The Birch \& Swinnerton-Dyer conjecture

Karl Rubin
MSRI, January 182006

Outline

- Statement of the conjectures
- Definitions
- Results
- Methods

Birch \& Swinnerton-Dyer conjecture

Suppose that A is an abelian variety of dimension d over a number field k.

Conjecture (BSD I).

$$
\operatorname{ord}_{s=1} L(A / k, s)=\operatorname{rank}(A(k))
$$

Conjecture (BSD II). If $r=\operatorname{rank}(A(k))$, then

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

The L-function

We will define

$$
L(A / k, s)=\prod_{v} L_{v}\left(A / k, q_{v}^{-s}\right)^{-1}
$$

where $L_{v}(A / k, t) \in \mathbf{Z}[t]$ has degree at most $2 d$ and q_{v} is the cardinality of the residue field of k_{v}.

If v is a prime of k, let
k_{v}^{ur} be the maximal unramified extension of k_{v},
$I_{v}=\operatorname{Gal}\left(\bar{k}_{v} / k_{v}^{\mathrm{ur}}\right)$, the inertia group,
\mathbf{F}_{v} the residue field of k_{v}, and $q_{v}=\left|\mathbf{F}_{v}\right|$,
$\operatorname{Frob}_{v} \in \operatorname{Gal}\left(k_{v}^{\mathrm{ur}} / k_{v}\right)$ the Frobenius generator (the lift of the automorphism $\alpha \mapsto \alpha^{q_{v}}$ of $\overline{\mathbf{F}}_{v}$).

The L-function

If A is an elliptic curve with good reduction at v, then

$$
L_{v}(A / k, t)=1-\left(1+q_{v}-\left|A\left(\mathbf{F}_{v}\right)\right|\right) t+q_{v} t^{2} \in \mathbf{Z}[t] .
$$

For general A and v, and every prime ℓ, define the ℓ-adic Tate module

$$
T_{\ell}(A)={\underset{n}{n}}_{\lim _{n}} A\left[\ell^{n}\right] \cong \varlimsup_{n}^{\lim _{n}}\left(\mathbf{Z} / \ell^{n} \mathbf{Z}\right)^{2 d}=\mathbf{Z}_{\ell}^{2 d}
$$

The L-function

G_{k} acts \mathbf{Z}_{ℓ}-linearly on $T_{\ell}(A)$.
Suppose ℓ is a prime different from $\operatorname{char}\left(\mathbf{F}_{v}\right)$.
If A has good reduction at v then I_{v} acts trivially on $T_{\ell}(A)$, so $\operatorname{Frob}_{v} \in \operatorname{Gal}\left(k_{v}^{\mathrm{ur}} / k_{v}\right)$ acts on $T_{\ell}(A)$

$$
L_{v}(A / k, t)=\operatorname{det}\left(1-\operatorname{Frob}_{v} \cdot t \mid T_{\ell}(A)\right) \in \mathbf{Z}_{\ell}[t] .
$$

For general v, we define
$L_{v}(A / k, t)=\operatorname{det}\left(1-\operatorname{Frob}_{v}^{-1} \cdot t \mid \operatorname{Hom}_{\mathbf{Z}_{\ell}}\left(T_{\ell}(A), \mathbf{Z}_{\ell}\right)^{I_{v}}\right)$
a polynomial in $\mathbf{Z}_{\ell}[t]$ of degree at most $2 d$.

The L-function

A priori $L_{v}(A / k, t) \in \mathbf{Z}_{\ell}[t]$, but recall that if A is an elliptic curve with good reduction at v, then

$$
L_{v}(A / k, t)=1-\left(1+q_{v}-\left|A\left(\mathbf{F}_{v}\right)\right|\right) t+q_{v} t^{2} \in \mathbf{Z}[t] .
$$

Theorem. $L_{v}(A / k, t) \in \mathbf{Z}[t]$ and is independent of the choice of $\ell \neq \operatorname{char}\left(\mathbf{F}_{v}\right)$.

The L-function

Definition. $L(A / k, s)=\prod_{v} L_{v}\left(A, q_{v}^{-s}\right)^{-1}$.
Theorem. The Euler product for $L(A / k, s)$ converges if $\Re(s)>\frac{3}{2}$.

Conjecture. $\quad L(A / k, s)$ has an analytic continuation to all of \mathbf{C}, and satisfies a functional equation $s \mapsto 2-s$.

Conjecture (BSD I).

$$
\operatorname{ord}_{s=1} L(A / k, s)=\operatorname{rank}(A(k))
$$

Example

Let A be the elliptic curve $y^{2}=x^{3}-x$, and $k=\mathbf{Q}$.

$$
L(A / k, s)=\prod_{p>2}\left(1+\left(1+p-\left|A\left(\mathbf{F}_{p}\right)\right|\right) p^{-s}+p^{1-2 s}\right)^{-1}
$$

$L(A / k, s)$ has an analytic continuation, and one can compute

$$
L(A / k, 1)=.65551538857302995 \ldots \neq 0
$$

We know that $A(\mathbf{Q})$ has rank zero, so BSD I is true in this case.

BSD II

To define the quantities in BSD II, we need to fix a Néron model \mathcal{A} of A over the ring of integers \mathcal{O}_{k} of k.

If A is an elliptic curve over \mathbf{Q}, then \mathcal{A} is a generalized Weierstrass model

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbf{Z}$ are such that the discriminant is minimal among all (generalized Weierstrass) models of A.

The period

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

If A is an elliptic curve over \mathbf{Q}, then

$$
\Omega_{A / k}=\int_{E(\mathbf{R})} \frac{d x}{2 y+a_{1} x+a_{3}}
$$

The period

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Suppose for simplicity that the \mathcal{O}_{k}-module of invariant differentials on \mathcal{A} is free \mathcal{O}_{k}-module (for example, this holds if \mathcal{O}_{k} is a principal ideal domain), and fix an \mathcal{O}_{k}-basis $\left\{\omega_{1}, \ldots, \omega_{d}\right\}$.

We will define a local period $\Omega_{A / k_{v}}$ for each infinite place v.

The period

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Suppose first that $k_{v}=\mathbf{R}$.
Fix a basis $\left\{\gamma_{1}, \ldots, \gamma_{d}\right\}$ of $H_{1}\left(A\left(\bar{k}_{v}\right), \mathbf{Z}\right)^{\operatorname{Gal}\left(\bar{k}_{v} / k_{v}\right)}$.
Let m_{v} be the number of connected components of $A\left(k_{v}\right)$.

Set

$$
\Omega_{A / k_{v}}=m_{v}\left|\operatorname{det}\left(\int_{\gamma_{i}} \omega_{j}\right)\right| .
$$

The period

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Now suppose $k_{v}=\mathbf{C}$.
Fix a basis $\left\{\gamma_{1}, \ldots, \gamma_{2 d}\right\}$ of $H_{1}\left(A\left(\bar{k}_{v}\right), \mathbf{Z}\right)$.
Set

$$
\left.\Omega_{A / k_{v}}=\mid \operatorname{det}\left(\int_{\gamma_{i}} \omega_{j}\right), \overline{\int_{\gamma_{i}} \omega_{j}}\right) \mid .
$$

Define

$$
\Omega_{A / k}=\operatorname{Disc}(k)^{-d / 2} \prod_{v \mid \infty} \Omega_{A / k v}
$$

where $\operatorname{Disc}(k)$ is the discriminant of k.

The regulator

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|Ш(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Let \hat{A} / k denote the dual abelian variety.
If A is an elliptic curve, then $\hat{A}=A$, and in general \hat{A} is isogenous to A (there is a surjective morphism $A \rightarrow \hat{A}$ with finite kernel).

Let

$$
\langle,\rangle: A(k) \times \hat{A}(k) \rightarrow \mathbf{R}
$$

be the canonical height pairing corresponding to the Poincaré divisor on $A \times \hat{A}$.

The regulator

$\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}$
Fix Z-bases $\left\{x_{1}, \ldots, x_{r}\right\}$ of $A(k) / A(k)_{\text {tors }}$ and $\left\{y_{1}, \ldots, y_{r}\right\}$ of $\hat{A}(k) / \hat{A}(k)_{\text {tors }}$.

Define

$$
R_{A / k}=\left|\operatorname{det}\left(\left\langle x_{i}, y_{j}\right\rangle\right)\right|
$$

The Tamagawa factors

$$
\lim _{s \rightarrow 1} \frac{L(A / k, s)}{(s-1)^{r}}=\frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

If v is a prime of k let $\mathcal{A}_{v}=\mathcal{A} \times \mathbf{F}_{v}$, the fiber of \mathcal{A} over v, and let \mathcal{A}_{v}° be the connected component of the identity in \mathcal{A}_{v}.

Set

$$
c_{v}=\left[\mathcal{A}_{v}\left(\mathbf{F}_{v}\right): \mathcal{A}_{v}^{\circ}\left(\mathbf{F}_{v}\right)\right] .
$$

If A has good reduction at v, then \mathcal{A}_{v} is connected so $c_{v}=1$.

Example

Let A be the elliptic curve $y^{2}=x^{3}-x$, and $k=\mathbf{Q}$.

$$
\begin{aligned}
& \quad L(A / \mathbf{Q}, 1)=.65551538857302995 \ldots \\
& \Omega_{A / \mathbf{Q}}=5.24411510858 \ldots=8 L(A / \mathbf{Q}, 1) \\
& R_{A / \mathbf{Q}}=1 \\
& c_{2}=2 \\
& A(\mathbf{Q})_{\text {tors }}=\hat{A}(\mathbf{Q})_{\text {tors }} \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z} \\
& \text { so BSD II is true if and only if } \amalg(A / \mathbf{Q})=0 .
\end{aligned}
$$

Theorems

Theorem (Wiles, . . .) Suppose A is an elliptic curve over \mathbf{Q}. Then $L(A, s)$ has an analytic continuation and functional equation.

Theorem (Kolyvagin, Gross \& Zagier, . . .).

 Suppose A is an elliptic curve over \mathbf{Q}.$$
\text { If } \operatorname{ord}_{s=1} L(A / \mathbf{Q}, s)=0, \text { then } \operatorname{rank}(A(\mathbf{Q}))=0
$$ and $\amalg(A / \mathbf{Q})$ is finite.

$$
\text { If } \operatorname{ord}_{s=1} L(A / \mathbf{Q}, s)=1, \text { then } \operatorname{rank}(A(\mathbf{Q}))=1
$$ and $\amalg(A / \mathbf{Q})$ is finite.

Theorems

Suppose $L(A / \mathbf{Q}, 1) \neq 0$. To prove $A(\mathbf{Q})$ and $\amalg(A / \mathbf{Q})$ are both finite, one needs to show that $\left|S_{n}(A / \mathbf{Q})\right|$ is bounded as n varies (Kolyvagin).

Suppose $\operatorname{ord}_{s=1} L(A / \mathbf{Q}, s)=1$. To show that $\operatorname{rank}(A(\mathbf{Q}))=1$ and $\amalg(A / \mathbf{Q})$ is finite one needs to show

- $A(\mathbf{Q})$ has a point of infinite order (Gross \& Zagier),
- $\left|S_{n}(A / \mathbf{Q})\right| / n$ is bounded as n varies
(Kolyvagin).

BSD II, rank zero

$$
L(A / k, 1) \stackrel{?}{=} \frac{\Omega_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Theorem (Manin, Shimura). If A is an elliptic curve over \mathbf{Q} then

$$
\frac{L(A / \mathbf{Q}, 1)}{\Omega_{A / \mathbf{Q}}} \in \mathbf{Q}
$$

with an explicit bound on the denominator.

BSD II, rank zero

$$
L(A / k, 1) \stackrel{?}{=} \frac{\Omega_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|\amalg(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Theorem (Rubin). Suppose A / \mathbf{Q} is an elliptic curve with complex multiplication by an imaginary quadratic field K. (For example, $y^{2}=x^{3}-a x$ has CM by $\mathbf{Q}(\sqrt{-1}), y^{2}=x^{3}+b$ has CM by $\mathbf{Q}(\sqrt{-3})$.)

If $L(A / \mathbf{Q}, 1) \neq 0$, then $B S D$ II is true for A up to primes dividing the number of roots of unity in K.

Example

Let A be the elliptic curve $y^{2}=x^{3}-x$, and $k=\mathbf{Q}$. We saw that BSD II is true for A if and only if $\amalg(A / \mathbf{Q})=0$.
A has CM by $\mathbf{Q}(\sqrt{-1})$, and $L(A / \mathbf{Q}, 1) \neq 0$, so BSD II is true for A up to a power of 2 .

Hence BSD II is true for A if and only if $Ш(A / \mathbf{Q})[2]=0$.

We saw yesterday that $\amalg(A / \mathbf{Q})[2]=0$, so BSD II is true for A.

BSD II, rank zero

$$
L(A / k, 1) \stackrel{?}{=} \frac{\Omega_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|Ш(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Theorem (Kato). Suppose A / \mathbf{Q} is an elliptic curve and A has good reduction at p. If

$$
\operatorname{Gal}(\mathbf{Q}(A[p]) / \mathbf{Q}) \rightarrow \operatorname{Aut}(A[p]) \xrightarrow{\sim} \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)
$$

is surjective, then

$$
\left|\amalg(A / \mathbf{Q})\left[p^{\infty}\right]\right| \quad \text { divides } \frac{L(A / \mathbf{Q}, 1)}{\Omega_{A / \mathbf{Q}}} .
$$

BSD II, rank one

$$
L^{\prime}(A / k, 1) \stackrel{?}{=} \frac{\Omega_{A / k} \cdot R_{A / k} \cdot\left(\prod_{v} c_{v}\right) \cdot|Ш(A / k)|}{\left|A(k)_{\text {tors }}\right|\left|\hat{A}(k)_{\text {tors }}\right|}
$$

Theorem (Gross \& Zagier). If A is an elliptic curve over \mathbf{Q} and $L(A / \mathbf{Q}, 1)=0$, then

$$
\frac{L^{\prime}(A / \mathbf{Q}, 1)}{\Omega_{A / \mathbf{Q}} R_{A / \mathbf{Q}}} \in \mathbf{Q} .
$$

BSD II, rank one

Gross \& Zagier showed that for an explicit point $x \in A(\mathbf{Q})$ (a Heegner point)

$$
\mathrm{h}_{\mathrm{can}}(x)=\alpha \frac{L^{\prime}(A / \mathbf{Q}, 1)}{\Omega_{A / \mathbf{Q}}}
$$

with an explicit nonzero rational number α.
Thus if $L^{\prime}(A / \mathbf{Q}, 1) \neq 0$, then

- $\quad x$ is not a torsion point so $\operatorname{rank}(A(\mathbf{Q})) \geq 1$,
- $\mathrm{h}_{\text {can }}(x) / R_{A / \mathbf{Q}} \in \mathbf{Q}^{\times}$, so $\frac{L^{\prime}(A / \mathbf{Q}, 1)}{\Omega_{A / \mathbf{Q}^{R} R_{A} / \mathbf{Q}}} \in \mathbf{Q}$.

Abelian varieties

Suppose that A / \mathbf{Q} is a quotient of the jacobian $J_{0}(N)$ of the modular curve $X_{0}(N)$ for some N. Then there is a set of Hecke eigenforms $\left\{f_{1}, \ldots, f_{d}\right\}$ of weight two and level N such that

$$
L(A / \mathbf{Q}, s)=\prod_{i} L\left(f_{i}, s\right)
$$

Theorem (Kolyvagin, Gross \& Zagier, ...). With A as above, suppose $\operatorname{ord}_{s=1} L\left(f_{i}, s\right) \leq 1$ for $1 \leq i \leq d$. Then $\operatorname{ord}_{s=1} L(A / \mathbf{Q}, s)=\operatorname{rank}(A(\mathbf{Q}))$ and $\amalg(A / \mathbf{Q})$ is finite.

Parity

Suppose A is an elliptic curve over \mathbf{Q}, let $N \in \mathbf{Z}^{+}$ be its conductor, and define

$$
\Lambda(A, s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L(A / \mathbf{Q}, s)
$$

Theorem (Wiles, ...) $\Lambda(A, s)=w_{A} \Lambda(A, 2-s)$ with $w_{A}= \pm 1$.

Conjecturally, $L(A / k, s)$ satisfies a similar functional equation for every abelian variety A / k, with "sign" $w_{A}= \pm 1$.

Parity

Given such a functional equation, we have

$$
\operatorname{ord}_{s=1} L(A / k, s) \text { is } \begin{cases}\text { even } & \text { if } w_{A}=+1 \\ \text { odd } & \text { if } w_{A}=-1\end{cases}
$$

Combined with BSD I this leads to:

Parity Conjecture.

$\operatorname{rank}(A(k))$ is $\begin{cases}\text { even } & \text { if } w_{A}=+1 \\ \text { odd } & \text { if } w_{A}=-1 .\end{cases}$
If $\operatorname{rank}(A(k))$ is odd, then $A(k)$ is infinite!

Parity

For squarefree $d \in \mathbf{Z}^{+}$, let A_{d} be the elliptic curve $y^{2}=x^{3}-d^{2} x$.

One can compute that

$$
w_{A_{d}}=\left\{\begin{array}{lll}
+1 & \text { if } d \equiv 1,2 \text { or } 3 & (\bmod 8) \\
-1 & \text { if } d \equiv 5,6 \text { or } 7 & (\bmod 8)
\end{array}\right.
$$

So the parity conjecture predicts that if $d \equiv 5,6$ or $7(\bmod 8)$, then $A_{d}(\mathbf{Q})$ is infinite.

This is known to be true for prime d.

Parity

Theorem (Nekovář). Suppose A / \mathbf{Q} is an elliptic

 curve. Then$$
\operatorname{corank}\left(S_{p \infty}(A / \mathbf{Q})\right) \text { is } \begin{cases}\text { even } & \text { if } w_{A}=+1 \\ \text { odd } & \text { if } w_{A}=-1\end{cases}
$$

Recall that if $\amalg(A / \mathbf{Q})$ is finite, then

$$
\operatorname{corank}\left(S_{p^{\infty}}(A / Q)\right)=\operatorname{rank}(A(\mathbf{Q}))
$$

Parity

Suppose A is an abelian variety over k, p is an odd prime, K / k is a quadratic extension, and L / K is a cyclic p-extension such that L / k is Galois with dihedral Galois group.

Theorem (Mazur \& Rubin). If all primes above p split in K / k and $\operatorname{corank}\left(S_{p \infty}(A / K)\right)$ is odd, then

$$
\operatorname{corank}\left(S_{p \infty}(A / L)\right) \geq[L: K]
$$

This would follow from the Parity Conjecture.

Parity

If A is an elliptic curve, $k=\mathbf{Q}$ and K is imaginary, then Heegner points account for "most" of the rank in $A(L)$.

For general $L / K / k$, we have no idea where all these points are coming from.

Bounding Selmer groups

Fix an abelian variety A / k, and $n \in \mathbf{Z}^{+}$.
If v is a prime of k, there is a perfect Tate (cup product) pairing

$$
\langle,\rangle_{v}: H^{1}\left(k_{v}, A[n]\right) \times H^{1}\left(k_{v}, \hat{A}[n]\right) \longrightarrow \mathbf{Z} / n \mathbf{Z}
$$

in which $A\left(k_{v}\right) / n A\left(k_{v}\right)$ and $\hat{A}\left(k_{v}\right) / n \hat{A}\left(k_{v}\right)$ are exact annihilators of each other.

$$
\text { If } c \in S_{n}(A / k), d \in S_{n}(\hat{A} / k) \text {, then }\left\langle c_{v}, d_{v}\right\rangle_{v}=0
$$

Bounding Selmer groups

Theorem (Reciprocity Law). If $c \in H^{1}(k, A[n])$, $d \in H^{1}(k, \hat{A}[n])$ then $\sum_{v}\left\langle c_{v}, d_{v}\right\rangle_{v}=0$.

Suppose Σ is a finite set of primes of k, and

$$
\begin{aligned}
& S_{n}^{\Sigma}(\hat{A} / k):=\left\{d \in H^{1}\left(k_{v}, \hat{A}[n]\right):\right. \\
& \left.\quad d_{v} \in \operatorname{image}\left(\kappa_{v}\right) \text { for every } v \notin \Sigma\right\}
\end{aligned}
$$

If $d \in S_{n}^{\Sigma}(\hat{A} / k)$, then for every $c \in S_{n}(A / k)$

$$
\sum_{v \in \Sigma}\left\langle c_{v}, d_{v}\right\rangle_{v}=\sum_{v}\left\langle c_{v}, d_{v}\right\rangle_{v}=0
$$

Bounding Selmer groups

For example, if Σ consists of a single prime v and $d \in S_{n}^{\Sigma}(\hat{A} / k)$, then for every $c \in S_{n}(A / k)$

$$
\left\langle c_{v}, d_{v}\right\rangle_{v}=0
$$

Since the Tate pairings are nondegenerate, this restricts the image of $S_{n}(A / k)$ under the localization map

$$
S_{n}(A / k) \hookrightarrow H^{1}(k, A[n]) \longrightarrow H^{1}\left(k_{v}, A[n]\right) .
$$

Bounding Selmer groups

If we can find "enough" d's (as Σ varies), we can show that there are not many c 's, i.e., $S_{n}(A / k)$ is small.

Kolyvagin showed how to use such $d \in S_{n}^{\Sigma}(\hat{A} / k)$, and how to construct them systematically in some cases. Kato constructed them in other important cases.

Bounding Selmer groups

Every collection of $d \in S_{n}^{\Sigma}(\hat{A} / k)$ (for varying Σ) gives a bound on the size of the Selmer group $S_{n}(A / k)$.

This method is not useful if (for example) all the d 's one constructs are zero.

In Kolyvagin's and Kato's constructions, the d's are related to the values $L(A / \mathbf{Q}, 1)$ and $L^{\prime}(A / \mathbf{Q}, 1)$. In this way one obtains a bound on $S_{n}(A / \mathbf{Q})$ in terms of $L(A / \mathbf{Q}, 1)$, as BSD II predicts.

