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Abelian varieties

An abelian variety is a connected projective group

variety.

One-dimensional abelian varieties are elliptic

curves, which in characteristic different from 2 and

3 can be defined by Weierstrass equations

y2 = x3 + ax + b

with a, b ∈ k and 4a3 + 27b2 6= 0.
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Abelian varieties

The jacobian of a curve of genus g is an abelian

variety of dimension g.

An abelian variety over C is a complex torus (but

in dimension greater than one not every complex

torus is an abelian variety).
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Rational points on abelian varieties

If A is an abelian variety defined over a field k, the

k-rational points A(k) form a commutative group.

Basic Problem: Given an abelian variety A over

k, find A(k).

Mordell-Weil Theorem. If k is a number field,

then A(k) is a finitely generated abelian group.
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Overview

We don’t know how to compute A(k) in general,

so instead we study A(k)/nA(k) for n ∈ Z+.

By the Mordell-Weil theorem,

A(k) ∼= A(k)tors ⊕ Zr

for some r ≥ 0. We call r the rank of A(k). Then

A(k)/nA(k) ∼= A(k)tors/n(A(k)tors)⊕ (Z/nZ)r.
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Overview

A(k)/nA(k) ∼= A(k)tors/n(A(k)tors)⊕ (Z/nZ)r.

In particular, if we know A(k)/nA(k) and A(k)tors,

then we can compute the rank r.

For example, if n = p is prime then

dimFp A(k)/pA(k) = dimFp A(k)[p] + rank(A(k)).
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Overview

We don’t know how to compute A(k)/nA(k)
in general either, so we will define an effectively

computable Selmer group Sn(A/k) containing

A(k)/nA(k).

The Shafarevich-Tate group X(A/k) is the “error

term” (so we hope it’s small)

0 → A(k)/nA(k) → Sn(A/k) → X(A/k)[n] → 0

where X(A/k)[n] is the n-torsion in X(A/k).
Unfortunately X(A/k) is very mysterious. This is

why computing A(k), or A(k)/nA(k), is so difficult.
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Outline of talk

• Kummer theory on abelian varieties (first approx-

imation to the Selmer group, and sketch of proof

of the Mordell-Weil theorem)

• The Selmer group

• Principal homogeneous spaces and the Shafare-

vich-Tate group
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Notation

Let ksep be a separable closure of k and Gk =
Gal(ksep/k).

If n is prime to the characteristic of k, let A[n]
denote the kernel of multiplication by n in A(ksep).
Then A[n] ∼= (Z/nZ)2 dim(A).

We will abbreviate H1(k, A[n]) = H1(Gk, A[n]).
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Kummer theory on abelian varieties

Suppose first that A[n] ⊂ A(k). We define a

Kummer map

A(k) → Hom(Gk, A[n])

as follows. For x ∈ A(k),

• choose y ∈ A(ksep) such that ny = x,

• map σ ∈ Gk to yσ − y ∈ A[n].

Since A[n] ⊂ A(k), yσ − y is independent of

the choice of y and the map σ 7→ yσ − y is a

homomorphism.
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Kummer theory on abelian varieties

A(k) // Hom(Gk, A[n])

x � // (σ 7→ (1
nx)σ − 1

nx)

This induces a well-defined injective homomorphism

A(k)/nA(k) ↪→ Hom(Gk, A[n])

that is not in general surjective.

If A[n] 6⊂ A(k) then the same map induces an

injective Kummer map, which we denote by κ

A(k)/nA(k) κ−−→ H1(k, A[n]).
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Kummer theory on abelian varieties

To prove the Mordell-Weil theorem, it is harmless

to increase k. Thus without loss of generality we

may assume that A[n] ⊂ A(k). Then

A(k)/nA(k) � �
κ

// Hom(Gk, A[n])
∼=��

Hom(Gk,Z/nZ)2 dim(A).

But when k is a number field, Hom(Gk,Z/nZ) is

infinite, so this is still much too big. We will use

“local constraints” to bound the image of κ.
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Selmer groups: first approximation

From now on suppose that k is a number field,

and let Σ be the finite set

{primes v of k : v | n or A has bad reduction at v}.

Theorem. If x ∈ A(k), y ∈ A(k̄), ny = x, and

v /∈ Σ, then k(y)/k is unramified at v.

Let kΣ be the maximal extension of k unramified

outside of Σ and archimedean primes.

Corollary. If x ∈ A(k), y ∈ A(k̄), and ny = x,

then y ∈ A(kΣ).
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Selmer groups: first approximation

A(k)/nA(k) � �
κ

// Hom(Gk, A[n])

Hom(Gal(kΣ/k), A[n])
++

� yWWWWWWWWWWWWWWWWWWWWWWWW ?�

OO

By class field theory, Hom(Gal(kΣ/k), A[n]) is finite.

This proves:

Weak Mordell-Weil Theorem. For every n, the

group A(k)/nA(k) is finite.

Hom(Gal(kΣ/k), A[n]) is our “first approximation”

to the Selmer group.
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Selmer groups: first approximation

Using the weak Mordell-Weil theorem for a single

n ≥ 2, and the canonical height, one deduces easily:

Mordell-Weil Theorem. The group A(k) is

finitely generated.

(If x1, . . . , xr ∈ A(k) generate A(k)/nA(k), then

the set of points in A(k) of height at most

max{ht(xi)} generates A(k).)
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Example

Let k = Q, and let A be the elliptic curve y2 =
x3 − x. Take n = 2, so

A[2] = {O, (0, 0), (1, 0), (−1, 0)} ⊂ A(Q).

We have Σ = {2}, so the Kummer map gives an

injection

A(Q)/2A(Q) ↪→ Hom(Gal(QΣ/Q), A[2])

= Hom(Gal(Q(i,
√

2)/Q), A[2]).
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Example

Since A[2] ⊂ A(Q) and dimF2 A[2] = 2, we have

dimF2 A(Q)/2A(Q) = rank(A(Q)) + 2,

dimF2 Hom(Gal(Q(i,
√

2)/Q), A[2]) = 4.

Using

A(Q)/2A(Q) ↪→ Hom(Gal(Q(i,
√

2)/Q), A[2]).

we conclude that rank(A(Q)) ≤ 2.

In fact, rank(A(Q)) = 0, so we would like to do

better.
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Selmer groups

For every place v of k we have

A(k)/nA(k) � �
κ

//

��

H1(k, A[n])
��

c
_

��

A(kv)/nA(kv) � �
κv

// H1(kv, A[n]) cv

Definition. The Selmer group Sn = Sn(A/k) is the

subgroup of H1(k, A[n])

Sn := {c ∈ H1(k, A[n]) : cv ∈ image(κv) for every v}.

Then Sn contains the image of κ.
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Selmer groups

Sn is finite, since

Sn ⊂ H1(Gal(kΣ/k), A[n])

which is finite.

Sn is effectively computable.

“Effectively computable” is not the same as

“easy.”
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Example

Back to our example A : y2 = x3 − x. We will

now compute S2(A/Q).

Suppose c ∈ Hom(Gk, A[2]). If cv ∈ image(κv)
for every v 6= 2,∞, then

c ∈ Hom(Gal(Q(i,
√

2)/Q), A[2]).

Thus S2 is contained in

{c ∈ Hom(Gal(Q(i,
√

2)/Q), A[2]) :

c2 ∈ image(κ2), c∞ ∈ image(κ∞)}.
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Example (v = ∞)

(−1, 0) (0, 0) (1, 0)

O

A(R)/2A(R) ∼= Z/2Z, and (0, 0) represents the

nontrivial coset.
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Example (v = ∞)

A(R)/2A(R) κ∞−−−→ Hom(Gal(C/R), A[2])

We need to compute κ∞(x), where x = (0, 0).

Let y = (i, i − 1) ∈ A(Q(i)) ⊂ A(C). Then

2y = x, and if τ denotes complex conjugation

κ∞(x)(τ) = yτ − y = (−1, 0).

Therefore if c ∈ Hom(GQ, A[2]), then

c∞ ∈ image(κ∞) =⇒ c(τ) ∈ 〈(−1, 0)〉.
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Example (v = 2)

One can compute

A(Q2)/2A(Q2) ∼= (Z/2Z)3

with generators

x1 = (0, 0), x2 = (1, 0), x3 = (−4, 2
√
−15).

We compute yi ∈ Q2(
√
−1,

√
2) with 2yi = xi

y1 = (
√
−1, 1−

√
−1), y2 = (1 +

√
2, 2 +

√
2),

y3 =
(
4
√
−1 +

√
−15, 2(1 +

√
−1)

√
−31− 8

√
−1
√
−15

)
.
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Example (v = 2)
Let σ be the nontrivial element of

Gal(Q2(
√
−1,

√
2)/Q2(

√
−1)).

Since y1, y3 ∈ A(Q2(
√
−1)), we have

κ2(x1)(σ) = yσ
1−y1 = O, κ2(x3)(σ) = yσ

3−y3 = O.

On the other hand,

κ2(x2)(σ) = yσ
2 − y2 = (0, 0).

Therefore if c ∈ Hom(GQ, A[2]), then

c2 ∈ image(κ2) =⇒ c(σ) ∈ 〈(0, 0)〉.
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Example
S2 ⊂ {c ∈ Hom(Gal(Q(i,

√
2)/Q), A[2]) :

c(σ) ∈ 〈(0, 0)〉, c(τ) ∈ 〈(−1, 0)〉}.

Since Gal(Q(i,
√

2)/Q) is generated by σ and τ , this

shows that dimF2 S2 ≤ 2.

We have

A(Q)tors/2(A(Q)tors) ⊂ A(Q)/2A(Q) ⊂ S2

and dimF2(A(Q)tors/2(A(Q)tors)) = 2, so these

inclusions are equalities and

A(Q) = A(Q)tors = A[2].
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Sn/image(κ)

To understand A(k)/nA(k), we need to

understand both Sn and the cokernel of

A(k)/nA(k) ↪→ Sn.

Cohomology of the exact sequence

0 −→ A[n] −→ A(k̄) n−−→ A(k̄) −→ 0

gives a short exact sequence

0 → A(k)/nA(k) → H1(k, A[n]) → H1(k, A)[n] → 0

where H1(k, A) is shorthand for H1(Gk, A(k̄)).
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Sn/image(κ)

0 // A(k)/nA(k) //

=
��

Sn
//

� _

��

λ(Sn)
� _

��

// 0

0 // A(k)/nA(k) κ
//

��

H1(k, A[n])
λ

//

��

H1(k, A)[n] //

��

0

0 // A(kv)/nA(kv)
κv

// H1(kv, A[n])
λv

// H1(kv, A)[n] // 0

We have

Sn = {c ∈ H1(k, A[n]) : λv(cv) = 0 for every v}
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Sn/image(κ)

0 // A(k)/nA(k) //

=
��

Sn
//

� _

��

λ(Sn)
� _

��

// 0

0 // A(k)/nA(k) κ
//

��

H1(k, A[n])
λ

//

��

H1(k, A)[n] //

��

0

0 // A(kv)/nA(kv)
κv

// H1(kv, A[n])
λv

// H1(kv, A)[n] // 0

We have

Sn = {c ∈ H1(k, A[n]) : λ(c)v = 0 for every v}

so

λ(Sn) = {d ∈ H1(k, A)[n] : dv = 0 for every v}.

Karl Rubin, MSRI Introductory Workshop, January 17 2006



The Shafarevich-Tate group

Definition. The Shafarevich-Tate group

X(A/k) ⊂ H1(k, A) is

{d ∈ H1(k, A) : dv = 0 in H1(kv, A) for every v}.

Then we have an exact sequence

0 → A(k)/nA(k) → Sn(A/k) → X(A/k)[n] → 0.

In particular X(A/k)[n] is finite for every n.
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Principal homogeneous spaces

Definition. A principal homogeneous space (or

Gk-torsor) C for A/k is a variety C/k with a free

transitive action of A. In other words, there are

k-morphisms

A× C // C, C × C // A

(a, c) � // a⊕ c, (c, c′) � // c	 c′

satisfying obvious properties like (a ⊕ c) 	 c = a,

(c	 c′)⊕ c′ = c, etc.
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Principal homogeneous spaces

Examples.

A is a principal homogeneous space for itself. We

call this the trivial principal homogeneous space.

If C is a nonsingular curve of genus 1, then C is

a PHS for its jacobian.
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Principal homogeneous spaces

If C is a principal homogeneous space for A/k and

C has a k-rational point x, then a 7→ a ⊕ x is an

isomorphism from A to C, defined over k.

Conversely, if C is isomorphic to A over k then C

has k-rational points. Thus

C ∼=k A ⇐⇒ C(k) is nonempty.

A principal homogeneous space for A/k is trivial

if it has k-rational points.

Karl Rubin, MSRI Introductory Workshop, January 17 2006



Principal homogeneous spaces

Theorem. There is a natural bijection between

H1(k, A) and the set of k-isomorphism classes of

principal homogeneous spaces for A/k.

Proof. If C is a principal homogeneous space and

x ∈ C(k̄), identify C with the cocycle

σ 7→ xσ 	 x ∈ A(k̄).

The isomorphism class of A itself is identified with

0 ∈ H1(k, A).
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Principal homogeneous spaces

Theorem. There is a natural bijection between

H1(k, A) and the set of k-isomorphism classes of

principal homogeneous spaces for A/k.

Recall that X(A/k) is

{d ∈ H1(k, A) : dv = 0 in H1(kv, A) for every v}.

The theorem identifies X(A/k) with the

isomorphism classes of PHS’s for A/k that are trivial

as PHS’s for A/kv for every v (i.e., have rational

points in every completion kv).
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Principal homogeneous spaces

The nonzero elements of X(A/k) correspond to

PHS’s for A/k that have rational points in every

completion kv, but no k-rational points.

Thus X(A/k) measures the failure of the Hasse

principle for PHS’s for A/k.
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Examples

Let A/Q be the elliptic curve y2 = x3 − x.

We showed that S2(A/Q) = A(Q)/2A(Q), so

X(A/Q)[2] = 0.

In fact, X(A/Q) = 0.
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Examples

Let C be the curve 3x3 + 4y3 + 5z3 = 0 over Q.

Then C is a PHS for its jacobian, which is the elliptic

curve A : x3 + y3 + 60z3 = 0. Selmer proved that C

has no Q-rational points and that C has Qv-rational

points for every v, so C corresponds to a nonzero

element of X(A/Q).

Since C visibly has points over cubic extensions of

Q, it is not hard to show that C corresponds to an

element of order 3 in X(A/Q). In fact, in this case

X(A/Q) ∼= (Z/3Z)2.
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Shafarevich-Tate Conjecture

Shafarevich-Tate Conjecture. X(A/k) is finite.

If X(A/k) is finite, then there is an algorithm to

compute rank(A(k)):

• Compute S2, S3, S5, S7, . . . . This will give upper

bounds for rank(A(k)).

• While doing that, search for points in A(k). This

will give lower bounds for rank(A(k)).

If the Shafarevich-Tate conjecture is true, then

eventually these bounds will meet.
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Shafarevich-Tate Conjecture

Suppose p is a prime, and define

Sp∞(A/k) = lim−→Spm(A/k) ⊂ H1(k, A[p∞]).

Then

0 → A(k)⊗Qp/Zp → Sp∞(A/k) → X(A/k)[p∞] → 0.

If X(A/k) is finite, then for every prime p,

corankZpSp∞(A/k) = rank(A(k)).
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Shafarevich-Tate Conjecture

The Shafarevich-Tate Conjecture is known for

certain elliptic curves over Q with rank(A(Q)) ≤ 1.

There are no elliptic curves over Q with

rank(A(Q)) > 1 for which X(A/Q) is known to

be finite.

The Shafarevich-Tate Conjecture is known for

certain abelian varieties over Q with rank(A(Q)) ≤
dim(A). There are no abelian varieties over Q with

rank(A(Q)) > dim(A) for which X(A/Q) is known

to be finite.
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