Rational points on abelian varieties

Karl Rubin
MSRI, January 172006

Abelian varieties

An abelian variety is a connected projective group variety.

One-dimensional abelian varieties are elliptic curves, which in characteristic different from 2 and 3 can be defined by Weierstrass equations

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in k$ and $4 a^{3}+27 b^{2} \neq 0$.

Abelian varieties

The jacobian of a curve of genus g is an abelian variety of dimension g.

An abelian variety over \mathbf{C} is a complex torus (but in dimension greater than one not every complex torus is an abelian variety).

Rational points on abelian varieties

If A is an abelian variety defined over a field k, the k-rational points $A(k)$ form a commutative group.

Basic Problem: Given an abelian variety A over k, find $A(k)$.

Mordell-Weil Theorem. If k is a number field, then $A(k)$ is a finitely generated abelian group.

Overview

We don't know how to compute $A(k)$ in general, so instead we study $A(k) / n A(k)$ for $n \in \mathbf{Z}^{+}$.

By the Mordell-Weil theorem,

$$
A(k) \cong A(k)_{\mathrm{tors}} \oplus \mathbf{Z}^{r}
$$

for some $r \geq 0$. We call r the rank of $A(k)$. Then

$$
A(k) / n A(k) \cong A(k)_{\text {tors }} / n\left(A(k)_{\text {tors }}\right) \oplus(\mathbf{Z} / n \mathbf{Z})^{r} .
$$

Overview

$$
A(k) / n A(k) \cong A(k)_{\text {tors }} / n\left(A(k)_{\text {tors }}\right) \oplus(\mathbf{Z} / n \mathbf{Z})^{r} .
$$

In particular, if we know $A(k) / n A(k)$ and $A(k)_{\text {tors }}$, then we can compute the rank r.

For example, if $n=p$ is prime then

$$
\operatorname{dim}_{\mathbf{F}_{p}} A(k) / p A(k)=\operatorname{dim}_{\mathbf{F}_{p}} A(k)[p]+\operatorname{rank}(A(k)) .
$$

Overview

We don't know how to compute $A(k) / n A(k)$ in general either, so we will define an effectively computable Selmer group $S_{n}(A / k)$ containing $A(k) / n A(k)$.

The Shafarevich-Tate group $\amalg(A / k)$ is the "error term" (so we hope it's small)

$$
0 \rightarrow A(k) / n A(k) \rightarrow S_{n}(A / k) \rightarrow \amalg(A / k)[n] \rightarrow 0
$$

where $\amalg(A / k)[n]$ is the n-torsion in $\amalg(A / k)$. Unfortunately $\amalg(A / k)$ is very mysterious. This is why computing $A(k)$, or $A(k) / n A(k)$, is so difficult.

Outline of talk

- Kummer theory on abelian varieties (first approximation to the Selmer group, and sketch of proof of the Mordell-Weil theorem)
- The Selmer group
- Principal homogeneous spaces and the Shafare-vich-Tate group

Notation

Let $k^{\text {sep }}$ be a separable closure of k and $G_{k}=$ $\operatorname{Gal}\left(k^{\text {sep }} / k\right)$.

If n is prime to the characteristic of k, let $A[n]$ denote the kernel of multiplication by n in $A\left(k^{\mathrm{sep}}\right)$. Then $A[n] \cong(\mathbf{Z} / n \mathbf{Z})^{2 \operatorname{dim}(A)}$.

We will abbreviate $H^{1}(k, A[n])=H^{1}\left(G_{k}, A[n]\right)$.

Kummer theory on abelian varieties

Suppose first that $A[n] \subset A(k)$. We define a Kummer map

$$
A(k) \rightarrow \operatorname{Hom}\left(G_{k}, A[n]\right)
$$

as follows. For $x \in A(k)$,

- choose $y \in A\left(k^{\text {sep }}\right)$ such that $n y=x$,
- $\operatorname{map} \sigma \in G_{k}$ to $y^{\sigma}-y \in A[n]$.

Since $A[n] \subset A(k), y^{\sigma}-y$ is independent of the choice of y and the map $\sigma \mapsto y^{\sigma}-y$ is a homomorphism.

Kummer theory on abelian varieties

$$
\begin{aligned}
A(k) & \longrightarrow \operatorname{Hom}\left(G_{k}, A[n]\right) \\
x \longmapsto & \longmapsto\left(\sigma \mapsto\left(\frac{1}{n} x\right)^{\sigma}-\frac{1}{n} x\right)
\end{aligned}
$$

This induces a well-defined injective homomorphism

$$
A(k) / n A(k) \hookrightarrow \operatorname{Hom}\left(G_{k}, A[n]\right)
$$

that is not in general surjective.
If $A[n] \not \subset A(k)$ then the same map induces an injective Kummer map, which we denote by κ

$$
A(k) / n A(k) \xrightarrow{\kappa} H^{1}(k, A[n]) .
$$

Kummer theory on abelian varieties

To prove the Mordell-Weil theorem, it is harmless to increase k. Thus without loss of generality we may assume that $A[n] \subset A(k)$. Then

$$
\begin{aligned}
& A(k) / n A(k) \stackrel{\kappa}{\longleftrightarrow} \operatorname{Hom}\left(G_{k}, A[n]\right) \\
& \vdots \cong \\
& \operatorname{Hom}\left(G_{k}, \mathbf{Z} / n \mathbf{Z}\right)^{2 \operatorname{dim}(A)} .
\end{aligned}
$$

But when k is a number field, $\operatorname{Hom}\left(G_{k}, \mathbf{Z} / n \mathbf{Z}\right)$ is infinite, so this is still much too big. We will use "local constraints" to bound the image of κ.

Selmer groups: first approximation

From now on suppose that k is a number field, and let Σ be the finite set
\{primes v of $k: v \mid n$ or A has bad reduction at $v\}$.

Theorem. If $x \in A(k), y \in A(\bar{k}), n y=x$, and $v \notin \Sigma$, then $k(y) / k$ is unramified at v.

Let k_{Σ} be the maximal extension of k unramified outside of Σ and archimedean primes.

Corollary. If $x \in A(k), y \in A(\bar{k})$, and $n y=x$, then $y \in A\left(k_{\Sigma}\right)$.

Selmer groups: first approximation

$$
A(k) / n A(k) \underset{\operatorname{Hom}\left(\operatorname{Gal}\left(k_{\Sigma} / k\right), A[n]\right)}{\stackrel{\kappa}{J} \operatorname{Hom}\left(G_{k}, A[n]\right)}
$$

By class field theory, $\operatorname{Hom}\left(\operatorname{Gal}\left(k_{\Sigma} / k\right), A[n]\right)$ is finite. This proves:

Weak Mordell-Weil Theorem. For every n, the group $A(k) / n A(k)$ is finite.

Hom $\left(\operatorname{Gal}\left(k_{\Sigma} / k\right), A[n]\right)$ is our "first approximation" to the Selmer group.

Selmer groups: first approximation

Using the weak Mordell-Weil theorem for a single $n \geq 2$, and the canonical height, one deduces easily:

Mordell-Weil Theorem. The group $A(k)$ is finitely generated.
(If $x_{1}, \ldots, x_{r} \in A(k)$ generate $A(k) / n A(k)$, then the set of points in $A(k)$ of height at most $\max \left\{\operatorname{ht}\left(x_{i}\right)\right\}$ generates $A(k)$.)

Example

Let $k=\mathbf{Q}$, and let A be the elliptic curve $y^{2}=$ $x^{3}-x$. Take $n=2$, so

$$
A[2]=\{O,(0,0),(1,0),(-1,0)\} \subset A(\mathbf{Q})
$$

We have $\Sigma=\{2\}$, so the Kummer map gives an injection
$A(\mathbf{Q}) / 2 A(\mathbf{Q}) \hookrightarrow \operatorname{Hom}\left(\operatorname{Gal}\left(\mathbf{Q}_{\Sigma} / \mathbf{Q}\right), A[2]\right)$

$$
=\operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2])
$$

Example

Since $A[2] \subset A(\mathbf{Q})$ and $\operatorname{dim}_{\mathbf{F}_{2}} A[2]=2$, we have

$$
\begin{gathered}
\operatorname{dim}_{\mathbf{F}_{2}} A(\mathbf{Q}) / 2 A(\mathbf{Q})=\operatorname{rank}(A(\mathbf{Q}))+2, \\
\operatorname{dim}_{\mathbf{F}_{2}} \operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2])=4 .
\end{gathered}
$$

Using

$$
A(\mathbf{Q}) / 2 A(\mathbf{Q}) \hookrightarrow \operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2]) .
$$

we conclude that $\operatorname{rank}(A(\mathbf{Q})) \leq 2$.
In fact, $\operatorname{rank}(A(\mathbf{Q}))=0$, so we would like to do better.

Selmer groups

For every place v of k we have

$$
\begin{array}{cc}
A(k) / n A(k) \stackrel{\kappa}{\longleftrightarrow} H^{1}(k, A[n]) \\
\vdots \\
A\left(k_{v}\right) / n A\left(k_{v}\right) \stackrel{\kappa_{v}}{\longleftrightarrow} H^{1}\left(k_{v}, A[n]\right) & \begin{array}{c}
c \\
c_{v}
\end{array}
\end{array}
$$

Definition. The Selmer group $S_{n}=S_{n}(A / k)$ is the subgroup of $H^{1}(k, A[n])$
$S_{n}:=\left\{c \in H^{1}(k, A[n]): c_{v} \in \operatorname{image}\left(\kappa_{v}\right)\right.$ for every $\left.v\right\}$.
Then S_{n} contains the image of κ.

Selmer groups

S_{n} is finite, since

$$
S_{n} \subset H^{1}\left(\operatorname{Gal}\left(k_{\Sigma} / k\right), A[n]\right)
$$

which is finite.
S_{n} is effectively computable.
"Effectively computable" is not the same as "easy."

Example

Back to our example $A: y^{2}=x^{3}-x$. We will now compute $S_{2}(A / \mathbf{Q})$.

Suppose $c \in \operatorname{Hom}\left(G_{k}, A[2]\right)$. If $c_{v} \in \operatorname{image}\left(\kappa_{v}\right)$ for every $v \neq 2, \infty$, then

$$
c \in \operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2]) .
$$

Thus S_{2} is contained in
$\{c \in \operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2]):$
$\left.c_{2} \in \operatorname{image}\left(\kappa_{2}\right), c_{\infty} \in \operatorname{image}\left(\kappa_{\infty}\right)\right\}$.

$A(\mathbf{R}) / 2 A(\mathbf{R}) \cong \mathbf{Z} / 2 \mathbf{Z}$, and $(0,0)$ represents the nontrivial coset.

Example ($v=\infty$)

$$
A(\mathbf{R}) / 2 A(\mathbf{R}) \xrightarrow{\kappa_{\infty}} \operatorname{Hom}(\operatorname{Gal}(\mathbf{C} / \mathbf{R}), A[2])
$$

We need to compute $\kappa_{\infty}(x)$, where $x=(0,0)$.
Let $y=(i, i-1) \in A(\mathbf{Q}(i)) \subset A(\mathbf{C})$. Then $2 y=x$, and if τ denotes complex conjugation

$$
\kappa_{\infty}(x)(\tau)=y^{\tau}-y=(-1,0) .
$$

Therefore if $c \in \operatorname{Hom}\left(G_{\mathbf{Q}}, A[2]\right)$, then

$$
c_{\infty} \in \operatorname{image}\left(\kappa_{\infty}\right) \Longrightarrow c(\tau) \in\langle(-1,0)\rangle
$$

Example ($v=2$)

One can compute

$$
A\left(\mathbf{Q}_{2}\right) / 2 A\left(\mathbf{Q}_{2}\right) \cong(\mathbf{Z} / 2 \mathbf{Z})^{3}
$$

with generators

$$
x_{1}=(0,0), \quad x_{2}=(1,0), \quad x_{3}=(-4,2 \sqrt{-15})
$$

We compute $y_{i} \in \mathbf{Q}_{2}(\sqrt{-1}, \sqrt{2})$ with $2 y_{i}=x_{i}$

$$
\begin{aligned}
y_{1} & =(\sqrt{-1}, 1-\sqrt{-1}), \quad y_{2}=(1+\sqrt{2}, 2+\sqrt{2}) \\
y_{3} & =(4 \sqrt{-1}+\sqrt{-15}, 2(1+\sqrt{-1}) \sqrt{-31-8 \sqrt{-1} \sqrt{-15}})
\end{aligned}
$$

Example ($v=2$)

Let σ be the nontrivial element of $\operatorname{Gal}\left(\mathbf{Q}_{2}(\sqrt{-1}, \sqrt{2}) / \mathbf{Q}_{2}(\sqrt{-1})\right)$.
Since $y_{1}, y_{3} \in A\left(\mathbf{Q}_{2}(\sqrt{-1})\right)$, we have
$\kappa_{2}\left(x_{1}\right)(\sigma)=y_{1}^{\sigma}-y_{1}=O, \quad \kappa_{2}\left(x_{3}\right)(\sigma)=y_{3}^{\sigma}-y_{3}=O$.
On the other hand,

$$
\kappa_{2}\left(x_{2}\right)(\sigma)=y_{2}^{\sigma}-y_{2}=(0,0) .
$$

Therefore if $c \in \operatorname{Hom}\left(G_{\mathbf{Q}}, A[2]\right)$, then

$$
c_{2} \in \operatorname{image}\left(\kappa_{2}\right) \Longrightarrow c(\sigma) \in\langle(0,0)\rangle .
$$

Example

$$
\begin{aligned}
& S_{2} \subset\{c \in \operatorname{Hom}(\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q}), A[2]): \\
& \quad c(\sigma) \in\langle(0,0)\rangle, c(\tau) \in\langle(-1,0)\rangle\} .
\end{aligned}
$$

Since $\operatorname{Gal}(\mathbf{Q}(i, \sqrt{2}) / \mathbf{Q})$ is generated by σ and τ, this shows that $\operatorname{dim}_{\mathbf{F}_{2}} S_{2} \leq 2$.

We have

$$
A(\mathbf{Q})_{\text {tors }} / 2\left(A(\mathbf{Q})_{\text {tors }}\right) \subset A(\mathbf{Q}) / 2 A(\mathbf{Q}) \subset S_{2}
$$

and $\operatorname{dim}_{\mathbf{F}_{2}}\left(A(\mathbf{Q})_{\text {tors }} / 2\left(A(\mathbf{Q})_{\text {tors }}\right)\right)=2$, so these inclusions are equalities and

$$
A(\mathbf{Q})=A(\mathbf{Q})_{\mathrm{tors}}=A[2] .
$$

$S_{n} /$ image (κ)

To understand $A(k) / n A(k)$, we need to understand both S_{n} and the cokernel of $A(k) / n A(k) \hookrightarrow S_{n}$.

Cohomology of the exact sequence

$$
0 \longrightarrow A[n] \longrightarrow A(\bar{k}) \xrightarrow{n} A(\bar{k}) \longrightarrow 0
$$

gives a short exact sequence
$0 \rightarrow A(k) / n A(k) \rightarrow H^{1}(k, A[n]) \rightarrow H^{1}(k, A)[n] \rightarrow 0$
where $H^{1}(k, A)$ is shorthand for $H^{1}\left(G_{k}, A(\bar{k})\right)$.

$S_{n} /$ image (κ)

$$
\begin{aligned}
& 0 \rightarrow A(k) / n A(k) \longrightarrow S_{n} \longrightarrow \lambda\left(S_{n}\right) \longrightarrow 0 \\
& \vdots=A(k) / n A(k) \stackrel{\kappa}{\longrightarrow} H^{1}(k, A[n]) \stackrel{\lambda}{\hookrightarrow} H^{1}(k, A)[n] \rightarrow 0 \\
& 0 \rightarrow A\left(k_{v}\right) / n A\left(k_{v}\right)^{k_{v}} H^{1}\left(k_{v}, A[n] \stackrel{\lambda_{v}}{\sim} H^{1}\left(k_{v}, A\right)[n]-0\right.
\end{aligned}
$$

We have

$$
S_{n}=\left\{c \in H^{1}(k, A[n]): \lambda_{v}\left(c_{v}\right)=0 \text { for every } v\right\}
$$

$S_{n} /$ image (κ)

$$
\begin{aligned}
& 0 \rightarrow A(k) / n A(k) \longrightarrow S_{n} \longrightarrow \lambda\left(S_{n}\right) \longrightarrow 0 \\
& \vdots=A(k) / n A(k) \stackrel{\kappa}{\longrightarrow} H^{1}(k, A[n]) \stackrel{\lambda}{\hookrightarrow} H^{1}(k, A)[n] \rightarrow 0 \\
& 0 \rightarrow \\
& 0-A\left(k_{v}\right) / n A\left(k_{v}\right)^{\kappa_{v}} H^{1}\left(k_{v}, A[n] \stackrel{\lambda_{v}}{\sim} H^{1}\left(k_{v}, A\right)[n]-0\right.
\end{aligned}
$$

We have

$$
S_{n}=\left\{c \in H^{1}(k, A[n]): \lambda(c)_{v}=0 \text { for every } v\right\}
$$

SO

$$
\lambda\left(S_{n}\right)=\left\{d \in H^{1}(k, A)[n]: d_{v}=0 \text { for every } v\right\} .
$$

The Shafarevich-Tate group

Definition. The Shafarevich-Tate group $Ш(A / k) \subset H^{1}(k, A)$ is
$\left\{d \in H^{1}(k, A): d_{v}=0\right.$ in $H^{1}\left(k_{v}, A\right)$ for every $\left.v\right\}$.
Then we have an exact sequence
$0 \rightarrow A(k) / n A(k) \rightarrow S_{n}(A / k) \rightarrow \amalg(A / k)[n] \rightarrow 0$.

In particular $\amalg(A / k)[n]$ is finite for every n.

Principal homogeneous spaces

Definition. A principal homogeneous space (or G_{k}-torsor) C for A / k is a variety C / k with a free transitive action of A. In other words, there are k-morphisms

$$
\begin{array}{ll}
A \times C \longrightarrow C, & C \times C \longrightarrow A \\
(a, c) \longmapsto a \oplus c, & \left(c, c^{\prime}\right) \longmapsto c \ominus c^{\prime}
\end{array}
$$

satisfying obvious properties like $(a \oplus c) \ominus c=a$, $\left(c \ominus c^{\prime}\right) \oplus c^{\prime}=c$, etc.

Principal homogeneous spaces

Examples.

A is a principal homogeneous space for itself. We call this the trivial principal homogeneous space.

If C is a nonsingular curve of genus 1 , then C is a PHS for its jacobian.

Principal homogeneous spaces

If C is a principal homogeneous space for A / k and C has a k-rational point x, then $a \mapsto a \oplus x$ is an isomorphism from A to C, defined over k.

Conversely, if C is isomorphic to A over k then C has k-rational points. Thus

$$
C \cong_{k} A \Longleftrightarrow C(k) \text { is nonempty. }
$$

A principal homogeneous space for A / k is trivial if it has k-rational points.

Principal homogeneous spaces

Theorem. There is a natural bijection between $H^{1}(k, A)$ and the set of k-isomorphism classes of principal homogeneous spaces for A / k.

Proof. If C is a principal homogeneous space and $x \in C(\bar{k})$, identify C with the cocycle

$$
\sigma \mapsto x^{\sigma} \ominus x \in A(\bar{k}) .
$$

The isomorphism class of A itself is identified with $0 \in H^{1}(k, A)$.

Principal homogeneous spaces

Theorem. There is a natural bijection between $H^{1}(k, A)$ and the set of k-isomorphism classes of principal homogeneous spaces for A / k.

Recall that $\amalg(A / k)$ is

$$
\left\{d \in H^{1}(k, A): d_{v}=0 \text { in } H^{1}\left(k_{v}, A\right) \text { for every } v\right\} .
$$

The theorem identifies $\amalg(A / k)$ with the isomorphism classes of PHS's for A / k that are trivial as PHS's for A / k_{v} for every v (i.e., have rational points in every completion k_{v}).

Principal homogeneous spaces

The nonzero elements of $\amalg(A / k)$ correspond to PHS's for A / k that have rational points in every completion k_{v}, but no k-rational points.

Thus $\amalg(A / k)$ measures the failure of the Hasse principle for PHS's for A / k.

Examples

Let A / \mathbf{Q} be the elliptic curve $y^{2}=x^{3}-x$. We showed that $S_{2}(A / \mathbf{Q})=A(\mathbf{Q}) / 2 A(\mathbf{Q})$, so $\amalg(A / \mathbf{Q})[2]=0$.

In fact, $\amalg(A / \mathbf{Q})=0$.

Examples

Let C be the curve $3 x^{3}+4 y^{3}+5 z^{3}=0$ over \mathbf{Q}. Then C is a PHS for its jacobian, which is the elliptic curve $A: x^{3}+y^{3}+60 z^{3}=0$. Selmer proved that C has no \mathbf{Q}-rational points and that C has \mathbf{Q}_{v}-rational points for every v, so C corresponds to a nonzero element of $\amalg(A / \mathbf{Q})$.

Since C visibly has points over cubic extensions of \mathbf{Q}, it is not hard to show that C corresponds to an element of order 3 in $\amalg(A / \mathbf{Q})$. In fact, in this case $\amalg(A / \mathbf{Q}) \cong(\mathbf{Z} / 3 \mathbf{Z})^{2}$.

Shafarevich-Tate Conjecture

Shafarevich-Tate Conjecture. $Ш(A / k)$ is finite.

If $\amalg(A / k)$ is finite, then there is an algorithm to compute $\operatorname{rank}(A(k))$:

- Compute $S_{2}, S_{3}, S_{5}, S_{7}, \ldots$ This will give upper bounds for $\operatorname{rank}(A(k))$.
- While doing that, search for points in $A(k)$. This will give lower bounds for $\operatorname{rank}(A(k))$.

If the Shafarevich-Tate conjecture is true, then eventually these bounds will meet.

Shafarevich-Tate Conjecture

Suppose p is a prime, and define

$$
S_{p^{\infty}}(A / k)=\underline{\lim } S_{p^{m}}(A / k) \subset H^{1}\left(k, A\left[p^{\infty}\right]\right) .
$$

Then
$0 \rightarrow A(k) \otimes \mathbf{Q}_{p} / \mathbf{Z}_{p} \rightarrow S_{p^{\infty}}(A / k) \rightarrow \amalg(A / k)\left[p^{\infty}\right] \rightarrow 0$.

If $\amalg(A / k)$ is finite, then for every prime p,

$$
\operatorname{corank}_{\mathbf{z}_{p}} S_{p^{\infty}}(A / k)=\operatorname{rank}(A(k))
$$

Shafarevich-Tate Conjecture

The Shafarevich-Tate Conjecture is known for certain elliptic curves over \mathbf{Q} with $\operatorname{rank}(A(\mathbf{Q})) \leq 1$.

There are no elliptic curves over \mathbf{Q} with $\operatorname{rank}(A(\mathbf{Q}))>1$ for which $\amalg(A / \mathbf{Q})$ is known to be finite.

The Shafarevich-Tate Conjecture is known for certain abelian varieties over \mathbf{Q} with $\operatorname{rank}(A(\mathbf{Q})) \leq$ $\operatorname{dim}(A)$. There are no abelian varieties over \mathbf{Q} with $\operatorname{rank}(A(\mathbf{Q}))>\operatorname{dim}(A)$ for which $\amalg(A / \mathbf{Q})$ is known to be finite.

