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Birch & Swinnerton-Dyer conjecture

Suppose that A is an abelian variety of dimension

d over a number field k.

Conjecture (BSD I).

ords=1L(A/k, s) = rank(A(k))

Conjecture (BSD II). If r = rank(A(k)), then

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|
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The L-function

We will define

L(A/k, s) =
∏

v Lv(A/k, q−s
v )−1

where Lv(A/k, t) ∈ Z[t] has degree at most 2d and

qv is the cardinality of the residue field of kv.

If v is a prime of k, let

kur
v be the maximal unramified extension of kv,

Iv = Gal(k̄v/kur
v ), the inertia group,

Fv the residue field of kv, and qv = |Fv|,
Frobv ∈ Gal(kur

v /kv) the Frobenius generator

(the lift of the automorphism α 7→ αqv of F̄v).
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The L-function

If A is an elliptic curve with good reduction at v,

then

Lv(A/k, t) = 1− (1 + qv − |A(Fv)|)t + qvt
2 ∈ Z[t].

For general A and v, and every prime `, define the

`-adic Tate module

T`(A) = lim←−
n

A[`n] ∼= lim←−
n

(Z/`nZ)2d = Z2d
`

Karl Rubin, MSRI Introductory workshop, January 18 2006



The L-function

Gk acts Z`-linearly on T`(A).

Suppose ` is a prime different from char(Fv).

If A has good reduction at v then Iv acts trivially

on T`(A), so Frobv ∈ Gal(kur
v /kv) acts on T`(A)

Lv(A/k, t) = det(1− Frobv · t | T`(A)) ∈ Z`[t].

For general v, we define

Lv(A/k, t) = det(1−Frob−1
v ·t | HomZ`

(T`(A),Z`)Iv)

a polynomial in Z`[t] of degree at most 2d.
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The L-function

A priori Lv(A/k, t) ∈ Z`[t], but recall that if A is

an elliptic curve with good reduction at v, then

Lv(A/k, t) = 1− (1 + qv − |A(Fv)|)t + qvt
2 ∈ Z[t].

Theorem. Lv(A/k, t) ∈ Z[t] and is independent

of the choice of ` 6= char(Fv).
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The L-function

Definition. L(A/k, s) =
∏

v Lv(A, q−s
v )−1.

Theorem. The Euler product for L(A/k, s)
converges if <(s) > 3

2.

Conjecture. L(A/k, s) has an analytic

continuation to all of C, and satisfies a functional

equation s 7→ 2− s.

Conjecture (BSD I).

ords=1L(A/k, s) = rank(A(k)).
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Example

Let A be the elliptic curve y2 = x3−x, and k = Q.

L(A/k, s) =
∏
p>2

(1+(1+p−|A(Fp)|)p−s +p1−2s)−1.

L(A/k, s) has an analytic continuation, and one can

compute

L(A/k, 1) = .65551538857302995 . . . 6= 0

We know that A(Q) has rank zero, so BSD I is true

in this case.
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BSD II

To define the quantities in BSD II, we need to fix

a Néron model A of A over the ring of integers Ok

of k.

If A is an elliptic curve over Q, then A is a

generalized Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ Z are such that the

discriminant is minimal among all (generalized

Weierstrass) models of A.
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The period

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

If A is an elliptic curve over Q, then

ΩA/k =
∫

E(R)

dx

2y + a1x + a3
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The period

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Suppose for simplicity that the Ok-module of

invariant differentials on A is free Ok-module (for

example, this holds if Ok is a principal ideal domain),

and fix an Ok-basis {ω1, . . . , ωd}.

We will define a local period ΩA/kv for each infinite

place v.
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The period

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Suppose first that kv = R.

Fix a basis {γ1, . . . , γd} of H1(A(k̄v),Z)Gal(k̄v/kv).

Let mv be the number of connected components

of A(kv).

Set

ΩA/kv = mv|det(
∫

γi
ωj)|.
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The period

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Now suppose kv = C.

Fix a basis {γ1, . . . , γ2d} of H1(A(k̄v),Z).

Set

ΩA/kv = |det(
∫

γi
ωj),

∫
γi

ωj)|.
Define

ΩA/k = Disc(k)−d/2
∏
v|∞

ΩA/kv

where Disc(k) is the discriminant of k.
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The regulator

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Let Â/k denote the dual abelian variety.

If A is an elliptic curve, then Â = A, and in

general Â is isogenous to A (there is a surjective

morphism A→ Â with finite kernel).

Let

〈 , 〉 : A(k)× Â(k)→ R

be the canonical height pairing corresponding to the

Poincaré divisor on A× Â.
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The regulator

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Fix Z-bases {x1, . . . , xr} of A(k)/A(k)tors and

{y1, . . . , yr} of Â(k)/Â(k)tors.

Define

RA/k = |det(〈xi, yj〉)|.
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The Tamagawa factors

lim
s→1

L(A/k, s)
(s− 1)r

=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

If v is a prime of k let Av = A× Fv, the fiber of

A over v, and let A◦v be the connected component

of the identity in Av.

Set

cv = [Av(Fv) : A◦v(Fv)].

If A has good reduction at v, then Av is connected

so cv = 1.
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Example

Let A be the elliptic curve y2 = x3−x, and k = Q.

L(A/Q, 1) = .65551538857302995 . . .

ΩA/Q = 5.24411510858 . . . = 8L(A/Q, 1)

RA/Q = 1

c2 = 2

A(Q)tors = Â(Q)tors
∼= Z/2Z× Z/2Z

so BSD II is true if and only if X(A/Q) = 0.
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Theorems

Theorem (Wiles, . . . ) Suppose A is an elliptic

curve over Q. Then L(A, s) has an analytic

continuation and functional equation.

Theorem (Kolyvagin, Gross & Zagier, . . . ).
Suppose A is an elliptic curve over Q.

If ords=1L(A/Q, s) = 0, then rank(A(Q)) = 0
and X(A/Q) is finite.

If ords=1L(A/Q, s) = 1, then rank(A(Q)) = 1
and X(A/Q) is finite.
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Theorems

Suppose L(A/Q, 1) 6= 0. To prove A(Q) and

X(A/Q) are both finite, one needs to show that

|Sn(A/Q)| is bounded as n varies (Kolyvagin).

Suppose ords=1L(A/Q, s) = 1. To show that

rank(A(Q)) = 1 and X(A/Q) is finite one needs

to show

• A(Q) has a point of infinite order

(Gross & Zagier),

• |Sn(A/Q)|/n is bounded as n varies

(Kolyvagin).
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BSD II, rank zero

L(A/k, 1) ?=
ΩA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Theorem (Manin, Shimura). If A is an elliptic

curve over Q then

L(A/Q, 1)
ΩA/Q

∈ Q

with an explicit bound on the denominator.
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BSD II, rank zero

L(A/k, 1) ?=
ΩA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Theorem (Rubin). Suppose A/Q is an elliptic

curve with complex multiplication by an imaginary

quadratic field K. (For example, y2 = x3 − ax has

CM by Q(
√
−1), y2 = x3 + b has CM by Q(

√
−3).)

If L(A/Q, 1) 6= 0, then BSD II is true for A up to

primes dividing the number of roots of unity in K.
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Example

Let A be the elliptic curve y2 = x3 − x, and

k = Q. We saw that BSD II is true for A if and only

if X(A/Q) = 0.

A has CM by Q(
√
−1), and L(A/Q, 1) 6= 0, so

BSD II is true for A up to a power of 2.

Hence BSD II is true for A if and only if

X(A/Q)[2] = 0.

We saw yesterday that X(A/Q)[2] = 0, so BSD

II is true for A.
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BSD II, rank zero

L(A/k, 1) ?=
ΩA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Theorem (Kato). Suppose A/Q is an elliptic

curve and A has good reduction at p. If

Gal(Q(A[p])/Q)→ Aut(A[p]) ∼−→ GL2(Fp)

is surjective, then

|X(A/Q)[p∞]| divides
L(A/Q, 1)

ΩA/Q
.
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BSD II, rank one

L′(A/k, 1) ?=
ΩA/k ·RA/k · (

∏
v cv) · |X(A/k)|

|A(k)tors||Â(k)tors|

Theorem (Gross & Zagier). If A is an elliptic

curve over Q and L(A/Q, 1) = 0, then

L′(A/Q, 1)
ΩA/QRA/Q

∈ Q.
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BSD II, rank one

Gross & Zagier showed that for an explicit point

x ∈ A(Q) (a Heegner point)

hcan(x) = α
L′(A/Q, 1)

ΩA/Q

with an explicit nonzero rational number α.

Thus if L′(A/Q, 1) 6= 0, then

• x is not a torsion point so rank(A(Q)) ≥ 1,

• hcan(x)/RA/Q ∈ Q×, so L′(A/Q,1)
ΩA/QRA/Q

∈ Q.
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Abelian varieties

Suppose that A/Q is a quotient of the jacobian

J0(N) of the modular curve X0(N) for some N .

Then there is a set of Hecke eigenforms {f1, . . . , fd}
of weight two and level N such that

L(A/Q, s) =
∏

i

L(fi, s).

Theorem (Kolyvagin, Gross & Zagier, . . . ).
With A as above, suppose ords=1L(fi, s) ≤ 1 for

1 ≤ i ≤ d. Then ords=1L(A/Q, s) = rank(A(Q))
and X(A/Q) is finite.
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Parity

Suppose A is an elliptic curve over Q, let N ∈ Z+

be its conductor, and define

Λ(A, s) = N s/2(2π)−sΓ(s)L(A/Q, s).

Theorem (Wiles, . . . ) Λ(A, s) = wAΛ(A, 2 − s)
with wA = ±1.

Conjecturally, L(A/k, s) satisfies a similar

functional equation for every abelian variety A/k,

with “sign” wA = ±1.
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Parity

Given such a functional equation, we have

ords=1L(A/k, s) is

{
even if wA = +1

odd if wA = −1.

Combined with BSD I this leads to:

Parity Conjecture.

rank(A(k)) is

{
even if wA = +1

odd if wA = −1.

If rank(A(k)) is odd, then A(k) is infinite!
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Parity

For squarefree d ∈ Z+, let Ad be the elliptic curve

y2 = x3 − d2x.

One can compute that

wAd
=

{
+1 if d ≡ 1, 2 or 3 (mod 8)

−1 if d ≡ 5, 6 or 7 (mod 8).

So the parity conjecture predicts that if d ≡ 5, 6 or

7 (mod 8), then Ad(Q) is infinite.

This is known to be true for prime d.
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Parity

Theorem (Neková̆r). Suppose A/Q is an elliptic

curve. Then

corank(Sp∞(A/Q)) is

{
even if wA = +1

odd if wA = −1.

Recall that if X(A/Q) is finite, then

corank(Sp∞(A/Q)) = rank(A(Q)).
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Parity

Suppose A is an abelian variety over k, p is an

odd prime, K/k is a quadratic extension, and L/K

is a cyclic p-extension such that L/k is Galois with

dihedral Galois group.

Theorem (Mazur & Rubin). If all primes above

p split in K/k and corank(Sp∞(A/K)) is odd, then

corank(Sp∞(A/L)) ≥ [L : K].

This would follow from the Parity Conjecture.
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Parity

If A is an elliptic curve, k = Q and K is imaginary,

then Heegner points account for “most” of the rank

in A(L).

For general L/K/k, we have no idea where all

these points are coming from.
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Bounding Selmer groups

Fix an abelian variety A/k, and n ∈ Z+.

If v is a prime of k, there is a perfect Tate (cup

product) pairing

〈 , 〉v : H1(kv, A[n])×H1(kv, Â[n]) −→ Z/nZ

in which A(kv)/nA(kv) and Â(kv)/nÂ(kv) are exact

annihilators of each other.

If c ∈ Sn(A/k), d ∈ Sn(Â/k), then 〈cv, dv〉v = 0.
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Bounding Selmer groups

Theorem (Reciprocity Law). If c ∈ H1(k, A[n]),
d ∈ H1(k, Â[n]) then

∑
v 〈cv, dv〉v = 0.

Suppose Σ is a finite set of primes of k, and

SΣ
n (Â/k) := {d ∈ H1(kv, Â[n]) :

dv ∈ image(κv) for every v /∈ Σ}

If d ∈ SΣ
n (Â/k), then for every c ∈ Sn(A/k)∑

v∈Σ

〈cv, dv〉v =
∑

v

〈cv, dv〉v = 0.
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Bounding Selmer groups

For example, if Σ consists of a single prime v and

d ∈ SΣ
n (Â/k), then for every c ∈ Sn(A/k)

〈cv, dv〉v = 0.

Since the Tate pairings are nondegenerate, this

restricts the image of Sn(A/k) under the localization

map

Sn(A/k) ↪→ H1(k, A[n]) −→ H1(kv, A[n]).
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Bounding Selmer groups

If we can find “enough” d’s (as Σ varies), we can

show that there are not many c’s, i.e., Sn(A/k) is

small.

Kolyvagin showed how to use such d ∈ SΣ
n (Â/k),

and how to construct them systematically in some

cases. Kato constructed them in other important

cases.
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Bounding Selmer groups

Every collection of d ∈ SΣ
n (Â/k) (for varying Σ)

gives a bound on the size of the Selmer group

Sn(A/k).

This method is not useful if (for example) all the

d’s one constructs are zero.

In Kolyvagin’s and Kato’s constructions, the d’s

are related to the values L(A/Q, 1) and L′(A/Q, 1).
In this way one obtains a bound on Sn(A/Q) in

terms of L(A/Q, 1), as BSD II predicts.
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