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IRREDUCIBILITY OF MODULI SPACES OF CYCLIC
UNRAMIFIED COVERS OF GENUS g CURVES

R. BIGGERS AND M. FRIED!

ABSTRACT. Let (C1,...,Cr,G) = (C,G) be an r-tuple consisting of a tran-
sitive subgroup G of S;, and r conjugacy classes Cq,...,Cr of G. We consider
the concept of the moduli space ¥(C, G) of compact Riemann surface covers
of the Riemann sphere of Nielsen class (C,G). The irreducibility of X(C,G)
is equivalent to the transitivity of a specific permutation representation of the
Hurwitz monoedromy group (§1), but there are few general tools to decide
questions about this representation. Theorem 2 gives a class of examples of
(C, G) for which X(C, G) is irreducible. As an immediate corollary this gives
an elementary proof and generalization of the irreduciblity of the moduli space
of cyclic unramified covers of genus g curves (for which Deligne and Mumford
[DM, Theorem 5.15] applied Teichmiiller theory and Dehn’s theorem). This
contrasts with the examples of (C, G) in [BFr| for which ¥ (C, G) is reducible.
These kinds of questions combined with the study of the existence of rational
subvarieties of ¥(C, G) have application to the realization of a group G as the
Galois group of a regular extension of Q(t) [Fr3, §4].

1. Introduction to the fundamental moduli spaces. The most well-known
moduli spaces of compact Riemann surfaces are the moduli spaces, denoted M,,
of compact Riemann surfaces of genus g > 1 (in the case g = 0, My can be taken
to be a point). Each point of M, correspouds to exactly one isomorphism class of
surfaces of genus g. Furthermore, M, is a complex analytic set (actually, algebraic)
with the following key property. Let ®: X — P be a family of compact Riemann
surfaces of genus g. Here that will mean that ¥ and P are compact analytic
sets, that ® is a complex analytic map, and that for each point p € P the set
{z € X | ®(z) = p} = Xp, the fiber over p, naturally inherits the structure of a
compact Riemann surface of genus g. Then the natural map,

(1.1) &P — M,,

defined by p — [X,] (the isomorphism class of X;) is complex analytic. A succinct
story, with references, on the irreductbility of My appears in [Ful.

Deligne and Mumford [DM, Theorem 5.15] prove the irreducibility of spaces
nMg, n > 1, g > 2, that generalize the classical moduli spaces, Cy, of elliptic curves
with level n structure. The irreducibility of C, follows from the identification of it
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with the quotient of the complex upper half plane by the action of

I'(n) = {(‘c’ 2) € SL(2,7)| (‘c’ 2) - ((1) (1’) mod(n)}.

In the [DM] generalization, Teichmiiller theory [W] and Dehn’s theorem allow
for a presentation of ,M, as a quotient of a ball. These heavy tools limit the
possibility of immediate generalization. This we give in a framework, considerably
more elementary than that of [DM], that follows the classical tradition of [Hu)].

For the sake of simplicity, but still allowing for fair comparison with [DM, The-
orem 5.15] we generalize (Theorem 3) the proof of the irreducibility of ,Cp,g, the
moduli space of cyclic unramified covers of degree n of genus g curves. This corol-
lary of [DM, Theorem 5.15] generalizes the irreducibility of the curves ,C, that
are classically identified with the quotient of the upper half plane by the group
{(‘c‘s) € SL(2,C) | ¢ = 0 mod(n)}. In the special case ¢ = 4 and 5, n = 2, this
is an essential ingredient of the results of [B] on the number of components of the
space of singular theta divisors of dimensions 4 and 5. Following a precise descrip-
tion of the spaces with which we shall deal, this section concludes with a paragraph
of exposition on direct and general motivation for such irreducibility results through
[Fr2 and Th], connecting them to the classical inverse Galois group problem over
Q.

Riemann’s existence theorem allows us to use combinatorial techniques in our
analysis of moduli spaces. Each compact Riemann surface X can be presented as a
cover ¢: X — P! of the projective line. Let 2,..., 2, be a list of the distinct points
of P! over which ¢ is ramified, and let m(y) = m denote the degree of ¢. For a
given surface X, it can be difficult to describe the possible values of » and m. But,
there is a one-one correspondence between the elements of the following two sets
[Fr1, §1):

(1.2) (a) the quotient of {& = (c(1),...,0(r)) € (Sm)" | (V) (2)--0(r) = 1
and (0(1),...,0(r)) = G(o) is a transitive subgroup of S,,} by the relation that
equivalences ¢ and Y"1 g -y = (y"1-0(1) - ~,...,y71 - o(r) - 7) for each ~ € Sp,;
and

(b) the quotient of {¢': X’ — P! of connected covers of degree m with branch
locusin {21,..., 2 }} by the relation that equivalences ©’: X’ — P! and @/ot: X" —
P! for ¢: X" — X' an isomorphism.

Such a correspondence, however, depends on additional data, and cannot be
regarded as functional.

Let (C1,...,C,,G) = (C,G) be an r-tuple consisting of a transitive subgroup G
of Sy, and r conjugacy classes Cy,...,C; of G. Denote the set {equivalence classes
of ¢ € (S,,)" | such that G(¢) = G and there exists 8 € S, with o(8(1)) € C;,
1 =1,...,r} by Ni(C,G), the Nielsen class of (C,G). We assume, from here on,
that (C,G) is so chosen that Ni(C, G) is nonempty.

We now list r — 1 operators Qy,...,Q,—1 that naturally act as permutations of
the elements of Ni(C, G) by a right-hand action. Indeed, Q; maps the equivalence
class of ¢ = (¢(1),...,0(r)) to the equivalence class of

(1.3) (6)Qs = (o(1),...,0(i = 1),0(i) - o(i + 1) - a(:) "1, 0(3),... ,('J'(T)) ,

1=1,...,r— 1.
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Our discussion continues with a brief review from [BFr, pp. 89-95]. Identify P™
with the quotient of the nonzero polynomials in « of degree at most r,

{Zaj-a:j¢0|aj€(:, 7=0,...,7r 5,

j=0

by the relation that equivalences Y _,a;-z* and ) ._ja-a; -z for a € C — {0}.
Consider the natural map—the Noether cover—

(1.4) o,: (P — P

that maps (21,...,2) € (P1)" to the equivalence class of []?_,(z — z;) with the
proviso that the factor x — z; is replaced by 1 if 2; = co. Let A, be the subset
of (P1)" consisting of points with two or more equal coordinates, and let D,, the
discriminant locus of the Noether cover, be the image of A, under ®,. For a® €
P™ — D,., the fundamental group, 7;(P" — D,,a%), is the quotient of the free group
generated by elements Q1,...,Q,_1 by the following list of relations [FaBul]:

(@) Qi-Q;=Q;-Qi |t1—J22, 1<4,j<r—1;
(1.5) (b) Qi Qiy1-Qi=Qiy1-Q:i Qiy1, 1<i<r—1
() Qi Qr2-(Qr-1)? Qrop---Q1=1.

From (1.5) the action given by (1.3) gives a permutation representation of
71(P" — D,,a°% on the set Ni(C,G). Let Bri,...,Br; be the distinct orbits of
this action. Covering space theory associates to each Br; an equivalence class of
unramified covers

(1.6) ¥(Br)) P =D,  i=1,..t

Define the (absolute) Hurwitz space ¥(C, G) of Ni(C, G) to be the disjoint union
of the spaces ¥(Br;),1=1,...,t. In [BFr, p. 104] (or [Fr1, §4] without the use of
(1.5)) it is shown that ¥(C, G) is a (coarse) moduli space for covers of Nielsen type
Ni(C,G) (i.e., covers p: X — P! for which the ¢ given by (1.2)(a) is in Ni(C, G)).
Then ¥(C,G) is irreducible if and only if t = 1. Denote t by Hur(C, G), the Hurwitz
number of (C,G).

Theorem 2 of this paper shows that Hur(C,G) = 1 in the following case. Let
S act on (Z/(n))™ by permutation of the coordinates. Denote the semidirect
product of S,, and (Z/(n))™ by (Z/(n))™ x® Sm = G. Indicate elements of G
by (ai1,...,am;0) = (a;0), ax € Z/(n), k = 1,...,m and 0 € S,,,. Let G be
the subgroup of G consisting of (a; ) such that oy + -+ + a,, = 0. Clearly G is
normal in G and G may be regarded as a subgroup of Sy,... Then Hur(C,G) = 1
if C; = Cy = --- = C, are the conjugacy class of (0; (1 2)), r > 4 is an even integer
and m > 3. The evenness of r assures that Ni(C, G) is nonempty. Theorem 3 is a
corollary, based on general principles, of Theorem 2.

The main theorem of [Fr1, §5] shows that under very mild group theoretic con-
ditions on (C,G), the space ¥(C, G) parametrizes a family of covers {p,: X, —
Pl | p € ¥(C,G)} where the family, the map from the family to ¥(C,G) and
¥(C, G) are all algebraic sets defined over some cyclotomic field—n the case that
Hur(C,G) = 1. Tt even gives the precise cyclotomic field K in question. Lit-
tle, however, is known in the case that Hur(C,G) exceeds 1, except that this
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can happen [BFr, §3]. If, furthermore, ¥(C, G) contains a K-rational subvariety
(even K-unirationality often suffices, as [Fr3, §4] explains), the K-rational points
of this variety parametrize a family of curves f(z,y) = 0 defined over K for which
K(z,y)/K(z) is a regular Galois extension with group G. This is all sufficiently
combinatorial to suggest a program for finding C, given G, so as to get the cyclo-
tomic field in question to be Q. Thompson [Th] has stated such in the case that
r = 3 (where ¥(C,G) is covered by (P!)® — A3, and is always Q-rational). This
continues with work of Feit [Fe], Matzat [Ma] and Walter [Wa].

Since it is unlikely that a general technique will carry the program through with
just the case r = 3, [Fr8, Theorem 4.2] states a condition that has produced non-
trivial examples with ¥(C, G) a rational variety for r > 3. It suggests a program
that adds additional conditions to C to assure the rationality (and, when appro-
priate, Q-rationality) of ¥(C,G). Even in the case that 7 = 4, there are pairs
(C,G) with ¥(C,G) nonunirational (e.g., [Fr2, Theorem 3.3] gives an example
where ¥(C,G) maps surjectively to the modular curve ,Cy; its genus exceeds o
for n suitably large, and therefore a well-known generalization of Luroth’s theorem
shows that ¥(C, G) is nonunirational). The argument of §3 of this paper, combined
with [HM], shows that for (C,G) given in Theorem 2 with r suitably large, inves-
tigation of ¥(C, G) is not amenable to any present day techniques that generalize
the use of unirationality.

2. The group theory of moduli spaces of cyclic covers. Let o: X — P!
be a cover of degree m for which there are at least m — 1 points of X over each
point of P1. If ¢ corresponds to this cover by (1.2)(a), then o(4) is a transposition,
t = 1,...,7. Such a cover is called simple. We are interested in the following
situation. Let

(2.1) x' % x & p!

be a sequence of covers of compact (connected) Riemann surfaces with these prop-
erties: the genus of X is g, ¢ is a simple cover of degree m; and 1) is an unramified
Galois cover with group Z/(n). Our first theorem computes the Nielsen class of the
cover po: X' — PL,

Let G be the subgroup of G = (Z/(n))™ x® S,,, given in §1. The Galois closure
of po: X' — P! is a Galois cover $: X — P! of smallest possible degree such that
there exists a sequence of covers

(2.2) X3 x e pt

with (p o)) o1 = &. Up to equivalence the Galois closure is unique.

THEOREM 1. Suppose that m > 3 wn the above notation. Then the Galois
group of the Galois closure of p o ¥: X' — P! given by (2.1) 1s 1somorphic to
G. If a correspondence gwen by (1.2) 1s set up, then this cover corresponds to
o' = (o(1),...,0(r)") where

(1) =10,...,0, « 0,...,0, —a, 0,...,0;0(%)

1
Jth pos. kth pos.
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with (i) = (7 k) € Sm and « € Z/(n) (J,k and o dependent on 1), 1 =1,...,r,
(1) ---o(r) =1 and G(6') = G. In particular, r > 2m, and the cover is in the
Nielsen class Ni(C, G) with C; = C3 = --- = C,, where C; s the conjugacy class
of {0; (1 2)}.

PROOF. The second of the three parts of the proof includes some notation for
manipulation within the group G to which we will refer later.

PART A. The Galois group of $: X — P!. There is a notational simplifica-
tion if we compute using the function fields of the Riemann surfaces. Let C(X)
(resp., C(X"), C(X)) be the field of meromorphic functions on X (resp., X', X).
Also, let C(P') = C(2) for some indeterminate 2. Then (the primitive element
theorem), C(X) = C(z,z) for some z € C(X). Let z = zy,...,z,, be the
conjugates of z over C(z). Since C(X’)/C(X) is a cyclic extension with group
Z/(n), we may choose y = y; € C(X) so that C(X’) = C(z,z1,y.’™). Thus,
C(X) = C(z, zl,yi/", . ,zm,y,l,{") with y1, ..., ym the conjugates of y; over C(z).

Let ¢, be a primitive nth root of 1. The conjugates of yi/ ™ over C(z) are

exactly ¢ - yjl-/", j=1,...,m, a € Z/(n). Let 7 € G(C(X)/C(z)). Associate

to 7 the element F(7) € G by the following formula: if 7 maps (z;,¢2 - yJI-/ ™) to
(2,68 - w/™), then

(2.3) Fir)=}-, B-a, ...;0 where o(j) =k, 7=1,...,m.
T

Jth pos.

Check that F is a group homomorphism that embeds G(C(X)/C(2)) into G. Let
D(p) be the set of branch points of the cover p: X — P1.

The correspondence of (1.2) arises by choosing a suitable set Ly,..., L, of closed
paths on P! — D(y), all based at zg € P! — D(yp), so that the homotopy classes
of these paths generate the fundamental group 71 (P! — D(p), 2). Then the cover
©: X — P1 corresponds to (6(1),...,0(r)), where o (%) gives the effect of analytically
continuing the functions z,...,,, around the path £;. In more detail, express
Z1,..., T, as power series in a neighborhood of z. Then analytically continue each
around £; to get a permutation, (z), of these power series expressions, ¢ = 1,...,r.

Since X’ — X is unramified, the paths Ly, ..., L, suffice to compute ¢’ for the
cover p ot: X’ — P!, and o(3)' is of the same order as o(1), 1 = 1,...,r. Because
©: X — P! is a simple branched cover, o(i) = (a1,...,am;0(7)) is of order 2, and
as an element in Sy, .,, it consists of n disjoint 2-cycles. For example, if o(7) = (5 k),
then a suitable notation would have

ol = (o n+t1k ntu)(f nt2k ntu) o ((G+1)nkntu)

where uj,...,u, is a permutation of 1,2,...,n that is determined by u;, ¢ =
1,...,r.

PART B. Notation within the group G. In the notation of Part A we can write
o(t) as (a1,...,0m; (7 k)) with o =ug —1 =0, ax = —aand oy =0 for | # 7, k.
For future computations designate this element by (oyi; (7 k)). More generally,
write (ak;0) for o any element of S, where a;i denotes the first part of o (¢)’.

Let pr: G — Sy, denote the natural projection onto Sy,. Thus G(C(X)/C(P)) =
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G(g’) is a subgroup H of G with the following properties:

(2.4) (a) H is generated by elements of the form (ax; (5 k));
(b) pr(H) = G(o); and
() HN{(Z/(n))™ x 1) projects surjectively onto any factor of
(Z/(n))™.

Property (2.4)(a) implies that H is contained in G. Since G(o) is a transi-
tive subgroup of S,, generated by 2-cycles, it is well known that G(g) = S,.
The conclusion that H = G follows easily if we show that H contains (a;2;1) for
each a € Z/(n). Indeed, this gives (aix;1) € H, k = 2,...,m, and therefore
(—ag — - — am,qz,...,am;1) € H for each ay,...,a, € Z/(n). Suppose that
7= (B1,...,Bm;0) € G. Explicitly compute the conjugate of (a,x; (j k)) by this
element as

T (oG (7 k) <77 = (B, o, By 0) - (ks (5 k) - (—Boays -+ » —Bo(myi o)
= ((a + Bo(s) = Bok))a(5)o(k); (0(4) a(k)))-

PART C. Conclusion of the proof. Consider all conjugates of elements of {a(1)’,
..,a(r)'} (by elements of H) to elements of the form (a;2; (1 2)). Since G(e) = Sy,
(2.5) gives at least one for each o(2)’, ¢ = 1,...,r. Denote the collection of first
coordinates so obtained by A. From (af,; (1 2)) - (e12;(1 2)) = ((a' — @)12;1) and
(2.4)(c) deduce that H contains {aj2;1) for each o € Z/(n). This concludes the
proof that G(¢') = G.

We are done if we show that the conjugacy class of (a;; (¢ j)) contains (0; (1 2)).
This uses that m > 3. Choose o € S, so that o(7) = 1, o(k) = 2 and choose
B1=—a B=0,8=aand 0=y =--- = (,. Now apply (2.5). O

Identify Z/n with the group generated by (1 2---n) in S,,. This identification
is compatible with the Galois theory of Theorem 1. Then the normalizer of G in
(Sn)™ X® Sy, is (Np)™ X* S, where N,, is the normalizer of ((1 2---n)) in Sp,.
Clearly N, is the semidirect product Z/(n) X (Z(n))* of Z/(n) and the invertible
elements of Z/(n). These groups too, may be regarded as subgroups of Sy, ..

DEFINITION 1. Call a sequence of the type given by (2.1) a simple by cyclic
sequence of type (m,r,n).

EXAMPLE 1. The case m = 2. This case was excluded by Theorem 1. The proof,
up to the point of showing that the Galois group is G, still holds. But, if n is even,
then an application of (2.5) shows that (012; (1 2)) and (112;(1 2)) = (1,-1;(1 2))
are in distinct conjugacy classes of G. 0O

3. Irreducibility of spaces of simple by cyclic sequences. From Theorem
1 we may identify the space of simple by cyclic sequences of type (m,r,n), m > 3,
with the covers v': X’ — P! of Nielsen type Ni(C, G), where deg(y') = m-n and G
and C are given in the statement of the theorem. Here is a typical representative
of a class in Ni(C, G):

(3.1) o' =((0;(13)),(0;(13)),...,(0; (1 m)), (05 (1 m)); (112; (1 2)), (112; (1 2)),
(0;(12)),...,(05(1 2)),(0;(1 2)), (0; (1 2))).

In words, the first 2(m — 2) entries generate 0 X S,,_1, where S,,,_1 is the subgroup
of S, that fixes 2; the next two entries are both (115;12)) = (1,-1,0,...,0;(1 2));
and the final » — 2- (m — 1) entries are repetitions of (0; (1 2)).
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From §1 the irreducibility of the space of simple by cyclic sequences of type
(m,r,n) or, equivalently, of the space ¥(C, G) follows if for " € Ni(C, G) we show
the existence of 7 € (N,)™ x® S,, (end of §2) and Q € m((P" — D, a®) such that

(3.2) (r-e" - 7H)Q =¢".

The special case with n = 1 has been a part of many papers [Fu], and, in the main,
it goes back to Clebsch [C|. We state it here, but, for completeness, include a brief
proof in an appendix. Note again that r is of necessity even in the next result so
that Ni(B, S,,,) is nonempty.

PROPOSITION 1. The space ¥(B, Sm) is irreducible, where B = (By,...,B;)
and By = --- = B, with By the conjugacy class of (1 2) in Sp,.

Following the next three lemmas we state the main theorem.
LEMMA 1. Denote the element
0,...,0, (v,u), 0,...,0;0)
T

kth pos.

with 0 € Sy, and (v,u) € (Z/(n)) x*Z/(n)* by ((v,u)k;0). By generalization of
(2.5), (v, u)k; 1) - (g5 (4 9)) - (v, u)is 1)~ 4s equal to the following expression:
(3.3) (a) ((u-o +2)i53 (0 7)) of k=1

(b) (u™' -’ —u™"-0)i5 (1 5)) Sk =7J; or

(c) (a3 (£ 9)) b #1.7.

PROOF. This follows from the natural action of N,, on Z/(n) (as at the end of
82, (v,u) € N, maps o' € Z/(n) tou-o' +v). O

LEMMA 2. Leto) = (c&’z), (12)eG,i=1,2,...,r". Assume thato}---o!

Op =
(0;1). Then 31 (—1)*-¢®) = 0. Assume further that n =p-ni, where pis a
prime, and if nq > 1, then

(3.4) M =c® =1mod(ny) and ¥ =0mod(ny), 7=3,...,7

Then there ezists Q € w1 (P —D,s,a%) such that (6')Q = ¢ with ol = (d(fg; (12)),
1=1,...,7, with these properties:
(3.5) (a) dV =d® mod(n) and d¥) =0 mod(n), j =3,...,7, if
n1 > 1; and
(b) there exists t > 0 such that dV) = d? = ... = d® mod(p)
and d9) =0 mod(p), 7 =t+1,...,7, if ny = 1.

PROOF. For u > 1 we first compute the effect of (Q,)™ on ¢’. The uth and
(u + 1)th entries of (¢)Q,, are, respectively, ((2 - ¢ — ¢(*+1),:(1 2)) and
(c(l’é); (12)); the uth and (u+1)th entries of (¢/)Q2 are ((3-¢(*) —2-¢(#+1))5: (1 2))
and ((2-¢® —c(#+1))15:(1 2)),...; and the uth and (u+ 1)th entries of (¢')(Q,)™
are
((m (™ —c®¥) 4 ¢()15;(1 2)) and

(3-6) (((m _ 1) . (c(u) _ c(u—{—l)) + c(u))u;(l 2))
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Use (c) to denote the (additive) subgroup of 7/(n) generated by c. After an
application of an element Q' of m; (P" — D,,,a%) to o’ we may assume that there
is an integer ¢ for which ¢¥) = 0 mod(n) for j > t + 1. Furthermore, assume that
Q' has been chosen so that t is as small as possible. In particular, ¢(V, ... ¢(®)
are not congruent to 0 mod(n). From this point on we will work with elements of
7 (P — D,/,a%) that affect only the coordinate entries 1,...,t.

First assume that n; > 1. Suppose that ¢ > 2. Then apply (3.6) to the case
u = 2. Since ¢(?) —¢(3) is a unit mod(n), we may choose m so that m-(c(*) —c(¥+1)) 4
¢t} = 0 mod(n). Furthermore, there exists an element Q" € 7 (P" — D,,a®) that
moves only the coordinate entries 2,...,t, and which moves the second coordinate
entry, otherwise unchanged, to the tth coordinate. Thus, the last r’—t+1 coordinate
entries of (Q2)™ o Q" applied to ¢’ are of the form (0;(1 2)), contrary to our
assumption about ¢. This concludes the proof of (3.5)(a) under the assumption
that ny > 1. Now assume that n; = 1 and that p is a prime.

Assume that there exists ¢ < ¢ such that d®) # d6+1D mod(p). Then d® —dG+1)
is a unit mod(p). The same argument as in the preceding paragraph then applies
with ¢ = u. This gives (3.5)(b) and the lemma. 0O

LEMMA 3 [BFr, LEMMA 3.8]. Let 0 € (Sy)" with G(o) transitive and
o(1)---0(r') = 1. Let 7 € G(a). Then there exists Q € w1 (P™ — D,/,a%) such that
™1.0.7=(0)Q.

THEOREM 2. Let Ni(C,G) be the Nielsen class which contains the equivalence
class represented by ¢’ of (3.1). Then Hur(C,G) = 1. In particular, the space of
equivalence classes of simple by cyclic sequences of type (m,r,n), with even r > 2m
and m > 3, 1s trreducible.

PROOF. As discussed above, we must establish (3.2). From Proposition 1, there
exist Q' € m1(P" — D,,a%) and 7; € 0 X S,,, such that
(37 (0" 7)Q = ((ofF5(13)), (8 (13)),..., (@l (L m))(B; (1 m));
(25 (12, (T (1 2))),
Write out that the product of the entries of (3.7) is (0,1). The first coordinate
gives these expressions in order:
(38) (a) a(3) — ,3(3) + a(4) — ,3(4) + - 4+ a(m) — ,B('m)
+ 3D (21)31 . 40) = 0 mod(n);
(b) 25272 (=1)7 - ) = 0 mod(n); and
(c) a®) — g%) = 0 mod(n), k=3,...,m.
With no loss therefore assume that

(39) 0" = ((a{¥;(13)),(@;(13)),...,({m; (1 m), (aip); (1 m));
(VY5 (1 2), ..., (EFD (1 2)))
with Y (1) -4 =0 mod(n).

For simplicity of notation, denote r —2- (m —2) by ' throughout the remainder.
The rest of the proof divides into four parts.
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PART A. Conjugation by elements of G. Apply Lemma 1 in the case that
(v, )k = (—a®,0), which we denote just by (—al¥)). Therefore if we conjugate
(3.9) by the product of ((—a{),;1), j = 3,...,m, and by ((=~(")4: 1), we may
assume that ¢ is

(3.10)  ((0;(1 3)), (0;(1 3)),..-,(0; (1 m)), (0; (L m)); ({35 (1 2)), ...,
(45 V5 (12)),(0;(12)), with 4™ =@ 4. 4 (—1)7 4D =0
mod(n).

Also, the conditions of (2.4) imply that 4(1),...,~("'=1) generate Z/(n). For the
moment we assume that the conclusion of the theorem holds if n is a prime.

PART B. Induction on n. Assume that n is not a prime and write n as p- n;
with n; > 1. By the induction assumption, the conclusion of the theorem holds
for ny. Reduce the entries of (3. 10) mod(n;) to conclude that there exists Q©®) €
m(P" — D,,a°) such that the last ' entries of Q®® applied to 6" (given by (3.10))
satisfy hypothesis (3.4). Thus Lemma 2 gives an element of m1(P" — D,,a°) that
acts only on the last r’ coordinates of (6”)Q(® to give ¢’, except for the possibility
that the (2m —4)+ 1 and (2m —4) + 2 entries are both (c; (1 2)). In this case apply
Lemma 1 by conjugating (¢”,@3) by ((0,c=1)2;1). This concludes the theorem if
n is not a prime.

PART C. The case that n = p 1s a prime. Again apply Lemma 2, but this time
under the assumption that n; = 1. Thus, according to (3.5)(b), we may assume
that
(3.11)

D=7 =...=~4® mod(p) and AP =0mod(p), j=t+1,...,7"

Note that since v(1) — @ 4 ... 4 (=1}t~ . 4 = 0 mod(p), t must be even. Let
m/ =2-(m—2). Apply Qm: © Qm+10--+ 0 Qmi4s to (3.10) to get
(3.12)(a)

(e s (05(1 m)), (=S5 (2 m)), ..., (—Ems (2 m)), (05 (1 m)), (05 (1 2)),...),

where the first (0; (1 m)) is in the m’ — 1 position and the second is in the m’ + ¢

position: then apply conjugation by (—75,{); 1) (as in the notation of Part A) to get
(3.12)(b)

G (AR5 (1 m)), (0,2 m)), .., (05(2 m)), ({2 (1 m)), (0; (1 2)),...);

and finally apply Q) € 7;(P™ — D,, a®) that moves the two coordinate entries of
the form ('78,)1, (1m)) out to the positions r — 1 and r and leaves all other entries of
the form (0; (¢ 5)). As in Part B, Lemma 1 allows us to assume ~(!) = 1. Lemma
3 allows us to apply Q® € 7;(P" — D,,a®) to achieve the effect of conjugation by
(2 m). Therefore assume that ¢’ has these properties:

(3.13) (a) o(3)" is of the form (0; (5 k)) (with j and k dependent on 7),
t=1,...,7r— 2
(b) the second entries in (1)”,...,0(r — 2)" generate S,,; and
(¢) o(r — 1) = o(r)" = (112; (1 2)), and therefore o(1)" - - -
o(r—2)"=(0;1).
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PART D. Application of Proposition 1. Apply Proposition 1 to o(1)”,...,
o(r —2)" to find QO cm (P2 D,_1,a% and v € S, such that

(3.14)
(v (o(1)",...,0(r —2)") - 4)Q®
= (031 3)), (05(13)),...., (05(1 m)), (03 (1 m), (05 (1 2),..., (05 (1 2))

Indeed, Lemma 3 allows us to assume that v = 1. With the natural interpretation
of Q® in 7, (P” — D,,a% it is now an easy matter to find Q¥ and apply it
to (6”)Q®), with ¢” given by (3.13), to get ¢’. This concludes the proof of the
theorem. 0O

Let ,Cp,g be the moduli space of cyclic unramified covers of genus g curves as
discussed in §1. There is a natural map from the space ¥(C,G) of simple by cyclic
sequences of type (m,r,n): the point p € ¥(C,G) represented by the sequence

X' % X 5 plof (2.1) goes to the point of ,Cp ¢ that is represented by the cover

X’ % X. From the moduli property this map is complex analytic. It is an old
argument, repeated, say, in [Frl, §1|, that if m > 2g — 1, every Riemann surface of
genus g can be presented as a simple cover of P! of degree m. Thus, in this case,
the map from ¥(C, G) to ,Cp g is surjective. Connectness of the manifold ¥(C, G)
(and of the complement in it of each finite type analytic subset of codimension 1)
from Theorem 2 therefore gives the following:

THEOREM 3. The modult space ,Cr g of cyclic unramified covers of genus g
curves s irreducible.

For a given positive integer m, m(g) = [(¢ + 3)/2] is the smallest integer m
for which every curve X of genus g has a covering map ¢: X — P! of degree m
[KL]. Actually, if m is suitably large compared to g, then the technique of Theorem
3 shows that the irreducibility of the space ¥(C,G) follows from [DM, Theorem
5.15]. But Theorem 3 does not give Theorem 2 in the case that m < [(g + 3)/2].

Appendix—Proof of Proposition 1. As in the proof of Theorem 2, the proof
of Proposition 1 amounts to showing that if ¢’ € Ni(B, S,,) (with 7 even and of
necessity > 2 - (m — 1)), then there exists 7 € S,,, and Q € m1(P” — D,,a°) such
that

(A1) (r-o' -7 HQ=0=(1m),(1m),Im-1),1m-1),...,
(13),(13),(12),...,(1 2)).

Our choice of ¢ is for the sake of efficiency of proof, rather than for it to match the
choices in Theorem 2. Furthermore, Lemma 3 allows us to take 7 = 1 and even to
conjugate by an element of S,,, whenever it is desirable.

First note that we can find Q) € 7, (P" — D,, a0 so that (¢/)Q) = ((1 51),
(1 72),...,(1 g),0(t +1)",...,0(r)") = &”, where none of o(t + 1)”,...,0(r)"
contain the integer 1. If the integers j1,..., 7 are all distinct, then the product of
the first ¢ coordinate entries of (¢/)Q(") is (1 7, j2 - - - ;). It is thus clearly impossible
for the products of all coordinate entries (¢/)QV) to be 1.
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Without loss we may therefore move the two identical cycles containing 1 to-
gether at the beginning to assume that j; = j2. There are two possibilities for the
group ¥ generated by o(3)",...,o(r)":

(A.2) (a) ¥ = Sp; or
(b) ¥ is the subgroup of S,, that fixes either 1 or j.

In case (A.2)(a) we assume that 7; = 2. Transfer the first two coordinate entries,
unchanged, down to the right-hand side to assume that

o = (a(1)",...,0(r — 2)",(12),(1 2)).

(
This is now set up for an induction on r: find Q?) € 7, (P"~2— D,_5,a°) such that
(a(1)",...,0(r —2))Q?) is (A.1) with two fewer (1 2) terms on the right-hand
side. With an interpretation of Q(?) € my(P" — D,, a°) (as in Part D of the proof
of Theorem 2) we are done if (A.2)(a) holds.

If (A.2)(b) holds, assume with no loss that j; = m and that ¥ acts as Spm-1
on{1,2,....,m—1}:¢" = ((1 m),(1 m),a(3)”,...,5(r)"). Again we are set up for
an induction on r (with m changed to m — 1): find Q® & 7, (P™—2 — D,_4,a")
such that (¢(3)",...,0(r)")Q® is (A.1) with the first two terms on the left side
missing. Conclude as in case (A.1)(a).

REFERENCES

[B] A. Beauville, Prym varieties and Schottky’s Problem, Invent. Math. 41 (1977), 149-196.

[BFr] R. Biggers and M. Fried, Relations between moduli spaces of covers of P! and represen-
tations of the Hurwitz monodromy group, J. Reine Angew. Math. 335 (1982), 87-121.

[C] A. Clebsch, Zir Theorie der Riemann’schen Fliche, Math. Ann. 6 (1872), 216-230.

[DM] P. Deligne and D. Mumford, The irreductbility of the space of curves of given genus,
Inst. Hautes Etudes Sci. Publ. Math. No. 36 (1967), 75-100.

[FaBu| E. Fadell and J. Buskirk, The braid groups of E? and S%, Duke Math. J. 29 (1962),
243-257.

[Fe] W. Feit and P. Fong, Rational rigidity of G2(p) for any prime p > 5, Proc. Rutgers Group
Theory 1983-84, edited by D. Gorenstein, R. Lyons, M. O’Nan, C. Sims, M. Aschbacher and
W. Feit, Cambridge Univ. Press, 1984, pp. 323-326.

[Fr1] M. Fried, Fields of definition of function fields and Hurwitz families and groups as
Galois groups over Q, Comm. Algebra 5 (1977), 17-86.

[Fr2] , Galois groups and complex multiplication, Trans. Amer. Math. Soc. 235 (1978),
141-162.
[Fr3] , On reduction of the inverse Galois group problem to simple groups, Proc. Rut-

gers Group Theory 1983-84, edited by D. Gorenstein, R. Lyons, M. O’Nan, C. Sims, M.
Aschbacher and W. Feit, Cambridge Univ. Press, 1984, pp. 289-301.

[Fu] W. Fulton, On the irreducibility of the moduli space of curves, Appendix to the paper of
Harris and Mumford, Invent. Math. 67 (1982), 87-88.

[HM] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves,
Invent. Math. 87 (1982), 23-86.

[Hu] A. Hurwitz, Uber Riemann’sche Flichen mit gegebenen Verzweigungspunkten, Math.
Ann. 39 (1891), 1-61.

[KL] S. Kleiman and D. Laksov, Another proof of the ezistence of special divisors, Acta Math.
132 (1974), 163-175.

[Ma] B. H. Matzat, Realisierung Endlicher Gruppen als Galoisgruppen, Manuscripta Math. 51
(1985), 253-265.



70 R. BIGGERS AND M. FRIED

[Th] J. G. Thompson, Some finste groups which appear as Gal(L/K) where K C Q(um), J.
Algebra 89 (1984), 437-499.

[W] A. Weil, Modules des surfaces de Riemann, Sém. Bourbaki, 168, 1957-58.

[Wa] J. Walter, Classical groups as Galois groups, Proc. Rutgers Group Theory 1983-84, edited
by D. Gorenstein, R. Lyons, M. O'Nan, C. Sims, M. Aschbacher and W. Feit, Cambridge
Univ. Press, 1984.

DEPARTMENT OF MATHEMATICS, CLARK COLLEGE, ATLANTA, GEORGIA 30314

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CALIFORNIA
92717



