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Abstract

We give infinite families of elliptic curves over Q such that each curve
has infinitely many non-isomorphic quadratic twists of rank at least 4.
Assuming the Parity Conjecture, we also give elliptic curves over Q with
infinitely many non-isomorphic quadratic twists of odd rank at least 5.

1 Introduction

Mestre [Me92] showed that every elliptic curve over Q has infinitely many
(non-isomorphic) quadratic twists of rank at least 2 over Q, and he gave
[Me98, Me00] several infinite families of elliptic curves over Q with infinitely
many (non-isomorphic) quadratic twists of rank at least 3. Further, he stated
([Me98]) that if E is an elliptic curve over Q with torsion subgroup isomorphic
to Z/8Z × Z/2Z, then there are infinitely many (non-isomorphic) quadratic
twists of E with rank at least 4 over Q.

In this paper (Theorems 3.2 and 3.6) we give additional infinite families of
elliptic curves over Q with infinitely many (non-isomorphic) quadratic twists of
rank at least 4. The family of elliptic curves in Theorem 3.2 is parametrized by
the projective line. The family of elliptic curves in Theorem 3.6 is parametrized
by an elliptic curve of rank one. In both cases, the twists are parametrized by
an elliptic curve of rank at least one.

In addition, we find elliptic curves over Q that, assuming the Parity Con-
jecture, have infinitely many (non-isomorphic) quadratic twists of odd rank
at least 5 (see Theorem 5.1 and Corollary 5.2). The proof relies on work of
Rohrlich [R93].

In Theorem 5.6 of [RS01] we gave an infinite family of elliptic curves over
Q for which the number of twists of even rank at least 4 grows at least like
X1/6, if the Parity Conjecture holds. In Theorem 3.5 below we give a different
infinite family for which this holds.

The results are obtained by extending the method of [RS01] (we learned
at [Me00] that this was one of the methods used independently and earlier by
Mestre to obtain the results announced in [Me98]).
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Definition 1.1. If E : y2 = f(x) is an elliptic curve, let E(d) denote dy2 = f(x),
the quadratic twist of E by d.

2 The general method

We first give a more explicit version of Lemma 2.1 of [RS01].

Lemma 2.1. Suppose that E is an elliptic curve over a field F , that K1, . . . , Kn

are distinct separable extensions of F of degree at most 2, and that for i =
1, . . . , n, there are points Pi ∈ E(Ki) of infinite order. Suppose also that if
Ki 6= F , then σ(Pi) = −Pi, where σ is the non-trivial element of Gal(Ki/F ).
Let K denote the compositum K1 · · ·Kn. Then {P1, . . . , Pn} is an independent
set in E(K).

Proof. Let G = Gal(K/F ). Let χi : Gal(Ki/F ) → {±1} denote the non-trivial
character if Ki 6= F , and the trivial character if Ki = F . Let ei =

∑

σ∈G χi(σ)σ.
Then for all i and j,

ei(Pj) =
∑

σ∈G

χi(σ)(σ(Pj)) =
∑

σ∈G

χi(σ)(χj(σ)Pj)

= (
∑

σ∈G

χi(σ)χj(σ))Pj =

{

O if i 6= j

|G|Pj if i = j.

Suppose
∑

j njPj = O. Then O = ei(
∑

j njPj) = |G|niPi for every i. Since Pi

has infinite order, ni = 0 for every i.

Definition 2.2. (i) If k(t) ∈ Z[t], we say that k(t) is squarefree if k(t) is not
divisible by the square of any non-constant polynomial in Z[t].

(ii) Suppose g(t) ∈ Q(t). A squarefree part of g(t) is a squarefree k(t) ∈ Z[t]
such that g(t) = k(t)j(t)2 for some j(t) ∈ Q(t).

The following result is a variant of Corollary 2.2 of [RS01].

Proposition 2.3. Suppose f(x) ∈ Q[x] is a separable cubic, and E is the
elliptic curve y2 = f(x). Let h1(t) = t, suppose we have non-constant
h2(t), . . . , hr(t) ∈ Q(t), let ki(t) be a squarefree part of f(hi(t))/f(t), and
suppose that k1(t), . . . , kr(t) are distinct modulo (Q∗)2. Then:

(i) the rank of E(f(t))(Q(t,
√

k2(t), . . . ,
√

kr(t))) is at least r;

(ii) if C is the curve defined by the equations s2
i = ki(t) for i = 1, . . . , r, then

for all but at most finitely many rational points (τ, σ1, . . . , σr) ∈ C(Q),
the rank of E(f(τ))(Q) is at least r.
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Proof. Apply Lemma 2.1 to the elliptic curve E(f(t)) over the field F = Q(t),
with Ki = F (

√

ki(t)) (so K1 = F ). Since the polynomials ki are squarefree
and distinct modulo (Q∗)2, the fields Ki are distinct. For i = 1, . . . , r, let

Pi = (hi(t),
√

f(hi(t))/f(t)) ∈ E(f(t))(Q(t,
√

ki(t))).

Note that Pi has infinite order, since its x-coordinate is not constant. Now (i)
follows. Part (ii) now follows from Theorem C of [S83].

Retain the setting of Proposition 2.3. Suppose from now on that each hi

is a linear fractional transformation that permutes the roots of f . Then by
Proposition 2.9 of [RS01], ki(t) is linear. More precisely, k1(t) = 1, and if
hi(t) = αt+β

t+δ
with α, β, δ ∈ Q, then ki(t) = f(α)(t + δ) and f(hi(t))/f(t) =

ki(t)(t + δ)−4.

In [RS01] we considered the case where r ≤ 3. Suppose r = 3. Then

Q(C) = Q(t,
√

k2(t),
√

k3(t)),

and the genus of C is zero, where C was defined in Proposition 2.3(ii). Our
goal was to choose h2 and h3 so that the corresponding curve C has a rational
point (and therefore has infinitely many rational points). We considered pairs
of the five non-trivial linear fractional transformations that permute the roots
of f , until we found h2 and h3 for which we could find a rational point on the
corresponding curve C. We used this to parametrize the rational points on C,
i.e., we found an explicit u ∈ Q(t,

√

k2(t),
√

k3(t)) so that

Q(C) = Q(t,
√

k2(t),
√

k3(t)) = Q(u).

We then computed t as a function of u, i.e., t = t(u) ∈ Q(u). The map
u 7→ (t(u),

√

k2(t(u)),
√

k3(t(u))) defines an isomorphism from P1(Q) onto
C(Q). By Proposition 2.3(ii), for all but finitely many u ∈ Q, the rank of
E(f(t(u)))(Q) is at least 3.

In this paper, we consider the case r = 4. Then the genus of C is one.
We will start with a pair h2, h3 as above, and, among the remaining three
candidates for h4, look for one for which we can see enough rational points
on the corresponding curve C to ensure that C is an elliptic curve of positive
rank. We have

Q(C) = Q(t,
√

k2(t),
√

k3(t),
√

k4(t)) = Q(u, v)

with v2 = k4(t(u)). A rational point on the elliptic curve C corresponds to a
pair u0, v0 ∈ Q such that v2

0 = k4(t(u0)). By Proposition 2.3(ii), for all but
finitely many such (u0, v0), the rank of E(f(t(u0)))(Q) is at least 4.
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3 Rank ≥ 4

From now on we consider elliptic curves of the form

y2 = x(x − 1)(x − λ)

where λ ∈ Q − {0, 1}.
Definition 3.1. We fix a numbering of the linear fractional transformations
hi(t) in Q(t) that permute the set {0, 1, λ}, along with corresponding squarefree
parts ki(t):

h1(t) = t, k1(t) = 1,

h2(t) =
t − λ

(2 − λ)t − 1
, k2(t) = (1 − λ)((λ − 2)t + 1),

h3(t) =
λ2(t − 1)

(λ2 − λ + 1)t − λ
, k3(t) = λ(1 − λ)((λ2 − λ + 1)t − λ),

h4(t) =
λt

(λ + 1)t − λ
, k4(t) = λ((λ + 1)t − λ),

h5(t) =
λ2(t − 1)

t(2λ − 1) − λ2
, k5(t) = λ(λ − 1)((1 − 2λ)t + λ2),

h6(t) =
λ(2 − λ)

(λ2 − λ + 1)t − λ2
, k6(t) = λ((λ − 1)((λ2 − λ + 1)t − λ2).

Theorem 3.2. Suppose a ∈ Q − {0, 1,−1}. Let η = a2, let

fη(x) = x(x − 1)(x − 1 − η

η + 2
),

and let Eη be y2 = fη(x). Let Cη be the curve

v2 = (η + 1)2u4 + 4η(2η2 + 3η + 1)u3+

2(7η4 + 7η3 + 2η2 + η + 1)u2 + 4(2η5 + η4 − 2η2 − η)u + (η3 − 1)2,

and let

tη(u) =
2(1 − η)Tη(u)

3((η + 1)u2 + 1 − η3)2

where

Tη(u) = (η + 1)2u4 + 2η(2η2 + 3η + 1)u3+

2(3η4 + 3η3 + η2 + η + 1)u2 + 2η(η3 − 1)(2η + 1)u + η6 − 2η3 + 1.

Then:

(i) Eη and Cη are elliptic curves over Q;
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(ii) rank(Cη(Q)) ≥ 1;

(iii) for all but possibly finitely many (u, v) ∈ Cη(Q), the quadratic twist of
Eη by fη ◦ tη(u) has rank at least 4 over Q;

(iv) there are infinitely many non-isomorphic quadratic twists of Eη of rank
at least 4 over Q.

Proof. We proved Theorem 4.2(a) of [RS01] by noticing that when τ = 2λ
λ+1

,
then

k3(τ)/k2(τ) = λ2 and k2(τ) =
(λ − 1)2(−2λ + 1)

λ + 1
.

We wanted k2(τ) and k3(τ) to be squares. Note that −2λ+1
λ+1

= a2 if and only

if λ = 1−a2

2+a2 , and when these hold then k2(
2λ

λ+1
) and k3(

2λ
λ+1

) are both squares,

and ( 2λ
λ+1

, (λ − 1)a, λ(λ − 1)a) ∈ Ca2 = Cη. Further, we found that

Q(t,
√

k2(t),
√

k3(t)) = Q(u)

with t = tη(u) as in the statement of this theorem.
The curve Cη in the statement of this theorem is v2 = k4(tη(u)). We

observed that (0, η3 − 1) ∈ Cη(Q). We have

Q(Cη) = Q(u,
√

k4(tη(u))) = Q(t,
√

k2(t),
√

k3(t),
√

k4(t)).

By Proposition 2.3(i) (or Corollary 2.2 of [RS01] with gi(t) = ki(t)fη(t)), the

rank of E
(fη◦tη(u))
η (Q(Cη)) is at least 4. By Proposition 2.3(ii), the rank of

E
(fη◦tη(u))
η (Q) is at least 4 for all but finitely many (u, v) ∈ Cη(Q). More

explicitly, for i = 1, . . . , 4, write

fη ◦ hi(t) = fη(t) · ki(t) · ji(t)
2

with ji(t) ∈ Q(t). Then the points

(hi ◦ tη(u), ji ◦ tη(u)
√

ki ◦ tη(u)) ∈ E(fη(tη(u)))
η (Q(u, v))

are

(tη(u), 1),

(h1 ◦ tη(u),
( −(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 − 1)u + η3 − 1)

)3
),

(h2 ◦ tη(u),
( −(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 + η + 1)u + η3 − 1)

)3
),

(h3 ◦ tη(u),
(−(η + 1)u2 + η3 − 1

v

)3
).
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They give four independent points in E
(fη◦tη(u))
η (Q(Cη)), by Lemma 2.1 above.

(The fact that the first three are independent in E
(fη◦tη(u))
η (Q(u)) was essen-

tially shown in the proof of Theorem 4.2 of [RS01].)
We next write down a (generalized) Weierstrass model for Cη. Let Bη be

the elliptic curve y2 = (x − α)(x − β)(x − γ) where

α = −2(η2 − 1)(η2 + η + 1),

β = −2(η2 − 1)(3η2 + η − 1),

γ = −2(η2 + η + 1)(3η2 + 2η + 1).

There is a birational isomorphism from Cη to Bη that takes (0, η3−1) ∈ Cη(Q)
to the identity element and takes the point

Pa := (−(a + 1)(η + a + 1),−(a + 1)(η + a + 1)(η + 2)(aη − 2η − 1))

in Cη(Q) (with a2 = η) to

Qa := (2(η3 − 1), 8aη(η + 2)(η3 − 1)) ∈ Bη(Q).

We used PARI/GP and Mathematica to check that for 1 ≤ n ≤ 10 and
n = 12, the denominator of the x-coordinate of nQa has no nonzero rational
roots. Thus by Mazur’s Theorem [Ma77], Qa has infinite order for every a ∈
Q − {0, 1,−1}, giving (ii). (In fact, Z × Z/4Z × Z/2Z ⊆ Bη(Q), since

(2(η2 − 1)(η2 + η + 1), 8η(2η + 1)(η2 − 1)(η2 + η + 1))

is a point of order four in Bη(Q).)
Suppose η ∈ Q − {0, 1} is the square of a rational number. We checked

that the degree 12 polynomial fη ◦ tη(u) is then always separable, so for each
squarefree d ∈ Z, the hyperelliptic curve fη ◦ tη(u) = dz2 has genus 5, and
thus has only finitely many rational solutions (u, z). In other words, for each
such η and d, the set of u ∈ Q such that fη ◦ tη(u) and d differ by a rational
square is finite. Thus, since Cη(Q) is infinite, for each w there are infinitely
many non-isomorphic quadratic twists of Eη of rank at least 4 over Q, proving
(iv).

Corollary 3.3. There are infinitely many j ∈ Q such that every elliptic curve
E over Q with j(E) = j has infinitely many quadratic twists of rank at least
4 over Q.

Proof. Apply Theorem 3.2(iv) with j = j(E
(fη◦tη(u))
η ).

Corollary 3.3 also follows from results stated in [Me98].

Remark 3.4. Among the Eη in Theorem 3.2 are infinitely many elliptic curves
that are not twists of curves isogenous to elliptic curves with torsion subgroup
Z/8Z × Z/2Z, and thus give many new examples not given in [Me98]. For
example, if Eη has good reduction at p = 3 or 5 or 7 (for example, if a ∈ Z and
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a is divisible by 3 or 5 or 7), then Eη has no quadratic twist E
(d)
η isogenous

over Q to an elliptic curve A with torsion subgroup Z/8Z × Z/2Z, as can
be seen as follows. If A has good reduction at p, then the Weil bound gives
#A(Fp) ≤ 1 + p + 2

√
p < 16, a contradiction (since the 2-torsion injects under

reduction modulo primes of good reduction). Therefore A and E
(d)
η have bad

reduction at p, so p ramifies in K = Q(
√

d). If P is a prime of K above p,
then A has bad reduction at P , since otherwise

16 ≤ #A(OK/P) ≤ 1 + N(P) + 2
√

N(P) = 1 + p + 2
√

p < 16.

Thus E
(d)
η has bad reduction at P , contradicting the fact that E

(d)
η is isomorphic

over K to Eη which has good reduction at P .

We next show that if we assume the Parity Conjecture, we can obtain
a stronger conclusion than that of Theorem 3.2 for a larger class of elliptic
curves.

If E is an elliptic curve over Q, let

N∗(X) = #{squarefree d ∈ Z : |d| ≤ X, rank(E(d)(Q)) is ∗}.

In [RS01] we showed that for y2 = x(x−1)(x− 1−a2

a2+2
) with a ∈ Q−{0, 1,−1},

we have N3(X) ≫ X1/6 (for X ≫ 1). We also showed, subject to the Parity
Conjecture, that for every elliptic curve with all its two-torsion rational and a
rational cyclic subgroup of order four, N≥4,even(X) ≫ X1/6 (for X ≫ 1).

Theorem 3.5. Let E be y2 = x(x − 1)(x − 1−a2

a2+2
) where a ∈ Q − {0, 1,−1} (as

in Theorem 3.2). Suppose that the Parity Conjecture holds for all quadratic
twists of E. If |a| > 1, then N≥4,even(X) ≫ X1/6 for X ≫ 1.

Proof. Suppose tη is the function defined in Theorem 3.2 above (with η = a2).
In Theorem 4.2(a) of [RS01] we showed that there is a degree 12 polynomial
g(u) ∈ Q[u] that differs from f◦tη(u) by a square, is a product of 3 quartics, and
satisfies rank(E(g(u))(Q(u)) ≥ 3. One can show that for every a ∈ Q−{0, 1,−1}
with |a| > 1, g(u) has at least one real root. The result now follows from
Corollary 5.2 of [RS01].

Theorem 3.6. Let A be the elliptic curve y2 = 4x4−2x2−1. For every a ∈ Q∗,
let

fa(x) = x(x − 1)(x + 2a2),

and let Ea be the elliptic curve y2 = fa(x). Let Ca be the genus one curve
v2 = (4a2 + 1)2(4a4 − 2a2 − 1)u4 + 4a(4a2 + 1)(4a4 + 2a2 + 1)u3 − 2(16a8 +
4a6 + 10a4 + 3a2 − 1)u2 + a(a2 + 1)(4a4 + 2a2 + 1)u + (a2 + 1)2(4a4 − 2a2 − 1),
and let

ta(u) =
Ta(u)

2((4a2 + 1)u2 + a2 + 1)2

where Ta(u) = −(2a2 − 1)(4a2 +1)2u4 − 4a(4a2 +1)(2a2 +1)u3 +2(4a4 +3a2 +
1)(2a2 − 1)u2 + 4a(a2 + 1)(2a2 + 1)u − (a2 + 1)2(2a2 − 1). Then:
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(i) A(Q) ∼= Z ⊕ Z/2Z;

(ii) if (a, b) ∈ A(Q), then Ca is an elliptic curve over Q and

rank(Ca(Q)) ≥ 1;

(iii) for all but possibly finitely many (u, v) ∈ Ca(Q), the quadratic twist of
Ea by fa ◦ ta(u) has rank at least 4 over Q;

(iv) if (a, b) ∈ A(Q), then there are infinitely many non-isomorphic quadratic
twists of Ea of rank at least 4 over Q.

Proof. Part (i) is easy. The rest of the proof proceeds in the same way as that
of Theorem 3.2, where now we use the functions h1, h2, h5, and h3 given at
the beginning of this section. Since the curve Ca is v2 = k3(ta(u)), we have
(see also Theorem 4.1 of [RS01])

Q(Ca) = Q(u,
√

k3(ta(u))) = Q(t,
√

k2(t),
√

k5(t),
√

k3(t)).

Let Ba be y2 = (x − α)(x − β)(x − γ) where

α = 2(4a4 − 2a2 − 1)(4a2 + 1)(a2 + 1),

β = 2(4a6 + 2a4 + 5a2 + 1)(4a2 + 1),

γ = −2(16a6 + 4a4 − 2a2 + 1)(a2 + 1).

It is easy to check that Ba is an elliptic curve whenever a ∈ Q∗. Suppose that
(a, b) ∈ A(Q). Then there is a birational isomorphism from Ca to Ba that
takes the rational point (0, (a2 + 1)b) to the identity element and takes the
point (a, (4a4 + 2a2 + 1)b) ∈ Ca(Q) to the point

Q(a,b) := (
g(a)(4a6 − 2a4 − a2 − 2)

a2
,
−4g(a)(4a4 + 2a2 + 1)b

a3
) ∈ Ba(Q),

where g(a) = 2(a2 + 1)(4a2 + 1). For a /∈ {0, 1,−1}, we used PARI/GP and
Mathematica to check that nQ(a,b) 6= O for 1 ≤ n ≤ 10 and n = 12. Thus
by Mazur’s Theorem [Ma77], rank(Ba(Q)) ≥ 1. Further, the rank of B1(Q)
(= B−1(Q)) is one. We now have (ii). The points

(ta(u), 1),

(h2 ◦ ta(u),
( 2a((4a2 + 1)u2 + a2 + 1)

−(4a2 + 1)u2 + 2a(4a2 + 1)u + a2 + 1

)3
),

(h5 ◦ ta(u),
( (4a2 + 1)u2 + a2 + 1

a(4a2 + 1)u2 + 2(a2 + 1)u − a(a2 + 1)

)3
),

(h3 ◦ ta(u),
(2a((4a2 + 1)u2 + a2 + 1)

v

)3
)

give four independent points in E
(fa◦ta(u))
a (Q(Ca)).
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4 Root numbers

Definition 4.1. If E is an elliptic curve over Q, let NE denote the conductor
of E, let wE denote the global root number, i.e., the sign in the functional
equation for L(E, s), and let wE,p denote the local root number at a prime
p ≤ ∞. Write wE(d) for wE(d) and write wE,p(d) for wE(d),p.

Definition 4.2. If α ∈ Q∗ and n ∈ Z+, then:

(i) α ≡ 1 mod×n means that α − 1 ∈ nZℓ for all primes ℓ | n;

(ii) α ≡ 1 mod×n∞ means that α ≡ 1 mod×n and α > 0.

Lemma 4.3. Suppose E is an elliptic curve over Q, d, d′ ∈ Q∗, and there exists
β ∈ Q∗ such that β2d/d′ ≡ 1 mod×8NE∞. Then wE(d) = wE(d′).

Proof. Taking the squarefree parts of d and d′, we can reduce to the case where
d and d′ are squarefree integers.

If p < ∞ and p ∤ dNE, then E(d) has good reduction over Qp, so wE,p(d) = 1
(see Proposition 2(iv) of [R93]). Similarly for d′. Thus,

wE(d) =
∏

p≤∞

wE,p(d) =
∏

p|dNE∞

wE,p(d). (1)

If d/d′ is a square in Q∗
p, then E(d) and E(d′) are isomorphic over Qp, so

wE,p(d) = wE,p(d
′) for all p ≤ ∞. In particular, since d/d′ > 0, it follows

that wE,∞(d) = wE,∞(d′). If p | 2NE, then d/d′ is a square in Q∗
p (since

β2d/d′ ≡ 1 mod×8NE), so wE,p(d) = wE,p(d
′). If p | 2NE, then p divides d if

and only if p divides d′ (since 2ordp(β) + ordp(d) = ordp(d
′), and d and d′ are

squarefree). Thus,
∏

p|dNE∞ wE,p(d)
∏

p|dNE∞ wE,p(d′)
=

∏

p|d,p∤2NE
wE,p(d)

∏

p|d′,p∤2NE
wE,p(d′)

. (2)

Suppose p ∤ NE, so E has good reduction at p. Since E and E(d) are
isomorphic over Qp(

√
d), E(d) has good reduction over Qp(

√
d). If p | d, then

Qp(
√

d) is the smallest extension of Qp over which E(d) has good reduction
(and similarly for d′). By (iii) and (v) of Proposition 2 of [R93] with e = 2, we
have

wE,p(d) =
(−1

p

)

(3)

if p | d and p ∤ 2NE, where
(

−1
m

)

is the Jacobi symbol.
By (1), (2), and (3), we have

wE(d)

wE(d′)
=

∏

p|d,p∤2NE

(

−1
p

)

∏

p|d′,p∤2NE

(

−1
p

) =

(

−1
f

)

(

−1
f ′

) ,

where f = d/ gcd(d, 2NE) and f ′ = d′/ gcd(d′, 2NE). Note that f/f ′ = d/d′.
Then β2f/f ′ ≡ 1 mod×4, so f ≡ f ′ (mod 4), so

(

−1
f

)

=
(

−1
f ′

)

.
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Lemma 4.4. Suppose E and B are elliptic curves over Q, B(Q) has infinite
order, P ∈ B(Q), r is a rational function in Q(B), and P is not a zero or pole of
r. Then there exist a Q ∈ B(Q) of infinite order and an open neighborhood U
of O in B(R) such that if k ∈ Z and kQ ∈ U then wE(r(P +kQ)) = wE(r(P )).

Proof. Let

V = B(R) ×
∏

p|2NE

B(Qp)

and let g(z) = r(P + z)/r(P ) ∈ Q(B). Then g(O) = 1, and g induces a
function

g : V − {poles of g} → R ×
∏

p|2NE

Qp,

which is continuous at O. Let Bn(Qp) denote the subset of B(Qp) of points
that, in a minimal Weierstrass model for B, have

ordp(x-coordinate) ≤ −2n

(see Exercise 7.4 on p. 187 of [S86]). Then the Bn(Qp)’s form a basis for the
open sets around O in B(Qp), and are subgroups of finite index in B(Qp).
Since g is continuous at O, there is an open neighborhood U of O in B(R) and
for every p | 2NE there is an np ∈ Z≥0 such that

g
(

U ×
∏

p|2NE

Bnp
(Qp)

)

⊆ R+ ×
∏

p|2NE

(1 + 8NEZp).

Let kp = [B(Qp) : Bnp
(Qp)] and let Q0 ∈ B(Q) be a point of infinite order. Let

Q = (lcmp|2NE
{kp})Q0 ∈ B(Q). Then Q has infinite order, and Q ∈ Bnp

(Qp)
for all p | 2NE. Now apply Lemma 4.3 with d = r(P + kQ), d′ = r(P ), and
β = 1.

Lemma 4.5. Suppose B is an elliptic curve over Q, Q ∈ B(Q) is a point of
infinite order, and U is an open subset of the identity component B(R)0 of
B(R). Then {k ∈ Z : kQ ∈ U} is infinite.

Proof. Replacing Q by 2Q, we may assume that Q ∈ B(R)0. Note that B(R)0

is isomorphic to the unit circle in C∗, so every infinite subgroup is dense. Thus
{kQ : k ∈ Z} is dense in B(R)0, and the lemma follows.

5 Rank ≥ 5

Theorem 5.1. Suppose a ∈ Q − {0, 1,−1} and η = a2. Suppose Eη, fη, and
tη are as in Theorem 3.2. If wEη

(fη ◦ tη(u1)) = −1 for some (u1, v1) ∈ Bη(Q),
and the Parity Conjecture holds for all quadratic twists of Eη, then Eη has
infinitely many non-isomorphic quadratic twists of odd rank ≥ 5 over Q.
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Proof. Let P = (u1, v1), and let r(z) = fη ◦ tη ◦ x(z) ∈ Q(Bη), where the
function x gives the x-coordinate of a point. By Lemmas 4.4 and 4.5 with
E = Eη and B = Bη, there are Q ∈ Bη(Q) and infinitely many k ∈ Z such
that

wEη
(r(P + kQ)) = wEη

(r(P )) = −1,

so by the Parity Conjecture, E
(r(P+kQ))
η (Q) has odd rank.

By Theorem 3.2(iii), for all but finitely many k ∈ Z, the rank of E
(r(P+kQ))
η (Q)

is at least 4. Thus for infinitely many k, the rank of E
(r(P+kQ))
η (Q) is at least 5.

As argued in the proof of Theorem 3.2, for each squarefree d ∈ Q∗, the set of
u ∈ Q such that fη ◦ tη(u) and d differ by a rational square is finite, since the
hyperelliptic curve fη ◦ tη(u) = dz2 has only finitely many rational solutions
(u, z). Thus there are infinitely many non-isomorphic quadratic twists of Eη

of odd rank at least 5 over Q.

Corollary 5.2. Suppose

a ∈ {2, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 21, 22,

23, 24, 25, 26, 28, 30, 32, 33, 35, 36, 37, 39, 40, 41}.

If the Parity Conjecture holds for all quadratic twists of

Ea2 : y2 = x(x − 1)(x − 1 − a2

a2 + 2
),

then Ea2 has infinitely many non-isomorphic quadratic twists of odd rank ≥ 5
over Q.

Proof. With η = a2 and Pa = (u0, v0) ∈ Cη(Q) as in the proof of Theorem 3.2,
and P ′

η = (u1, v1) = (1 − η, (1 − η)(2 + η)) ∈ Cη(Q), one can check that for
each of the above a’s, at least one of wEη

(fη ◦ tη(u0)) and wEη
(fη ◦ tη(u1)) is

−1. The result now follows from Theorem 5.1.
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