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Abstract

We give infinite families of elliptic curves over Q such that each curve
has infinitely many non-isomorphic quadratic twists of rank at least 4.
Assuming the Parity Conjecture, we also give elliptic curves over Q with
infinitely many non-isomorphic quadratic twists of odd rank at least 5.

1 Introduction

Mestre [Me92] showed that every elliptic curve over Q has infinitely many
(non-isomorphic) quadratic twists of rank at least 2 over @, and he gave
[Me98, Me00] several infinite families of elliptic curves over Q with infinitely
many (non-isomorphic) quadratic twists of rank at least 3. Further, he stated
([Me98]) that if E' is an elliptic curve over Q with torsion subgroup isomorphic
to Z /87 x Z./27Z, then there are infinitely many (non-isomorphic) quadratic
twists of F with rank at least 4 over Q.

In this paper (Theorems 3.2 and 3.6) we give additional infinite families of
elliptic curves over Q with infinitely many (non-isomorphic) quadratic twists of
rank at least 4. The family of elliptic curves in Theorem 3.2 is parametrized by
the projective line. The family of elliptic curves in Theorem 3.6 is parametrized
by an elliptic curve of rank one. In both cases, the twists are parametrized by
an elliptic curve of rank at least one.

In addition, we find elliptic curves over Q that, assuming the Parity Con-
jecture, have infinitely many (non-isomorphic) quadratic twists of odd rank
at least 5 (see Theorem 5.1 and Corollary 5.2). The proof relies on work of
Rohrlich [R93].

In Theorem 5.6 of [RS01] we gave an infinite family of elliptic curves over
Q for which the number of twists of even rank at least 4 grows at least like
X1/6if the Parity Conjecture holds. In Theorem 3.5 below we give a different
infinite family for which this holds.

The results are obtained by extending the method of [RS01] (we learned
at [Me00] that this was one of the methods used independently and earlier by
Mestre to obtain the results announced in [Me98]).
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Definition 1.1. If E : y*> = f(x) is an elliptic curve, let E@ denote dy? = f(z),
the quadratic twist of E by d.

2 The general method

We first give a more explicit version of Lemma 2.1 of [RS01].

Lemma 2.1. Suppose that E is an elliptic curve over a field F', that Ky,..., K,
are distinct separable extensions of F' of degree at most 2, and that for ¢ =
1,...,n, there are points P; € E(K;) of infinite order. Suppose also that if
K; # F, then o(P;) = —P,;, where o is the non-trivial element of Gal(K;/F).
Let K denote the compositum K - -- K,,. Then {P,..., P,} is an independent
set in E(K).

Proof. Let G = Gal(K/F). Let x; : Gal(K;/F) — {£1} denote the non-trivial
character if K; # F, and the trivial character if K; = F. Lete; = Y, xi(0)o.
Then for all ¢ and 7,

ei(P) =Y xi(0)(@(P)) = > xi(a)(x;(0)P)

ceG ceG

= O xilo)x;(0)F; =

oeG

o) if i £ j
IG|P; ifi=j.

Suppose » . n;P; = O. Then O = e;(}_;n;P;) = |G|n; P; for every i. Since P,
has infinite order, n; = 0 for every 1. O

Definition 2.2. (i) If k(t) € Z[t], we say that k(t) is squarefree if k(t) is not
divisible by the square of any non-constant polynomial in Z][t].

(ii) Suppose g(t) € Q(t). A squarefree part of g(t) is a squarefree k(t) € Z][t]
such that g(t) = k(¢)j(t)? for some j(t) € Q(t).

The following result is a variant of Corollary 2.2 of [RS01].
Proposition 2.3. Suppose f(x) € Q[z] is a separable cubic, and E is the
elliptic curve y> = f(x). Let hi(t) = t, suppose we have non-constant

ha(t), ..., h(t) € Q(t), let k;(t) be a squarefree part of f(h;(t))/f(t), and
suppose that ky(¢),. .., k.(t) are distinct modulo (Q*)?. Then:

(i) the rank of EO)(Q(t, \/ka(t), ...,/ k.(t))) is at least r;

(ii) if C' is the curve defined by the equations s? = k;(t) fori =1,...,r, then
for all but at most finitely many rational points (7,071, ...,0,) € C(Q),
the rank of EV()(Q) is at least 7.
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Proof. Apply Lemma 2.1 to the elliptic curve E/®) over the field F = Q(t),
with K; = F(y/ki(t)) (so K; = F). Since the polynomials k; are squarefree
and distinct modulo (Q*)?, the fields K; are distinct. Fori=1,...,r, let

P, = (hi(t), v/ f(ha() [ (1)) € BVO(Q(E, v ki(1)).

Note that P; has infinite order, since its z-coordinate is not constant. Now (i)
follows. Part (ii) now follows from Theorem C of [S83]. O

Retain the setting of Proposition 2.3. Suppose from now on that each h;
is a linear fractional transformation that permutes the roots of f. Then by
Proposition 2.9 of [RS01], k;(t) is linear. More precisely, ki(t) = 1, and if
hi(t) = 2 with @, 5,6 € Q, then ki(t) = f(a)(t +8) and f(h(t))/f(t) =
ki(t)(t +0)~*

In [RSO1] we considered the case where r < 3. Suppose r = 3. Then

Q(C) = Q(t, Vka(t), VEs(t)),

and the genus of C is zero, where C' was defined in Proposition 2.3(ii). Our
goal was to choose hy and hg so that the corresponding curve C' has a rational
point (and therefore has infinitely many rational points). We considered pairs
of the five non-trivial linear fractional transformations that permute the roots
of f, until we found hy and hs for which we could find a rational point on the
corresponding curve C. We used this to parametrize the rational points on C,

i.e., we found an explicit u € Q(t, \/k2(t), /k3(t)) so that
Q(C) = Q(t, Vka(t), VEs(t)) = Q(u).

We then computed ¢ as a function of u, i.e., t = t(u) € Q(u). The map
u — (t(u),\/ka(t(u)), /ks(t(u))) defines an isomorphism from P!(Q) onto
C(Q). By Proposition 2.3(ii), for all but finitely many v € @, the rank of
EUEW)(Q) is at least 3.

In this paper, we consider the case r = 4. Then the genus of C is one.
We will start with a pair hy, hy as above, and, among the remaining three
candidates for hy, look for one for which we can see enough rational points
on the corresponding curve C' to ensure that C' is an elliptic curve of positive

rank. We have

Q(C> = Q(tv \/k2(t)7 \/k?)(t)v \/k4<t>> = Q(u7 U)

with v? = ky(t(u)). A rational point on the elliptic curve C' corresponds to a
pair ug,vg € Q such that v = ky(t(ug)). By Proposition 2.3(ii), for all but
finitely many such (ug, vo), the rank of EVt))(Q) is at least 4.
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3 Rank >4

From now on we consider elliptic curves of the form
v =x(r —1)(z— )

where A € Q — {0, 1}.

Definition 3.1. We fix a numbering of the linear fractional transformations
hi(t) in Q(¢) that permute the set {0, 1, A}, along with corresponding squarefree
parts k;(t):

hi(t) =t, ki(t) =1,

) = gy ()= (=N =2)+ ),

(1) = e Al = ML= (0 = A+ 1),
M

hlt) = G Fat) = MO\ + 1)t — A,

hs(t) = téfl_)l_)v, ks(t) = A — 1)((1 — 2)\)t + A?),

he(t) = — M2 =N ko() = M\ = D2 = A+ 1)t — A2).

(A2 = A+ 1)t — A\’
Theorem 3.2. Suppose a € Q — {0,1,—1}. Let n = a?, let

L—n
folz) = 2(x —1)(z - m),

and let E, be y* = f,(x). Let C, be the curve
v? = (n+ 1)%u* +4n(2n* + 3n + Du+
2070 + T’ + 20" + 0 + D)u® + 420" + ' = 29" —n)u + (n* — 1)7,
and let

21 =n)Ty(u)
ty(u) = 3((n + uZ + 1 — 15)2

where

T,(u) = (n+ 1)%u* + 2n(2n° + 3n + D)u’+

230 +30° + 1 + 4+ Du +2n(n* — 1)(2n + Du+n° — 2° + 1.
Then:

(i) B, and C, are elliptic curves over Q;
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(if) rank(C(Q)) = 1;

(iii) for all but possibly finitely many (u,v) € C,(Q), the quadratic twist of
E, by f, ot,(u) has rank at least 4 over Q;

(iv) there are infinitely many non-isomorphic quadratic twists of £, of rank
at least 4 over Q.

Proof. We proved Theorem 4.2(a) of [RS01] by noticing that when 7 = /\Q—J;\l,
then
(A—1)%(=2A+1)

A+1 '

We wanted ko(7) and k3(7) to be squares. Note that % = a? if and only

k3(7)/ko(T) = N and  ky(7) =

if A= 3= “2, and when these hold then kg(/\H) and k;g(AH) are both squares,
and (A+1> (A —1)a,\(A = 1)a) € Cp2 = C,,. Further, we found that
Q(t, Vka(t), vV ks(t)) =

with ¢ = ¢, (u) as in the statement of this theorem.
The curve C), in the statement of this theorem is v* = ky(t,(u)). We
observed that (0,7° — 1) € C,,(Q). We have

Q(Cy) = Q(u, \/ha(ty(w))) = Qt, v/ ka(t), v s(1) vV a(1))

By Proposition 2.3(i) (or Corollary 2.2 of [RSO1] with g;(¢t) = ki(t) f,,(t)), the
rank of E,sf"Ot"(u))(@(C’n)) is at least 4. By Proposition 2.3(ii), the rank of

Eéf”Ot”(u))(Q) is at least 4 for all but finitely many (u,v) € C,(Q). More
explicitly, for ¢ = 1,...,4, write

foohi(t) = fo(t) - ki(t) - ji(t)?

with j;(t) € Q(¢). Then the points

(hioty(u),jioty(u)y/kioty(u)) € Eéf"(t"(“)))((@(u, v))

are

(tn(u)71>7
ot (u —(n+ Va4~ 1 3
(e (1w + 27— s 9 1))
ot (u —(n+Du’+n’ -1 3
(ko ta). G T i + 2 T+ D =)

(hy o 1), (FIH LT Ly
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They give four independent points in E,gf "Ot"(u))(Q(Cn)), by Lemma 2.1 above.
(The fact that the first three are independent in E7(7f "Ot"(u))((@(u)) was essen-
tially shown in the proof of Theorem 4.2 of [RS01].)

We next write down a (generalized) Weierstrass model for C,. Let B, be
the elliptic curve y* = (z — a)(z — 3)(xz — v) where

a==2=1)(n* +n+1),
B==20* =103 +n-1),
v==2*+n+1)3Bn*+2n+1).

There is a birational isomorphism from C, to B, that takes (0,7 —1) € C,(Q)
to the identity element and takes the point

P,o=(—(a+1D)(n+a+1),—(a+1D(n+a+1)(n+2)(an—2n—1))
in C,(Q) (with a® =17) to

Qa = (2(° — 1), 8an(n+2)(n* — 1)) € B,(Q).

We used PARI/GP and Mathematica to check that for 1 < n < 10 and
n = 12, the denominator of the z-coordinate of n(), has no nonzero rational
roots. Thus by Mazur’s Theorem [Ma77], ), has infinite order for every a €
Q —{0,1, -1}, giving (ii). (In fact, Z x Z/4Z x Z/2Z C B,(Q), since

=D +n+1),802n+1)(n* = )(n* +n+ 1))

is a point of order four in B,(Q).)

Suppose n € Q — {0, 1} is the square of a rational number. We checked
that the degree 12 polynomial f, o ¢,(u) is then always separable, so for each
squarefree d € Z, the hyperelliptic curve f, o t,(u) = dz? has genus 5, and
thus has only finitely many rational solutions (u, z). In other words, for each
such 7 and d, the set of u € Q such that f, ot,(u) and d differ by a rational
square is finite. Thus, since C,(Q) is infinite, for each w there are infinitely
many non-isomorphic quadratic twists of E, of rank at least 4 over Q, proving
(iv). O

Corollary 3.3. There are infinitely many j € Q such that every elliptic curve
E over Q with j(F) = j has infinitely many quadratic twists of rank at least
4 over Q.

Proof. Apply Theorem 3.2(iv) with j = j(ES*)y, O

Corollary 3.3 also follows from results stated in [Me98§].

Remark 3.4. Among the E, in Theorem 3.2 are infinitely many elliptic curves
that are not twists of curves isogenous to elliptic curves with torsion subgroup
Z/8Z x 727, and thus give many new examples not given in [Me98]. For
example, if F, has good reduction at p = 3 or 5 or 7 (for example, if a € Z and
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a is divisible by 3 or 5 or 7), then E, has no quadratic twist E7(7d) isogenous
over Q to an elliptic curve A with torsion subgroup Z/8Z x Z/2Z, as can
be seen as follows. If A has good reduction at p, then the Weil bound gives
#A(F,) <1+p+2,/p <16, a contradiction (since the 2-torsion injects under

reduction modulo primes of good reduction). Therefore A and E7(7d) have bad
reduction at p, so p ramifies in K = Q(v/d). If P is a prime of K above p,
then A has bad reduction at P, since otherwise

16 < #A(Og /P) <14+ N(P) 4+ 2y/N(P) =1+ p+2/p < 16.

Thus E7(7d) has bad reduction at P, contradicting the fact that E,(fl) is isomorphic
over K to E, which has good reduction at P.

We next show that if we assume the Parity Conjecture, we can obtain
a stronger conclusion than that of Theorem 3.2 for a larger class of elliptic
curves.

If F is an elliptic curve over Q, let

N,(X) = #{squarefree d € Z : |d| < X, rank(E?(Q)) is }.

In [RS01] we showed that for y? = x(z—l)(x—(ll;ﬁ;) with e € Q—{0,1, -1},

we have N3(X) > X/¢ (for X > 1). We also showed, subject to the Parity
Conjecture, that for every elliptic curve with all its two-torsion rational and a

rational cyclic subgroup of order four, Nsj eyen(X) > X/ (for X > 1).
Theorem 3.5. Let E be y* = z(x — 1)(z — i;j:;) where a € Q — {0,1, -1} (as
in Theorem 3.2). Suppose that the Parity Conjecture holds for all quadratic
twists of E. If |a| > 1, then Nsgoyen(X) > X6 for X > 1.

Proof. Suppose t, is the function defined in Theorem 3.2 above (with 7 = a?).
In Theorem 4.2(a) of [RS01] we showed that there is a degree 12 polynomial
g(u) € Q[u] that differs from fot,(u) by a square, is a product of 3 quartics, and
satisfies rank(E9™)(Q(u)) > 3. One can show that for every a € Q—{0,1, —1}
with |a] > 1, g(u) has at least one real root. The result now follows from
Corollary 5.2 of [RS01]. O

Theorem 3.6. Let A be the elliptic curve y? = 42* — 222 — 1. For every a € Q*,
let
fo(z) = 2(x — 1)(z + 24?),

and let E, be the elliptic curve y*> = f,(x). Let C, be the genus one curve
v? = (4a* + 1)*(4a* — 2a% — 1)u? + 4a(4a® + 1)(4a* + 2a* + 1)u?® — 2(16a® +
4a® +10a* + 3a® — 1)u® + a(a® + 1) (4a* + 2a* + 1)u + (a® + 1)?(4a* — 2a* — 1),
and let

To(u)
2((4a® + Du? + a® + 1)2
where T, (u) = —(2a® — 1)(4a® + 1)%u* — 4a(4a® +1)(2a + 1)u? + 2(4a* + 3a® +
1)(2a* — 1)u? + 4a(a® + 1)(2a* + D)u — (a* + 1)*(2a* — 1). Then:

to(u) =
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(i) AQ)=ZeZ/2Z;
(ii) if (a,b) € A(Q), then C, is an elliptic curve over Q and

rank(C,(Q)) > 1;
(iii) for all but possibly finitely many (u,v) € C,(Q), the quadratic twist of
E, by foot.(u) has rank at least 4 over Q;

(iv) if (a,b) € A(Q), then there are infinitely many non-isomorphic quadratic
twists of E, of rank at least 4 over Q.

Proof. Part (i) is easy. The rest of the proof proceeds in the same way as that
of Theorem 3.2, where now we use the functions hq, he, hs, and hs given at
the beginning of this section. Since the curve C, is v? = k3(t,(u)), we have
(see also Theorem 4.1 of [RS01])

Q(Ca) = Qu, Vs (ta(w))) = Q(t, Vk2(t), Vs (1), vV s(1))-
Let B, be y* = (z — a)(xz — 8)(z — ) where

a= 2(4a* —2a* —1)(4a® + 1)(a® + 1),
B= 2(4a° +2a" +5a* + 1)(4a® + 1),
v = —2(16a°® + 4a* — 2a® + 1)(a* + 1).

It is easy to check that B, is an elliptic curve whenever a € Q*. Suppose that
(a,b) € A(Q). Then there is a birational isomorphism from C, to B, that
takes the rational point (0, (a* + 1)b) to the identity element and takes the
point (a, (4a* + 2a* + 1)b) € C,(Q) to the point

g(a)(4a® —2a* — a? — 2) —4g(a)(4a* + 2a* + 1)b

Y

) € Ba(Q),

Q(a,b) = ( a2

where g(a) = 2(a® + 1)(4a® + 1). For a ¢ {0,1, -1}, we used PARI/GP and
Mathematica to check that nQqg # O for 1 < n < 10 and n = 12. Thus
by Mazur’s Theorem [Ma77|, rank(B,(Q)) > 1. Further, the rank of B;(Q)
(= B_1(Q)) is one. We now have (ii). The points

(ta(u),1),
(ha o ta(u), (

a3

2a((4a® + u? + a® + 1)
—(4a® + Du? 4 2a(4a®? + 1)u+a? + 1
4> 4+ 1)u* +a® +1
(h50ta(U),( 9 ( 2 ) 2 2 )3>7
a(4a? 4+ Du? +2(a® 4+ u —a(a® + 1)
2a((4a® + Du® +a? + 1), 3
(h3ota(u)7 ( v ) )

),

give four independent points in ES**"*™)(Q(C,)). O
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4 Root numbers

Definition 4.1. If E is an elliptic curve over Q, let N denote the conductor
of E, let wg denote the global root number, i.e., the sign in the functional
equation for L(E,s), and let wg, denote the local root number at a prime
p < 0o. Write wg(d) for wpw and write wg,(d) for wg) .

Definition 4.2. If « € Q* and n € Z*, then:

(i) @ =1 mod*n means that « — 1 € nZ, for all primes ¢ | n;

(i) a =1 mod*noo means that &« =1 mod*n and a > 0.

Lemma 4.3. Suppose F is an elliptic curve over Q, d,d’ € Q*, and there exists
B € Q* such that 5%d/d’ =1 mod*8Ngoo. Then wg(d) = wg(d).

Proof. Taking the squarefree parts of d and d’, we can reduce to the case where
d and d' are squarefree integers.

If p < oo and p { dNg, then E@ has good reduction over Q,, so wg ,(d) = 1
(see Proposition 2(iv) of [R93]). Similarly for d’. Thus,

wi(d) = [[ wep(d) = ] wep(d). (1)

p<oo pldNpoo

If d/d’ is a square in Qj, then E@ and E@) are isomorphic over Qp, so
wgp(d) = wgy(d') for all p < co. In particular, since d/d" > 0, it follows
that wgeo(d) = wpeo(d). If p | 2Ng, then d/d’ is a square in Q} (since
B%d/d" =1 mod*8Ng), so wg,(d) = we,y(d'). If p| 2Ng, then p divides d if
and only if p divides d’ (since 2ord,(3) + ord,(d) = ord,(d'), and d and d" are
squarefree). Thus,

Hp\dNEoo Wp,p(d) _ Hp|d,p‘\'2NE wpp(d) @)
Hp|dNEoo wgp(d') Hp|d/,p12NE wgp(d')

Suppose p { Ng, so E has good reduction at p. Since E and E@ are
isomorphic over Qp(\/a), E@ has good reduction over Qp(\/&). If p | d, then
Qp(\/a) is the smallest extension of @, over which E@ has good reduction
(and similarly for d'). By (iii) and (v) of Proposition 2 of [R93] with e = 2, we

have _q

p

if p|dand pt2Ng, where (_ﬁl) is the Jacobi symbol.
By (1), (2), and (3), we have

we(d)  Thyapen, () (F)

)
we ) Tlywpens (5)  (F)
where f = d/ged(d,2Ng) and f' = d'/ ged(d',2Ng). Note that f/f = d/d.

Then $%f/f' =1 mod*4, so f = f' (mod 4), so _71) = (}—,1) O

N
<
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Lemma 4.4. Suppose E and B are elliptic curves over Q, B(Q) has infinite
order, P € B(Q), r is a rational function in Q(B), and P is not a zero or pole of
r. Then there exist a @) € B(Q) of infinite order and an open neighborhood U
of O in B(R) such that if k € Z and kQ € U then wg(r(P+kQ)) = wg(r(P)).

Proof. Let
V=B8R x [] B@)
pI2NE
and let g(2) = r(P + z)/r(P) € Q(B). Then ¢g(O) = 1, and g induces a
function

g:V —{poles of g} — R x H Qp,

p|2NE

which is continuous at O. Let B,(Q,) denote the subset of B(Q,) of points
that, in a minimal Weierstrass model for B, have

ord,(z-coordinate) < —2n

(see Exercise 7.4 on p. 187 of [S86]). Then the B, (Q,)’s form a basis for the
open sets around O in B(Q,), and are subgroups of finite index in B(Q,).
Since g is continuous at O, there is an open neighborhood U of O in B(R) and
for every p | 2Ng there is an n, € Z=° such that

g(U x ] Bn (@) SR" x ] (1+8NgZ,).

p|2Ng pI2NE

Let k, = [B(Qp) : By, (Qp)] and let Qo € B(Q) be a point of infinite order. Let
Q = (lemyppon, {kp})Qo € B(Q). Then @ has infinite order, and @ € B,,,(Q,)
for all p | 2Ng. Now apply Lemma 4.3 with d = r(P + kQ), d = r(P), and
g=1. O

Lemma 4.5. Suppose B is an elliptic curve over Q, @ € B(Q) is a point of
infinite order, and U is an open subset of the identity component B(R)° of

B(R). Then {k € Z : kQ € U} is infinite.

Proof. Replacing Q by 2Q, we may assume that Q € B(R)°. Note that B(R)"
is isomorphic to the unit circle in C*, so every infinite subgroup is dense. Thus
{kQ : k € Z} is dense in B(R)?, and the lemma follows. O

5 Rank >5

Theorem 5.1. Suppose a € Q — {0,1,—1} and n = a*. Suppose E,, f,, and
t, are as in Theorem 3.2. If wg, (f, o t,(u1)) = —1 for some (u1,v1) € B,(Q),
and the Parity Conjecture holds for all quadratic twists of F,, then E, has
infinitely many non-isomorphic quadratic twists of odd rank > 5 over Q.
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Proof. Let P = (uy,vq), and let r(z) = f, ot, o x(z) € Q(B,), where the
function = gives the z-coordinate of a point. By Lemmas 4.4 and 4.5 with
E = FE, and B = B,, there are ) € B,(Q) and infinitely many k € Z such
that

wg, (r(P +kQ)) = wg, (r(P)) = -1,

so by the Parity Conjecture, E P+kQ))(Q) has odd rank.
By Theorem 3.2(iii), for all but finitely many k& € Z, the rank of E,ST(PMQ)) (Q)

is at least 4. Thus for infinitely many k, the rank of E(T P+kQ))(Q) is at least 5.
As argued in the proof of Theorem 3.2, for each squarefree d € Q*, the set of
u € Q such that f, ot,(u) and d differ by a rational square is finite, since the
hyperelliptic curve f, ot,(u) = dz* has only finitely many rational solutions
(u,z). Thus there are infinitely many non-isomorphic quadratic twists of £,
of odd rank at least 5 over Q. O

Corollary 5.2. Suppose

a€{2,5,6,7,8,12,13,14,15,16, 17,18, 21, 22,
23,24, 25,26, 28, 30, 32, 33, 35, 36, 37, 39,40, 41}.

If the Parity Conjecture holds for all quadratic twists of
1—a?
a?+2

Ea2 yQZ.fL'(.%—l)(.f— )7
then E,2 has infinitely many non-isomorphic quadratic twists of odd rank > 5
over Q.

Proof. With n = a® and P, = (up, v9) € C,,(Q) as in the proof of Theorem 3.2,
and P = (u1,v1) = (1 —n,(1 —n)(2+ 77)) C,(Q), one can check that for
each of the above a’s, at least one of wg, (f; © ( 0)) and wg, (f, o t;(u1)) is
—1. The result now follows from Theorem 5.1. 0J
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