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The aim of this note is to describe how the “fudge factors” in the Birch and
Swinnerton-Dyer conjecture vary in a family of quadratic twists (see Proposi-
tion 5, which follows directly from Tate’s algorithm [T]). We illustrate with
two examples.

Definition 1. If E is an elliptic curve over Q and p is a prime, the fudge factor

(or Tamagawa factor) cp(E) is defined by

cp(E) = [E(Qp) : E0(Qp)]

where E0(Qp) is the subgroup of E(Qp) consisting of those points whose re-
duction modulo p (on a minimal model of E) is nonsingular.

The fundamental method for computing the fudge factors is Tate’s al-
gorithm. This algorithm, originally described in a 1965 letter to Cassels,
was published in [T] and essentially reproduced in §IV.9 of [S]. Stan-
dard number theoretic computer packages, such as PARI/GP (available at
http://pari.math.u-bordeaux.fr), will compute these factors very effi-
ciently.

Let ∆(E) denote the discriminant of a minimal model of E.

Proposition 2. Suppose E is an elliptic curve over Q.

1. If E has good reduction at p, then cp(E) = 1.

2. If E has split multiplicative reduction at p, then cp(E) = ordp(∆(E)),
i.e., pcp(E) is the highest power of p dividing ∆(E).

3. If E has nonsplit multiplicative reduction at p, then cp(E) ≤ 2 and
cp(E) ≡ ordp(∆(E)) (mod 2).

4. If E has additive reduction at p, then cp(E) ≤ 4.

Proof. These are cases 1, 2a, 2b, and 3 through 10, respectively, of Tate’s
algorithm [T].
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Fix an elliptic curve E and a model of E of the form

y2 = f(x)

with a monic cubic polynomial f(x) ∈ Z[x], and let ∆ denote the discriminant
of this model. We may assume that the model is minimal at all primes p > 2,
but this is not necessary for what follows.

Definition 3. The quadratic twist of E by a nonzero rational number d is

Ed : y2 = d3f(x/d).

We will write simply cp(d) for cp(Ed). The purpose of this note is to describe
how cp(d), and

∏

p cp(d), vary with d.

Lemma 4. Suppose d, d′ ∈ Q×.

1. If d/d′ is a square in Q, then Ed is isomorphic to Ed′ .

2. If p is a prime and d/d′ is a square in Qp, then cp(d) = cp(d
′).

Proof. If d′ = dr2, then the map (x, y) 7→ (r2x, r3y) is an isomorphism from
Ed to Ed′ . If r ∈ Q×, this proves (i). If r ∈ Q×

p , this isomorphism identifies
Ed(Qp) with Ed′(Qp) and by the definition of cp(d) we get cp(d) = cp(d

′).

By Lemma 4(i), every quadratic twist Ed of E is a twist by some (unique)
squarefree integer. From now on we will assume that d is a squarefree integer.

Proposition 5. Suppose p is a prime not dividing 2∆. If p ∤ d then cp(d) = 1.
If p | d, then

cp(d) = 1 + #{roots of f(x) ≡ 0 (mod p) in Z/pZ} = 1, 2, or 4.

Proof. If p ∤ 2∆d then Ed has good reduction at p, so cp(d) = 1. If p | d but
p ∤ 2∆ then we are in case 6 of Tate’s algorithm [T].

Note that for every p not dividing 2∆, the number of roots of f(x) modulo
p is at least as large as the number of roots of f(x) in Q. Thus if p | d and
p ∤ 2∆, then cp(d) ≥ #E(Q)[2].

If p | 2∆ the situation is more complicated. However, for those primes, to
determine cp(d) for every d, Lemma 4(ii) shows that it is enough to compute
cp(d) (using Tate’s algorithm) for d in a set of representatives of Q×

p /(Q×

p )2.
Note that Q×

p /(Q×

p )2 has order 4 if p > 2, and order 8 if p = 2.

Example 6. E : y2 = x3 − x

We have ∆ = 64, and x3−x factors into linear factors over Q, so Proposition
5 shows that for p > 2 we have

cp(d) =

{

1 if p ∤ d,

4 if p | d.
(1)
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Tate’s algorithm (cases 4 and 7.2, respectively) gives

c2(d) =

{

2 if 2 ∤ d,

4 if 2 | d.
(2)

(Alternatively, we can use PARI/GP to compute that

c2(1) = c2(3) = c2(−1) = c2(−3) = 2,

c2(2) = c2(6) = c2(−2) = c2(−6) = 4,

and then use Lemma 4(ii) to deduce (2).)
Combining (1) and (2) we conclude that

∏

p

cp(d) =

{

22ω(d)+1 if d is odd,

22ω(d) if d is even,

where ω(d) is the number of prime divisors of d.

Example 7. E : y2 + y = x3 − x2 − 10x − 20

This is the modular curve X0(11), with discriminant −115. We will use the
model (not minimal at 2)

y2 = x3 − 4x2 − 160x − 1264

with discriminant ∆ = −212115. For p 6= 2, 11, Proposition 5 shows that

cp(d) =

{

1 if p ∤ d,

1 + #{roots of x3 − 4x2 − 160x − 1264 mod p} if p | d.

Since x3 − 4x2 − 160x − 1264 is irreducible over Q, cp(d) can be 1, 2, or 4.
More precisely, the Galois group of x3 −4x2 −160x−1264 over Q is S3, so the
Cebotarev theorem shows that if Dk is the density of the set of primes p such
that x3 − 4x2 − 160x − 1264 has k roots modulo p, then D0 = 1/3, D1 = 1/2,
and D3 = 1/6.

We also compute

d 1 3 −1 −3 2 6 −2 −6
c2(d) 1 1 1 1 1 1 1 1

d 1 −1 11 −11
c11(d) 5 1 4 2

Therefore by Lemma 4(ii), c2(d) = 1 for every d, and

c11(d) =



















5 if d is a nonzero square modulo 11,

1 if d is not a square modulo 11,

4 if 11 | d and d
11

is a square modulo 11,

2 if 11 | d and d
11

is not a square modulo 11.
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