# Elliptic Curves and Iwasawa Theory 

Karl Rubin

## Department of Mathematics

Stanford University
Stanford CA 94305, USA
rubin@math.stanford.edu

$$
22 \text { August } 2002
$$

## The problem

Given an elliptic curve $E$, understand how the Mordell-Weil group $E(F)$ varies as $F$ varies.

Restrict to:

- subfields $F$ of $\mathbf{Z}_{p}$ (or $\mathbf{Z}_{p}^{d}$ ) extensions of a base field $K$ (Iwasawa theory).
- $K=\mathrm{Q}$ or imaginary quadratic field (explicit constructions).


## This lecture

This talk describes joint work with Barry Mazur.

It is a sequel to Mazur's 1983 ICM lecture in Warsaw. We will survey the progress since then, due to many people including:

Bertolini \& Darmon<br>Cornut<br>Greenberg<br>Gross \& Zagier<br>Haran<br>Hida<br>Kato<br>Kolyvagin<br>Nekovár<br>Perrin-Riou<br>Vatsal

## Example

Let $E$ be the elliptic curve

$$
y^{2}+y=x^{3}-x,
$$

- $K=\mathrm{Q}(\sqrt{-7})$,
- $\mathbf{K}_{\infty}$ is the unique $\mathbf{Z}_{5}^{2}$-extension of $K$,
- $K \subset F \subset \mathbf{K}_{\infty}$.

Let $K_{\infty}^{+}$and $K_{\infty}^{-}$be the cyclotomic and anticyclotomic $\mathbf{Z}_{5}$-extensions of $K$.

Theorem. rank $E(F)=\left[F \cap K_{\infty}^{-}: K\right]$.
In particular

- $\operatorname{rank} E\left(K_{\infty}^{-}\right)=\operatorname{rank} E\left(\mathbf{K}_{\infty}\right)=\infty$,
- $\operatorname{rank} E\left(K_{\infty}^{+}\right)=\operatorname{rank} E(K)=1$.


## Example

Keep the same $E$, but now

- $K=\mathrm{Q}(\sqrt{-26})$.
- $\mathbf{K}_{\infty}, K_{\infty}^{+}$, and $K_{\infty}^{-}$are the $\mathbf{Z}_{5}^{2}$-extension and cyclotomic and anticyclotomic $\mathbf{Z}_{5}{ }^{-}$ extensions of $K$,
- $K \subset F \subset \mathbf{K}_{\infty}$.


## Conjecture.

$$
\operatorname{rank} E(F)=\left[F \cap K_{\infty}^{-}: K\right]+2
$$

This conjecture seems to be out of reach of current technology.

## Method

## Conjecture (Birch \& Swinnerton-Dyer)

 If $F$ is a number field,(i) $\operatorname{rank} E(F)=\operatorname{ord}_{s=1} L\left(E_{/ F}, s\right)$,
(ii) a prediction for the first nonvanishing derivative $L^{(r)}\left(E_{/ F}, 1\right)$ in terms of periods, heights of rational points, and other arithmetic information.

Iwasawa theory packages this kind of information, for all subfields of a $\mathbf{Z}_{p}^{d}$-extension, in $p$-adic $L$-functions.

This will be our approach.

## The setup

## Fix:

- an elliptic curve $E_{/ \mathrm{Q}}$ of conductor $N$, - a prime number $p>2$,
- an imaginary quadratic field $K$ of discriminant $D<-4$.

Assume:

- $N, p, D$ are pairwise relatively prime,
- $E$ has good, ordinary reduction at $p$,
- every prime dividing $N$ splits in $K$,
- the Shafarevich-Tate groups of $E$ over all number fields are finite.

Theorem (Nekovár̈). Under these assumptions, rank $E(K)$ is odd.

## The setup

- $\mathbf{K}_{\infty}$ : the (unique) $\mathbf{Z}_{p}^{2}$-extension of $K$,
- $K_{\infty}^{+}, K_{\infty}^{-} \subset \mathbf{K}_{\infty}$ the cyclotomic and anticyclotomic $\mathbf{Z}_{p}$-extensions of $K$ :

- $\Gamma_{ \pm}$is the maximal quotient of $\Gamma$ on which $\tau$ acts via $\pm 1$.
- $K_{\infty}^{+} \subset K\left(\boldsymbol{\mu}_{p^{\infty}}\right)$ is abelian over $\mathbf{Q}$.


## The setup

Iwasawa algebras:

- $\Lambda:=\mathbf{Z}_{p}[[\Gamma]] \otimes_{\mathbf{Z}_{p}} \mathbf{Q}_{p}$, and if $K \subset F \subset \mathbf{K}_{\infty}$

$$
\wedge_{F}:=\mathbf{Z}_{p}[[\operatorname{Gal}(F / K)]] \otimes_{\mathbf{Z}_{p}} \mathbf{Q}_{p}
$$

- $\mathbf{I}_{F}:=\operatorname{ker}\left[\Lambda \rightarrow \Lambda_{F}\right]$,
- $\Lambda_{+}:=\Lambda_{K_{\infty}^{+}}, \quad \Lambda_{-}:=\Lambda_{K_{\infty}^{-}}$.

We have tensored the usual Iwasawa algebras with $\mathrm{Q}_{p}$.

- $\mathbf{\Lambda} \cong \mathbf{Z}_{p}\left[\left[T_{1}, T_{1}\right]\right] \otimes \mathbf{Q}_{p}$.
- If $F$ is a $\mathbf{Z}_{p}$-extension of $K$ in $\mathbf{K}_{\infty}$ then $\wedge_{F} \cong \mathbf{Z}_{p}[[T]] \otimes \mathbf{Q}_{p}$ is a PID.


## Growth of Mordell-Weil

Theorem (Mazur). If $F$ is a $\mathbf{Z}_{p}$-extension of $K$, there is an integer $r(F) \geq 0$ (the "growth number") such that

$$
\operatorname{rank} E(L)-r(F)[L: K]
$$

is bounded for $K \subset L \subset F$.
Conjecture (Mazur). $r\left(K_{\infty}^{-}\right)=1$, and $r(F)=0$ if $F \neq K_{\infty}^{-}$.

New tools (late 1980's):

- Gross-Zagier Theorem, relating Heegner points to derivatives of $L$-functions
- Kolyvagin's method of Euler systems, giving upper bounds for Selmer groups.


## Growth of Mordell-Weil

Theorem (Kato, Rohrlich). $r\left(K_{\infty}^{+}\right)=0$.
Corollary. $\quad r(F)=0$ for all but finitely many $\mathbf{Z}_{p}$-extensions $F$ of $K$.

Theorem (Cornut, Vatsal). $r\left(K_{\infty}^{-}\right)=1$.

Both theorems use Kolyvagin's theory of Euler systems to get upper bounds for $r\left(K_{\infty}^{+}\right)$and $r\left(K_{\infty}^{-}\right)$.

The second theorem uses Heegner points to obtain a lower bound for $r\left(K_{\infty}^{-}\right)$.

## Universal norms

If $K \subset F \subset \mathbf{K}_{\infty}$, the universal norm module

$$
U(F):=\mathbf{Q}_{p} \otimes \underset{K \subset L \subset F}{\lim _{\overleftarrow{C l}}}\left(E(L) \otimes \mathbf{Z}_{p}\right)
$$

is the projective limit with respect to norm maps, over finite extensions of $K$ in $F$.

The anticyclotomic universal norm subgroup in $E(K) \otimes \mathbf{Q}_{p}$ is
$E(K)^{\text {univ }}:=$ image $\left[U\left(K_{\infty}^{-}\right) \rightarrow E(K) \otimes \mathbf{Q}_{p}\right]$.

Corollary. (i) $U\left(\mathbf{K}_{\infty}\right)=U\left(K_{\infty}^{+}\right)=0$,
(ii) $U\left(K_{\infty}^{-}\right)$is free of rank one over $\wedge_{-}$,
(iii) $\operatorname{dim}_{\mathbf{Q}_{p}}\left(E(K)^{\text {univ }}\right)=1$.

## Universal norms

Let $\epsilon(E)= \pm 1$ be the sign of the action of complex conjugation $\tau$ on $E(K)^{\text {univ. }}$.

Let $r^{ \pm}$be the rank of the $\pm 1$ eigenspace of $\tau$ on $E(K)$ :

- $\operatorname{rank} E(\mathbf{Q})=r^{+}$,
- $\operatorname{rank} E(K)=r^{+}+r^{-}$,
- since rank $E(K)$ is odd, $r^{+} \neq r^{-}$.

Conjecture (Sign Conjecture).

$$
r^{\epsilon(E)}>r^{-\epsilon(E)}
$$

I.e., the anticyclotomic universal norms in $E(K) \otimes \mathbf{Z}_{p}$ are contained in the larger of $\left(E(K) \otimes \mathbf{Z}_{p}\right)^{+}$and $\left(E(K) \otimes \mathbf{Z}_{p}\right)^{-}$.

## 人-modules

If $M$ is a finitely generated $\Lambda_{F}$-module, then

$$
\begin{equation*}
M \xrightarrow{\sim} \underset{i}{\oplus} \wedge_{F} / f_{i} \wedge_{F} \tag{*}
\end{equation*}
$$

with $f_{i} \in \Lambda_{F}$. The characteristic ideal

$$
\operatorname{char}(M):=\left(\prod_{i} f_{i}\right) \wedge_{F}
$$

of $M$ is well-defined independently of the choice of the $f_{i}$ in $(*)$.

If $M$ is a finitely generated over $\Lambda$, then we have the same definition except that the map (*) may have a kernel and cokernel which are finite dimensional over $\mathrm{Q}_{p}$.

## 人-modules

Every homomorphism $\chi: \operatorname{Gal}(F / K) \rightarrow \overline{\mathbf{Z}}_{p}^{\times}$ extends to a homomorphism $\chi: \wedge_{F} \rightarrow \overline{\mathbf{Q}}_{p}$.

A $p$-adic $L$-function will typically be an element of some $\Lambda_{F}$, which when evaluated on characters in this way gives special values of $L$-functions.

Complex conjugation $\tau$ acts naturally on $\Gamma, \Gamma_{+}$, and $\Gamma_{-}$.

If $M$ is a $\Lambda^{-}$(or $\Lambda_{--}$) module, let $M^{(\tau)}$ be the abelian group $M$ with new action of $\gamma \in \Gamma$ given by the old action of $\gamma^{\tau}$.

## p-adic heights

Let $\mathcal{U}=U\left(K_{\infty}^{-}\right)$. The canonical (cyclotomic) p-adic height pairing 〈 , >nyc induces a homomorphism

$$
\begin{equation*}
\mathcal{U} \otimes_{\wedge_{-}} \mathcal{U}^{(\tau)} \longrightarrow \Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-} \tag{*}
\end{equation*}
$$

which is " $\tau$-Hermitian": for every lift $\tilde{\tau}$ of $\tau$ to $\operatorname{Gal}\left(\mathbf{K}_{\infty} / K\right)$ we have

$$
\langle\tilde{\tau} u, \tilde{\tau} v\rangle_{\mathrm{cyc}}=\tilde{\tau}\langle u, v\rangle_{\mathrm{cyc}}
$$

Conjecture (Height Conjecture). The map (*) is an isomorphism.

## Heegner points

Fix a modular parametrization $X_{0}(N) \rightarrow E$.

The theory of complex multiplication provides a family of points in $X_{0}(N)\left(K^{\mathrm{ab}}\right)$.

These points give a free rank-one submodule of Heegner points $\mathcal{H} \subset U\left(K_{\infty}^{-}\right)$.
$\mathcal{H}$ has a $\Lambda_{-}$-generator $c$, well-defined up to multiplication by $\pm 1$ and by $\gamma \in \Gamma_{-}$.

The free, rank-one module $\mathcal{H} \otimes_{\wedge_{-}} \mathcal{H}^{(\tau)}$ has a canonical generator

$$
c \otimes c^{(\tau)} \in \mathcal{H} \otimes_{\Lambda_{-}} \mathcal{H}^{(\tau)} \subset \mathcal{U} \otimes_{\Lambda_{-}} \mathcal{U}^{(\tau)}
$$

## Heegner points

Define the Heegner L-function

$$
\mathcal{L}:=\left\langle c, c^{(\tau)}\right\rangle_{\mathrm{cyc}} \in \Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-}
$$

where $c \otimes c^{(\tau)}$ is the canonical generator of $\mathcal{H} \otimes_{\Lambda_{-}} \mathcal{H}^{(\tau)}$.

The Height Conjecture is equivalent to:

Conjecture. $\mathcal{L}$ is a generator of the submodule

$$
\Gamma_{+} \otimes \operatorname{char}(\mathcal{U} / \mathcal{H})^{2} \subset \Gamma_{+} \otimes \Lambda_{-}
$$

## The analytic theory

The "two-variable" $p$-adic $L$-function (Haran, Hida) is an element $\mathbf{L} \in \Lambda$ such that for $\chi: \Gamma \rightarrow \overline{\mathbf{Z}}^{\times} \subset \overline{\mathbf{Z}}_{p}^{\times}$,

$$
\chi(\mathbf{L})=c(\chi) \frac{L_{\mathrm{H}-\mathrm{W}}\left(E_{/ K}, \chi, 1\right)}{\pi^{2}\left\|f_{E}\right\|^{2}}
$$

where

- $L_{\mathrm{H}-\mathrm{W}}\left(E_{/ K}, \chi, s\right)$ is the Hasse-Weil $L$ function,
- $c(\chi)$ is an explicit algebraic number,
- $f_{E}$ is the modular form corresponding to $E$ and $\left\|f_{E}\right\|$ is its Petersson norm.


## The analytic theory

The image of $\mathbf{L} \in \boldsymbol{\Lambda}$ under the natural projections $\Lambda \rightarrow \Lambda_{+}$and $\Lambda \rightarrow \Lambda_{-}$gives "one-variable" $p$-adic $L$-functions

$$
L_{+} \in \Lambda_{+} \quad \text { and } \quad L_{-} \in \Lambda_{-}
$$

It follows from a functional equation satisfied by L that $L_{-}=0$, i.e.,

$$
\mathbf{L} \in \mathbf{I}_{K_{\infty}^{-}}=\operatorname{ker}\left[\Lambda \rightarrow \Lambda_{-}\right] .
$$

- L "vanishes on the anticyclotomic line"
- the image of $\mathbf{L}$ in $\mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2}$ is the "first derivative of $\mathbf{L}$ in the cyclotomic direction".


## $\underline{\Lambda}$-adic Gross-Zagier Conjecture

Recall the Heegner $L$-function

$$
\mathcal{L}=\left\langle c, c^{(\tau)}\right\rangle_{\mathrm{cyc}} \in \Gamma_{+} \otimes \Lambda_{-}
$$

There is a natural $\wedge_{-}$-isomorphism

$$
\begin{array}{rlc}
\Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-} & \xrightarrow{\longrightarrow} \mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2} \\
\gamma \otimes 1 & \mapsto & \gamma-1
\end{array}
$$

Conjecture (Perrin-Riou) " $\wedge$-adic GrossZagier Conjecture." The inverse image of $\mathbf{L}$ under $(*)$ is $d^{-1} \mathcal{L}$, where $d$ is the degree of the parametrization $X_{0}(N) \rightarrow E$.

## $\underline{\Lambda}$-adic Gross-Zagier Conjecture

Theorem (Perrin-Riou). " $p$-adic GrossZagier." The images of $d^{-1} \mathcal{L}$ and L are identifed by the bottom map in

$$
\begin{array}{ccc}
\Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-} & \stackrel{\sim}{\hookrightarrow} & \mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2} \\
\downarrow & & \downarrow \\
\Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{K} & \hookrightarrow & \mathbf{I}_{K} / \mathbf{I}_{K}^{2} \\
\| & & \| \\
\Gamma_{+} \otimes \mathbf{Q}_{p} & \hookrightarrow & \Gamma \otimes \mathbf{Q}_{p}
\end{array}
$$

The image of $\mathbf{L}$ in the two-dimensional $\mathbf{Q}_{p}$-vector space $\boldsymbol{\Gamma}$ is the derivative of $\mathbf{L}$. This theorem expresses that derivative as the height of a Heegner point.

The conjecture extends this to the entire anticyclotomic $\mathbf{Z}_{p}$-extension.

## Two-variable $p$-adic regulator

Let $\mathbf{I}=\mathbf{I}_{K}$, the augmentation ideal of $\Lambda$, and recall $\Gamma \cong \Gamma_{+} \oplus \Gamma_{-}$.

For every $r \geq 0$

$$
\mathbf{I}^{r} / \mathbf{I}^{r+1} \cong \operatorname{Sym}_{\mathbf{Z}_{p}}^{r}(\boldsymbol{\Gamma}) \otimes \mathbf{Q}_{p} \cong \bigoplus_{j=0}^{r} \Gamma^{r-j, j}
$$

where $\Gamma^{i, j}=\mathrm{Q}_{p} \otimes\left(\Gamma_{+}^{\otimes i} \otimes \Gamma_{-}^{\otimes j}\right)$.

Suppose $r=\operatorname{rank} E(F)$. Fix $P_{1}, \ldots, P_{r} \in$ $E(F)$ which generate a subgroup of finite index $t$.

## Two-variable $p$-adic regulator

Using the two-variable $p$-adic height pairing

$$
\langle,\rangle_{\boldsymbol{\Gamma}}: E(K) \times E(K) \longrightarrow \boldsymbol{\Gamma} \otimes \mathbf{Q}_{p}
$$

define the two-variable p-adic regulator

$$
\begin{aligned}
R_{p}(E, K):= & t^{-2} \operatorname{det}\left\langle P_{i}, P_{j}\right\rangle_{\boldsymbol{\Gamma}} \\
& \in \operatorname{Sym}_{\mathbf{Z}_{p}}^{r}(\boldsymbol{\Gamma}) \otimes \mathbf{Q}_{p} \\
& \cong \bigoplus_{j=0}^{r} \Gamma^{r-j, j} \cong \mathbf{I}^{r} / \mathbf{I}^{r+1}
\end{aligned}
$$

If $0 \leq j \leq r$ let $R_{p}(E, K)^{r-j, j}$ be the projection of $R_{p}(E, K)$ into $\Gamma^{r-j, j}$, so that

$$
R_{p}(E, K)=\bigoplus_{j=0}^{r} R_{p}(E, K)^{r-j, j}
$$

## Nondegeneracy of the height pairing

Recall that $r^{ \pm}$is the rank of the $\pm 1$-eigenspace $E(K)^{ \pm}$of $\tau$ acting on $E(K)$.

Proposition. $R_{p}(E, K)^{r-j, j}=0$ unless $j$ is even and $j \leq 2 \min \left(r^{+}, r^{-}\right)$.

Conjecture (Maximal Nondegeneracy of the Height Pairing). If $j$ is even and $j \leq 2 \min \left(r^{+}, r^{-}\right)$, then $R_{p}(E, K)^{r-j, j} \neq 0$.

The Maximal Nondegeneracy Conjecture, or more specifically the nonvanishing of $R_{p}(E, K)^{r-j, j}$ when $j=2 \min \left(r^{+}, r^{-}\right)$, implies the Sign Conjecture.

## Selmer groups

If $K \subset F \subset \mathbf{K}_{\infty}$, let

$$
\operatorname{Sel}_{p}\left(E_{/ F}\right) \subset H^{1}\left(G_{F}, E\left[p^{\infty}\right]\right)
$$

be the $p$-power Selmer group and $\amalg\left(E_{/ F}\right)$ the Shafarevich-Tate group. Thus

$$
\begin{aligned}
0 \rightarrow E(F) \otimes \mathbf{Q}_{p} / \mathbf{Z}_{p} & \rightarrow \operatorname{Sel}_{p}(E / F) \\
& \rightarrow Ш(E / F)\left[p^{\infty}\right] \rightarrow 0
\end{aligned}
$$

Also write
$\mathcal{S}_{p}\left(E_{/ F}\right)=\operatorname{Hom}\left(\operatorname{Sel}_{p}\left(E_{/ F}\right), \mathbf{Q}_{p} / \mathbf{Z}_{p}\right) \otimes \mathbf{Q}_{p}$.
If $[F: K]<\infty$ then (since $\left|Ш\left(E_{/ F}\right)\right|<\infty$ )
$\mathcal{S}_{p}\left(E_{/ F}\right)=\operatorname{Hom}\left(E(F), \mathbf{Q}_{p}\right)$.

## Selmer groups

## Theorem (Control Theorem). <br> If $K \subset F \subset \mathbf{K}_{\infty}$

(i) the natural restriction map induces an isomorphism

$$
\mathcal{S}_{p}\left(E_{/ \mathbf{K}_{\infty}}\right) \otimes_{\Lambda} \wedge_{F} \xrightarrow{\sim} \mathcal{S}_{p}\left(E_{/ F}\right) .
$$

(ii) There is a canonical isomorphism

$$
U(F) \xrightarrow{\sim} \operatorname{Hom}_{\wedge_{F}}\left(\mathcal{S}_{p}\left(E_{/ F}\right), \wedge_{F}\right) .
$$

Let $\mathcal{S}_{p}\left(E_{/ K_{\infty}^{-}}\right)$tors denote the $\Lambda_{-}$-torsion submodule of $\mathcal{S}_{p}\left(E_{/ K_{\infty}^{-}}\right)$).

## Main Conjectures

Conjecture (Mazur, Perrin-Riou)."TwoVariable Main Conjecture." The two-varable p-adic L-function $\mathbf{L}$ generates the ideal $\operatorname{char}_{\Lambda}\left(\mathcal{S}_{p}\left(E_{/ \mathbf{K}_{\infty}}\right)\right)$ of $\boldsymbol{\Lambda}$.

Conjecture (Mazur\&Swinnerton-Dyer, Perrin-Riou). "Cyclotomic and Anticyclotomic One-Variable Main Conjectures"
(i) $L_{+}$generates the ideal

$$
\operatorname{char}_{\wedge_{+}}\left(\mathcal{S}_{p}\left(E_{/ K_{\infty}^{+}}\right)\right) \subset \wedge_{+}
$$

(ii) The image of $\mathbf{L}$ under

$$
\mathbf{I}_{K_{\infty}^{-}} \rightarrow \mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2} \xrightarrow{\sim} \Gamma_{+} \otimes_{\mathbf{Z}_{p}} \wedge_{-}
$$

generates

$$
\left.\Gamma_{+} \otimes \operatorname{char}_{\wedge_{-}}\left(\mathcal{S}_{p}\left(E_{/ K_{\infty}^{-}}\right)\right)_{\text {tors }}\right)
$$

## Main Conjectures

Theorem (Kato, Rubin, Howard, Kolyvagin). Under mild additional hypotheses,
(i) $L_{+} \wedge_{+} \subset \operatorname{char}_{\wedge_{+}}\left(\mathcal{S}_{p}\left(E_{/ K_{\infty}^{+}}\right)\right)$, and if $E$ has complex multiplication then equalty holds.
(ii) $\operatorname{char}_{\wedge_{-}}(\mathcal{U} / \mathcal{H})^{2}$

$$
\subset \operatorname{char}_{\wedge_{-}}\left(\mathcal{S}_{p}\left(E_{/ K_{\infty}^{+}}\right)_{\mathrm{tors}}\right)
$$

Note: the Height Conjecture and the $\wedge$ adic Gross-Zagier Conjecture predict that

$$
\Gamma_{+} \otimes \operatorname{char}_{\wedge_{-}}(\mathcal{U} / \mathcal{H})^{2}=L^{\prime} \wedge_{-}
$$

where $L^{\prime}$ is the image of $\mathbf{L}$ in $\Gamma_{+} \otimes_{\mathbf{Z}_{p}} \Lambda_{-}$.

## Orthogonal $\Lambda$-modules

Let $V$ be a $\mathbf{Z}_{p}\left[\left[\mathrm{Gal}\left(\mathbf{K}_{\infty} / K\right)\right]\right] \otimes \mathbf{Q}_{p^{-}}$module which is free of finite rank over $\boldsymbol{\Lambda}$.

- $V^{(\tau)}$ denotes $V$ with $\Lambda$-module structure obtained by composition with the action of $\tau$,
- $V^{*}=\operatorname{Hom}_{\Lambda}(V, \boldsymbol{\Lambda})$.

An orthogonal $\Lambda$-module is such a $V$ with

- an isomorphism

$$
\delta: \operatorname{det}_{\Lambda}\left(V^{*}\right) \xrightarrow{\sim} \operatorname{det}_{\Lambda}\left(V^{(\tau)}\right)
$$

- a $\Lambda$-bilinear $\tau$-Hermitian pairing

$$
\pi: V \otimes_{\Lambda} V^{(\tau)} \longrightarrow \Lambda
$$

or equivalently a map $V^{(\tau)} \rightarrow V^{*}$.

## Orthogonal $\Lambda$-modules

The discriminant

$$
\operatorname{disc}(V)=\operatorname{disc}(V, \delta, \pi) \in \Lambda
$$

is the composition $\delta \circ \operatorname{det}_{\Lambda}(\pi)$

$$
\operatorname{det}_{\Lambda}\left(V^{(\tau)}\right) \rightarrow \operatorname{det}_{\Lambda}\left(V^{*}\right) \rightarrow \operatorname{det}_{\Lambda}\left(V^{(\tau)}\right)
$$

$$
\text { Let } M=M(V, \pi) \text { be the cokernel of }
$$

$$
0 \longrightarrow V^{(\tau)} \xrightarrow{\pi} V^{*} \longrightarrow M \longrightarrow 0 .
$$

We assume that $\operatorname{disc}(V) \neq 0$, so $M$ is a torsion module.

## Orthogonal $\Lambda$-modules

If $K \subset F \subset \mathbf{K}_{\infty}$, recall that

$$
\mathbf{I}_{F}=\operatorname{ker}\left[\Lambda \rightarrow \Lambda_{F}\right]
$$

Define

$$
\begin{aligned}
V(F) & :=\operatorname{ker}\left[V \otimes \wedge_{F} \xrightarrow{\pi \otimes 1}\left(V^{(\tau)}\right)^{*} \otimes \wedge_{F}\right] \\
& =\left\{x \in V: \pi\left(x, V^{(\tau)}\right) \subset \mathbf{I}_{F}\right\} / \mathbf{I}_{F} V
\end{aligned}
$$

and similarly

$$
V^{(\tau)}(F):=\operatorname{ker}\left[V^{(\tau)} \otimes \wedge_{F} \rightarrow V^{*} \otimes \wedge_{F}\right]
$$

We get an induced pairing

$$
\pi_{F}: V^{(\tau)}(F) \otimes_{\wedge_{F}} V(F) \longrightarrow \mathbf{I}_{F} / \mathbf{I}_{F}^{2}
$$

## Packaging the conjectures

Recall the Selmer groups $\operatorname{Sel}_{p}\left(E_{/ F}\right)$ and

$$
\mathcal{S}_{p}\left(E_{/ F}\right)=\operatorname{Hom}\left(\operatorname{Sel}_{p}\left(E_{/ F}\right), \mathbf{Q}_{p} / \mathbf{Z}_{p}\right) \otimes \mathbf{Q}_{p}
$$

Proposition. Suppose $V$ is an orthogonal $\Lambda$-module and $\varphi: M \xrightarrow{\sim} \mathcal{S}_{p}\left(E / \mathbf{K}_{\infty}\right)$ is an isomorphism. Then for every extension $F$ of $K$ in $\mathbf{K}_{\infty}, \varphi$ induces an isomorphism

$$
V(F) \xrightarrow{\sim} U(F)
$$

where $U(F)$ is the module of universal norms.

## Orthogonal $\Lambda$-modules

Now take $F=K_{\infty}^{-}$.

Let $\mathcal{A}$ be the largest ideal of $\Lambda_{-}$such that

- $\mathcal{A}^{\tau}=\mathcal{A}$,
- $\mathcal{A}^{2} \subset \operatorname{char}_{\wedge_{-}}\left(M \otimes \wedge_{-}\right)_{\text {tors }}$.

Define a submodule $H$ of $V\left(K_{\infty}^{-}\right)$by

$$
H=\mathcal{A} V\left(K_{\infty}^{-}\right)
$$

## Packaging the conjectures

Definition. The orthogonal $\Lambda$-module $V$ organizes the anticyclotomic arithmetic of ( $E, K, p$ ) if the following properties hold.
(a) $\operatorname{disc}(V)=\mathbf{L} \in \Lambda$,
(b) $M \cong \mathcal{S}_{p}\left(E_{/ \mathbf{K}_{\infty}}\right)$,
(c) the induced pairing

$$
V\left(K_{\infty}^{-}\right) \otimes V\left(K_{\infty}^{-}\right)^{(\tau)} \rightarrow \mathbf{I}_{K_{\infty}^{-}} / \mathbf{I}_{K_{\infty}^{-}}^{2}
$$

is surjective,
(d) the isomorphism $V\left(K_{\infty}^{-}\right) \cong U\left(K_{\infty}^{-}\right)$induced by (b) identifies $H \subset V\left(K_{\infty}^{-}\right)$ with the Heegner submodule $\mathcal{H}$, and identifies the pairing of (c) with the $p$ adic height pairing.

## Packaging the conjectures

Question. Given $E, K$, and $p$ satisfying our running hypotheses, is there an orthogonal $\Lambda$-module $V$ that organizes the anticyclotomic arithmetic of $(E, K, p)$ ?

When $E$ is $y^{2}+y=x^{3}-x, K=\mathbf{Q}(\sqrt{-7})$, $p=5$, the answer is yes, with $V$ free of rank one.

One could ask analogous questions with:

- $\Lambda$ replaced by the localization of $\boldsymbol{\Lambda}$ at I (weaker),
- $\boldsymbol{\Lambda}$ replaced by $\mathbf{Z}_{p}[[\Gamma]]$ (stronger).


## Packaging the conjectures

Theorem. Suppose there is an orthogonal $\Lambda$-module $V$ that organizes the anticyclotomic arithmetic of $(E, K, p)$. Then

- the Two-Variable Main Conjecture,
- the Cyclotomic Main Conjecture,
- the Anticyclotomic Main Conjecture,
- the Height Conjecture,
- the $\wedge$-adic Gross-Zagier Conjecture all hold.


## Some remarks about the proof

- The Two-Variable Main Conjecture follows immediately from (a) and (b).
- The Cyclotomic Main Conjecture follows from the Two-Variable Main Conjecture and the Control Theorem.
- The Height Conjecture is (c).
- The Anticyclotomic Main Conjecture and the $\wedge$-adic Gross-Zagier Conjecture follow from (a), (b), (c), (d), and facts about the structure of $\mathcal{S}_{p}\left(E_{/ K_{\infty}^{-}}\right)$ proved by Howard and by Nekovár.
- The Maximal Nondegeneracy Conjecture Implies the Sign Conjecture, but not (immediately?) from the existence of an organizing orthogonal $\Lambda$-module.

