (weaker),
- Λ replaced by $\mathbf{Z}_p[[\Gamma]]$ (stronger).

Theorem. Suppose there is an orthogonal Λ -module V that organizes the anticyclo-tomic arithmetic of (E, K, p). Then

- the Two-Variable Main Conjecture,
- the Cyclotomic Main Conjecture,
- the Anticyclotomic Main Conjecture,
- the Height Conjecture,
- the Λ-adic Gross-Zagier Conjecture

all hold.

Some remarks about the proof

- The Two-Variable Main Conjecture follows immediately from (a) and (b).
- The Cyclotomic Main Conjecture follows from the Two-Variable Main Conjecture and the Control Theorem.
- The Height Conjecture is (c).
- The Anticyclotomic Main Conjecture and the A-adic Gross-Zagier Conjecture follow from (a), (b), (c), (d), and facts about the structure of $S_p(E_{/K_{\infty}})$ proved by Howard and by Nekovář.
- The Maximal Nondegeneracy Conjecture Implies the Sign Conjecture, but not (immediately?) from the existence of an organizing orthogonal Λ -module.