The Birch & Swinnerton-Dyer conjecture

Karl Rubin MSRI, January 18 2006

Outline

- Statement of the conjectures
- Definitions
- Results
- Methods

Birch & Swinnerton-Dyer conjecture

Suppose that A is an abelian variety of dimension d over a number field k.

Conjecture (BSD I).

$$\operatorname{ord}_{s=1}L(A/k,s) = \operatorname{rank}(A(k))$$

Conjecture (BSD II). If $r = \operatorname{rank}(A(k))$, then $\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\operatorname{III}(A/k)|}{|A(k)_{\operatorname{tors}}||\hat{A}(k)_{\operatorname{tors}}|}$

We will define

$$L(A/k, s) = \prod_{v} L_{v}(A/k, q_{v}^{-s})^{-1}$$

where $L_v(A/k, t) \in \mathbf{Z}[t]$ has degree at most 2d and q_v is the cardinality of the residue field of k_v .

If v is a prime of k, let k_v^{ur} be the maximal unramified extension of k_v , $I_v = \operatorname{Gal}(\bar{k}_v/k_v^{\mathrm{ur}})$, the inertia group, \mathbf{F}_v the residue field of k_v , and $q_v = |\mathbf{F}_v|$, $\operatorname{Frob}_v \in \operatorname{Gal}(k_v^{\mathrm{ur}}/k_v)$ the Frobenius generator (the lift of the automorphism $\alpha \mapsto \alpha^{q_v}$ of $\bar{\mathbf{F}}_v$).

If A is an elliptic curve with good reduction at v, then

$$L_v(A/k,t) = 1 - (1 + q_v - |A(\mathbf{F}_v)|)t + q_v t^2 \in \mathbf{Z}[t].$$

For general A and v, and every prime ℓ , define the ℓ -adic Tate module

$$T_{\ell}(A) = \varprojlim_{n} A[\ell^{n}] \cong \varprojlim_{n} (\mathbf{Z}/\ell^{n}\mathbf{Z})^{2d} = \mathbf{Z}_{\ell}^{2d}$$

 G_k acts \mathbb{Z}_ℓ -linearly on $T_\ell(A)$.

Suppose ℓ is a prime different from $char(\mathbf{F}_v)$.

If A has good reduction at v then I_v acts trivially on $T_{\ell}(A)$, so $\operatorname{Frob}_v \in \operatorname{Gal}(k_v^{\mathrm{ur}}/k_v)$ acts on $T_{\ell}(A)$

$$L_v(A/k,t) = \det(1 - \operatorname{Frob}_v \cdot t \mid T_\ell(A)) \in \mathbf{Z}_\ell[t].$$

For general v, we define

 $L_v(A/k,t) = \det(1 - \operatorname{Frob}_v^{-1} \cdot t \mid \operatorname{Hom}_{\mathbf{Z}_\ell}(T_\ell(A), \mathbf{Z}_\ell)^{I_v})$

a polynomial in $\mathbf{Z}_{\ell}[t]$ of degree at most 2d.

A priori $L_v(A/k,t) \in \mathbb{Z}_{\ell}[t]$, but recall that if A is an elliptic curve with good reduction at v, then

$$L_v(A/k,t) = 1 - (1 + q_v - |A(\mathbf{F}_v)|)t + q_v t^2 \in \mathbf{Z}[t].$$

Theorem. $L_v(A/k, t) \in \mathbf{Z}[t]$ and is independent of the choice of $\ell \neq \operatorname{char}(\mathbf{F}_v)$.

Definition. $L(A/k, s) = \prod_{v} L_v(A, q_v^{-s})^{-1}$.

Theorem. The Euler product for L(A/k, s) converges if $\Re(s) > \frac{3}{2}$.

Conjecture. L(A/k, s) has an analytic continuation to all of **C**, and satisfies a functional equation $s \mapsto 2-s$.

Conjecture (BSD I).

$$\operatorname{ord}_{s=1}L(A/k, s) = \operatorname{rank}(A(k)).$$

Example

Let A be the elliptic curve $y^2 = x^3 - x$, and $k = \mathbf{Q}$.

$$L(A/k,s) = \prod_{p>2} (1 + (1 + p - |A(\mathbf{F}_p)|)p^{-s} + p^{1-2s})^{-1}.$$

L(A/k,s) has an analytic continuation, and one can compute

 $L(A/k, 1) = .65551538857302995 \dots \neq 0$

We know that $A(\mathbf{Q})$ has rank zero, so BSD I is true in this case.

BSD II

To define the quantities in BSD II, we need to fix a Néron model \mathcal{A} of A over the ring of integers \mathcal{O}_k of k.

If A is an elliptic curve over ${\bf Q},$ then ${\cal A}$ is a generalized Weierstrass model

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Z}$ are such that the discriminant is minimal among all (generalized Weierstrass) models of A.

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

If A is an elliptic curve over \mathbf{Q} , then

$$\Omega_{A/k} = \int_{E(\mathbf{R})} \frac{dx}{2y + a_1 x + a_3}$$

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

Suppose for simplicity that the \mathcal{O}_k -module of invariant differentials on \mathcal{A} is free \mathcal{O}_k -module (for example, this holds if \mathcal{O}_k is a principal ideal domain), and fix an \mathcal{O}_k -basis $\{\omega_1, \ldots, \omega_d\}$.

We will define a local period Ω_{A/k_v} for each infinite place v.

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

Suppose first that $k_v = \mathbf{R}$.

Fix a basis $\{\gamma_1, \ldots, \gamma_d\}$ of $H_1(A(\bar{k}_v), \mathbf{Z})^{\operatorname{Gal}(\bar{k}_v/k_v)}$.

Let m_v be the number of connected components of $A(k_v)$.

Set

$$\Omega_{A/k_v} = m_v |\det(\int_{\gamma_i} \omega_j)|.$$

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

Now suppose $k_v = \mathbf{C}$. Fix a basis $\{\gamma_1, \ldots, \gamma_{2d}\}$ of $H_1(A(\bar{k}_v), \mathbf{Z})$. Set

$$\Omega_{A/k_v} = |\det(\int_{\gamma_i} \omega_j), \overline{\int_{\gamma_i} \omega_j})|.$$

Define

$$\Omega_{A/k} = \operatorname{Disc}(k)^{-d/2} \prod_{v \mid \infty} \Omega_{A/k_v}$$

where Disc(k) is the discriminant of k.

The regulator

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

Let \hat{A}/k denote the dual abelian variety.

If A is an elliptic curve, then $\hat{A} = A$, and in general \hat{A} is isogenous to A (there is a surjective morphism $A \to \hat{A}$ with finite kernel).

Let

$$\langle , \rangle : A(k) \times \hat{A}(k) \to \mathbf{R}$$

be the canonical height pairing corresponding to the Poincaré divisor on $A \times \hat{A}$.

The regulator

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

Fix Z-bases $\{x_1, \ldots, x_r\}$ of $A(k)/A(k)_{\text{tors}}$ and $\{y_1, \ldots, y_r\}$ of $\hat{A}(k)/\hat{A}(k)_{\text{tors}}$.

Define

$$R_{A/k} = |\det(\langle x_i, y_j \rangle)|.$$

The Tamagawa factors

$$\lim_{s \to 1} \frac{L(A/k, s)}{(s-1)^r} = \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}| |\hat{A}(k)_{\mathrm{tors}}|}$$

If v is a prime of k let $\mathcal{A}_v = \mathcal{A} \times \mathbf{F}_v$, the fiber of \mathcal{A} over v, and let \mathcal{A}_v° be the connected component of the identity in \mathcal{A}_v .

Set

$$c_v = [\mathcal{A}_v(\mathbf{F}_v) : \mathcal{A}_v^{\circ}(\mathbf{F}_v)].$$

If A has good reduction at v, then A_v is connected so $c_v = 1$.

Example

Let A be the elliptic curve $y^2 = x^3 - x$, and $k = \mathbf{Q}$.

$$\begin{split} L(A/\mathbf{Q},1) &= .65551538857302995 \dots \\ \Omega_{A/\mathbf{Q}} &= 5.24411510858 \dots = 8L(A/\mathbf{Q},1) \\ R_{A/\mathbf{Q}} &= 1 \\ c_2 &= 2 \\ A(\mathbf{Q})_{\text{tors}} &= \hat{A}(\mathbf{Q})_{\text{tors}} \cong \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z} \end{split}$$
 so BSD II is true if and only if $\text{III}(A/\mathbf{Q}) = 0.$

Theorems

Theorem (Wiles, . . .) Suppose A is an elliptic curve over \mathbf{Q} . Then L(A, s) has an analytic continuation and functional equation.

Theorem (Kolyvagin, Gross & Zagier, ...). Suppose A is an elliptic curve over \mathbf{Q} .

If $\operatorname{ord}_{s=1}L(A/\mathbf{Q}, s) = 0$, then $\operatorname{rank}(A(\mathbf{Q})) = 0$ and $\operatorname{III}(A/\mathbf{Q})$ is finite.

If $\operatorname{ord}_{s=1}L(A/\mathbf{Q}, s) = 1$, then $\operatorname{rank}(A(\mathbf{Q})) = 1$ and $\operatorname{III}(A/\mathbf{Q})$ is finite.

Theorems

Suppose $L(A/\mathbf{Q}, 1) \neq 0$. To prove $A(\mathbf{Q})$ and $III(A/\mathbf{Q})$ are both finite, one needs to show that $|S_n(A/\mathbf{Q})|$ is bounded as n varies (Kolyvagin).

Suppose $\operatorname{ord}_{s=1}L(A/\mathbf{Q},s)=1$. To show that $\operatorname{rank}(A(\mathbf{Q}))=1$ and $\operatorname{III}(A/\mathbf{Q})$ is finite one needs to show

- $A(\mathbf{Q})$ has a point of infinite order (Gross & Zagier),
- $|S_n(A/\mathbf{Q})|/n$ is bounded as n varies (Kolyvagin).

BSD II, rank zero

$$L(A/k,1) \stackrel{?}{=} \frac{\Omega_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}||\hat{A}(k)_{\mathrm{tors}}|}$$

Theorem (Manin, Shimura). If A is an elliptic curve over \mathbf{Q} then

$$\frac{L(A/\mathbf{Q},1)}{\Omega_{A/\mathbf{Q}}} \in \mathbf{Q}$$

with an explicit bound on the denominator.

BSD II, rank zero

$$L(A/k,1) \stackrel{?}{=} \frac{\Omega_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}||\hat{A}(k)_{\mathrm{tors}}|}$$

Theorem (Rubin). Suppose A/\mathbf{Q} is an elliptic curve with complex multiplication by an imaginary quadratic field K. (For example, $y^2 = x^3 - ax$ has CM by $\mathbf{Q}(\sqrt{-1})$, $y^2 = x^3 + b$ has CM by $\mathbf{Q}(\sqrt{-3})$.)

If $L(A/\mathbf{Q}, 1) \neq 0$, then BSD II is true for A up to primes dividing the number of roots of unity in K.

Example

Let A be the elliptic curve $y^2 = x^3 - x$, and $k = \mathbf{Q}$. We saw that BSD II is true for A if and only if $\operatorname{III}(A/\mathbf{Q}) = 0$.

A has CM by $\mathbf{Q}(\sqrt{-1})$, and $L(A/\mathbf{Q}, 1) \neq 0$, so BSD II is true for A up to a power of 2.

Hence BSD II is true for A if and only if $\operatorname{III}(A/\mathbf{Q})[2]=0.$

We saw yesterday that $\operatorname{III}(A/\mathbf{Q})[2] = 0$, so BSD II is true for A.

BSD II, rank zero

$$L(A/k,1) \stackrel{?}{=} \frac{\Omega_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}||\hat{A}(k)_{\mathrm{tors}}|}$$

Theorem (Kato). Suppose A/\mathbf{Q} is an elliptic curve and A has good reduction at p. If

 $\operatorname{Gal}(\mathbf{Q}(A[p])/\mathbf{Q}) \to \operatorname{Aut}(A[p]) \xrightarrow{\sim} \operatorname{GL}_2(\mathbf{F}_p)$

is surjective, then

$$|\mathrm{III}(A/\mathbf{Q})[p^\infty]|$$
 divides $rac{L(A/\mathbf{Q},1)}{\Omega_{A/\mathbf{Q}}}.$

BSD II, rank one

$$L'(A/k,1) \stackrel{?}{=} \frac{\Omega_{A/k} \cdot R_{A/k} \cdot (\prod_v c_v) \cdot |\mathrm{III}(A/k)|}{|A(k)_{\mathrm{tors}}||\hat{A}(k)_{\mathrm{tors}}|}$$

Theorem (Gross & Zagier). If A is an elliptic curve over \mathbf{Q} and $L(A/\mathbf{Q}, 1) = 0$, then

$$\frac{L'(A/\mathbf{Q},1)}{\Omega_{A/\mathbf{Q}}R_{A/\mathbf{Q}}} \in \mathbf{Q}.$$

Karl Rubin, MSRI Introductory workshop, January 18 2006

BSD II, rank one

Gross & Zagier showed that for an *explicit* point $x \in A(\mathbf{Q})$ (a Heegner point)

$$h_{can}(x) = \alpha \frac{L'(A/\mathbf{Q}, 1)}{\Omega_{A/\mathbf{Q}}}$$

with an explicit nonzero rational number α .

Thus if $L'(A/\mathbf{Q}, 1) \neq 0$, then

• x is not a torsion point so $rank(A(\mathbf{Q})) \ge 1$,

•
$$h_{can}(x)/R_{A/\mathbf{Q}} \in \mathbf{Q}^{\times}$$
, so $\frac{L'(A/\mathbf{Q},1)}{\Omega_{A/\mathbf{Q}}R_{A/\mathbf{Q}}} \in \mathbf{Q}$.

Abelian varieties

Suppose that A/\mathbf{Q} is a quotient of the jacobian $J_0(N)$ of the modular curve $X_0(N)$ for some N. Then there is a set of Hecke eigenforms $\{f_1, \ldots, f_d\}$ of weight two and level N such that

$$L(A/\mathbf{Q},s) = \prod_i L(f_i,s).$$

Theorem (Kolyvagin, Gross & Zagier, ...). With A as above, suppose $\operatorname{ord}_{s=1}L(f_i, s) \leq 1$ for $1 \leq i \leq d$. Then $\operatorname{ord}_{s=1}L(A/\mathbf{Q}, s) = \operatorname{rank}(A(\mathbf{Q}))$ and $\operatorname{III}(A/\mathbf{Q})$ is finite.

Suppose A is an elliptic curve over \mathbf{Q} , let $N \in \mathbf{Z}^+$ be its conductor, and define

$$\Lambda(A,s) = N^{s/2} (2\pi)^{-s} \Gamma(s) L(A/\mathbf{Q},s).$$

Theorem (Wiles, ...) $\Lambda(A,s) = w_A \Lambda(A,2-s)$ with $w_A = \pm 1$.

Conjecturally, L(A/k, s) satisfies a similar functional equation for *every* abelian variety A/k, with "sign" $w_A = \pm 1$.

Given such a functional equation, we have

$$\operatorname{ord}_{s=1}L(A/k,s)$$
 is $\begin{cases} \operatorname{even} & \text{if } w_A = +1 \\ \operatorname{odd} & \text{if } w_A = -1. \end{cases}$

Combined with BSD I this leads to:

Parity Conjecture.

$$\operatorname{rank}(A(k))$$
 is $\begin{cases} \operatorname{even} & \text{if } w_A = +1 \\ \operatorname{odd} & \text{if } w_A = -1. \end{cases}$

If rank(A(k)) is odd, then A(k) is infinite!

For squarefree $d \in \mathbb{Z}^+$, let A_d be the elliptic curve $y^2 = x^3 - d^2x$.

One can compute that

$$w_{A_d} = \begin{cases} +1 & \text{if } d \equiv 1, 2 \text{ or } 3 \pmod{8} \\ -1 & \text{if } d \equiv 5, 6 \text{ or } 7 \pmod{8}. \end{cases}$$

So the parity conjecture predicts that if $d \equiv 5, 6$ or 7 (mod 8), then $A_d(\mathbf{Q})$ is infinite.

This is known to be true for prime d.

Theorem (Nekovář). Suppose A/Q is an elliptic curve. Then

$$\operatorname{corank}(S_{p^{\infty}}(A/\mathbf{Q}))$$
 is $\begin{cases} \operatorname{even} & \text{if } w_A = +1 \\ \operatorname{odd} & \text{if } w_A = -1. \end{cases}$

Recall that if $\operatorname{III}(A/\mathbf{Q})$ is finite, then

$$\operatorname{corank}(S_{p^{\infty}}(A/Q)) = \operatorname{rank}(A(\mathbf{Q})).$$

Suppose A is an abelian variety over k, p is an odd prime, K/k is a quadratic extension, and L/K is a cyclic p-extension such that L/k is Galois with dihedral Galois group.

Theorem (Mazur & Rubin). If all primes above p split in K/k and $\operatorname{corank}(S_{p^{\infty}}(A/K))$ is odd, then

 $\operatorname{corank}(S_{p^{\infty}}(A/L)) \ge [L:K].$

This would follow from the Parity Conjecture.

If A is an elliptic curve, $k = \mathbf{Q}$ and K is imaginary, then Heegner points account for "most" of the rank in A(L).

For general L/K/k, we have no idea where all these points are coming from.

Fix an abelian variety A/k, and $n \in \mathbb{Z}^+$.

If v is a prime of k, there is a perfect Tate (cup product) pairing

 $\langle , \rangle_v : H^1(k_v, A[n]) \times H^1(k_v, \hat{A}[n]) \longrightarrow \mathbf{Z}/n\mathbf{Z}$

in which $A(k_v)/nA(k_v)$ and $\hat{A}(k_v)/n\hat{A}(k_v)$ are exact annihilators of each other.

If
$$c \in S_n(A/k)$$
, $d \in S_n(\hat{A}/k)$, then $\langle c_v, d_v \rangle_v = 0$.

Theorem (Reciprocity Law). *If* $c \in H^1(k, A[n])$, $d \in H^1(k, \hat{A}[n])$ then $\sum_v \langle c_v, d_v \rangle_v = 0$.

Suppose Σ is a finite set of primes of k, and

$$S_n^{\Sigma}(\hat{A}/k) := \{ d \in H^1(k_v, \hat{A}[n]) : \\ d_v \in \text{image}(\kappa_v) \text{ for every } v \notin \Sigma \}$$

If $d \in S_n^{\Sigma}(\hat{A}/k)$, then for every $c \in S_n(A/k)$

$$\sum_{v \in \Sigma} \langle c_v, d_v \rangle_v = \sum_v \langle c_v, d_v \rangle_v = 0.$$

For example, if Σ consists of a single prime v and $d \in S_n^{\Sigma}(\hat{A}/k)$, then for every $c \in S_n(A/k)$

$$\langle c_v, d_v \rangle_v = 0.$$

Since the Tate pairings are nondegenerate, this restricts the image of $S_n(A/k)$ under the localization map

$$S_n(A/k) \hookrightarrow H^1(k, A[n]) \longrightarrow H^1(k_v, A[n]).$$

If we can find "enough" d's (as Σ varies), we can show that there are not many c's, i.e., $S_n(A/k)$ is small.

Kolyvagin showed how to use such $d \in S_n^{\Sigma}(\hat{A}/k)$, and how to construct them systematically in some cases. Kato constructed them in other important cases.

Every collection of $d \in S_n^{\Sigma}(\hat{A}/k)$ (for varying Σ) gives a bound on the size of the Selmer group $S_n(A/k)$.

This method is not useful if (for example) all the d's one constructs are zero.

In Kolyvagin's and Kato's constructions, the d's are related to the values $L(A/\mathbf{Q}, 1)$ and $L'(A/\mathbf{Q}, 1)$. In this way one obtains a bound on $S_n(A/\mathbf{Q})$ in terms of $L(A/\mathbf{Q}, 1)$, as BSD II predicts.