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1. IPi = €U {=*} where

Abstract. Denote the Riemann sphere by P
z 1s a complex variable uniformizing the plane. The absolute

Galois group, G(&(z)) , of the algebraic closure of @(z) is profree
on a set of éenerators that are in one-one qorfespondence with the

elements of @ (Proposition 1.3).

We present a system of paths on IPl which allows an un-

ambiguous assignation of branch cycles (in Sn) to each degree n
extension L/®(z) (§1). Suppose that L is the quotient field of
@z, w]l/(£f(z,w)) with f an irreducible polynomial. We give an
algorithm for computing these branch cycles for L (§2). For special
polynomials f - with emphasis on two practical examples - we analyze

a computer program for computing these branch cycles (§3). In [Pr,3] we

compare this with computation of the moduli-invariant called the Eurwitz

class of f - a gquantity that does depend on a choice of paths.

§1. Introduction and bouquet generators.

For ény field ¥ denote the algebraic closure of F by F .
let z' € @ (resp., z'=«) and let @{{z-2z'}} (resp., @{{1/z}})

be the field of formal Laurent series in z-2z' (resp., 1/z)

* : .
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1.2

Identify the respective algebraic closures of @{{z-z'}] and @{{1/z}}.

with U @l{{z-2z")"®}} and U @{{z!/®}} [sk;p.83]
e=1 ] ) e=1 ]
Let L/@(z) be a field extension of degree n = (L:@(2)]
Then the extension L @@{{z-2'}} is a.ksum of fields L, ®---®L,
where L, = Q{{(z-—z')llei(z')}} and I e;(z') =n [SK;p.86]
i 3 jo1
Excluding a finite number of values of z' the integers ei(z’)

are all 1,1i =1,---k . The exceptional values of z' , denoted

d(L/@(z)) are called the branch points of the extension. Let f

be an irreducible polynomial in @[z,w] , monic in w . In the
case that L is the quotient field of @lz,w]/(f(z,w)) , the finite

values of d(L/a(z)) are contained in the set d(f) consisting of

the values z' for which this holds:

df . .
(1.1) 'Sﬁlz=z' and f(z',w) have a common factor in w
. oos of .
If z' satisfies (1.1) and 3z g=z" has no common factor with

f(z',w) - that is, z' 1is not the z-coordinate of a singular point

of f(z,w) = 0 - then 2z' certainly belongs to d(L/@(z)) [SK;p.97j.
The branch cycles of §2 give an ultimate test for distinguishing

between d(f) and d(L/Q(z)) . The polynomial f also provides a

test for whether « is in d(L/@(z)) . With m = deg,(£(z,w)) ,
let g(z,w) = zm-f(l/z,w) . It may not be monic. Let go(z) be the
coefficient of w" . Rewrite (go(z))n_l-g(z,w) as gl(z,go(z)-w)

whére g1(z,w) is monic in w . Now apply the test of (1.1) to

gl(z,w) with z' =0 . If « ¢ d(L/@(z)) then (1.1) holds and if,

Y _
in addition, 1IZ_ # 0 , then = ¢ d(L/@(z))



Ex.1.1. Take f£f(z,w) = h(w)-z with h e @[w] a polynomial of
degree n . Then D(f) consists of the values h(w') where w'
runs over the zeros of ;—W(h(w)) . Identify L , the quotient field

of @[z,w]/(h(w)-2) , with &(w) . Then the finite values of

d(Q(w)/@(z)) are exactly the values of D(f) . 1In addition, 1let
n-1 .
g(z,w) = z-(h(w)-1/2z) = z-h(w)-1 . If h(w)=wn+ z a..'wl , then
, ' j=o 1
n-1 n, B2l on-1-i iy n-1
zZ -g(z,w) = gl(z,z-w) where gl(z,w) =w +( X a.'z ‘W) -2z
i=o

The test above for =z'=0 indicates that <« ¢ d(L/Q(z)) . =

Let =z(1),z(2), -+ be an ordering of the elements of @U {=]}
For simplicity assume that =z(l) = « . Denote the normal subfield

of Q@(z) consisting of the composite of field extensions L/@(z)

with d(L/@(z)) € {z(1),---,2(r)} = {g .} by N . As above,
]P1 = U {=} =IP1 . We choose B(gr) = max (1+Re(z(i))) as basepoint
2 2<i<r

for the fundamental group rrl(lPl - {gr},B(zr)) . Denote this group

by ngr) and its profinite completion by G(r) Riemann's Existence

theorem states that G(r) is topologically isomorphic to the Galois group

Ir -
G(N( )/Q(z)) . Indeed, for o ¢ G(r) and o € N(r) the action of ¢ on « goes as
follows. Let Na be the smallest (finite Galois extension of @Q(z) containing « .

There exists T ¢ nl(Pl— {gr} , B(Zir)) for which+ Tsdde(N(r)/Na) . let P

be a closed path in BT

- {5r} based at B(z,) for which (p] ,
the homotopy class of P , is T . The monodromy theorem asserts
that the function «o' obtained from the analytic continuation of
the Puiseux expansion for o at B(gr) depends only on

[P] = 7 mod G(N(r)/Na) . The function «' is the result of the
action of ¢ on a [Sp;Chap. 2]. Note in particular that this

calculation depends on the base point B(Er)



1.4

The goal of the remainder of this subsection is to choose
explicit paths whose homotopy classes generate anPl-{gr},B(gr))
freely ’in such a way  that the corresponding paths for
“1GP1"{ES} ’B(Es)) ,$ >r , give a well defined map @S’rnér?ﬂngs).
In addition the profinite limit over all r induces a profinite
limit of {G(r)}r=l,2,--- that is naturally isomorphic to
G(®(z)/Q(z)) (i.e., the absolute Galois group G(@(z))) that shows
it to be profree on generators {c(z')}Z,GQ

We use the lexicographical order on C : z

~1 2
2) and if Re(zl) = Re(zz) , then Im(zl) < Im(z

< z if

Re(z,) < Re(z 2)
Rename the elements of {z(2),---,z(r)} as {y(2),...-,y(r)} so that
y(2) <::-< y(r) . We use both names for a giVen point. Refer to

Fig. 1.

Choose an integer £ > 7: 2n/4 <1 . The wertical lines in
Fig. 1 give a guide for positioning the points a(2),°"",a(r) : a(i)
lies in the region between the vertical line for y(i) and the
vertical line for y(i+k+1) , the next point not on the vertical
line for y(i)

Take y; to be the following pathﬂ-Sgl)-bgz)-Qi-(§§2))’l-(6§1))'1
Ggl) ~is the straight 1line from B(Er) to . a(i) ; b(i) "is the
point ofzintersgction"of the -boundary of a disc with center at. y(i?) and:the:line
from a(i) to ‘y(i) ; 6§2) is the straight line from a(i) to b(i) ; and Qi
is the clockwise path around an equalateral J4-gon with center y(i)

and starting at b(i) , i = 2,++-,r . Two further constraints:

(1.2) a) Excluding their initial points, Yo, " ,Y, are non-inter-

secting; and



b(3)

y(2) ¢
b(2)
a(2)" a(3) &—— a(i)" Re(z) = w'
a(2)
Fig. 1. 7-gon sample bouquet.
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b) 6;1),---,6§1) emanate in clockwise order from B(gr)
The next lemma follows from the technique of proof of [Ma;p.118].

LEMMA 1.2. The homotopy classes [yzj,---,[yr] generate

HIGPI-{gr},B(gr)) freely. Let Db(x) be a point on the real axis

to the right of B(gr) . Assume that ?w , the clockwise boundary of

a disc on the Riemann sphere centered at < and starting at b(=)

contains none of the points y(2),-+¢,y(r) . Let §, be the line
segment from B(gr) to b(«) . Then Yo'Yo ' Yp is homotopic on
pl - {gr} to the constant path where y_ = 6@-?@-(6@)_1 Finally,
with the coamstraints above, [Yﬁ],"',[Yr] do not depend on the

choice of pairs (a(2),b(2)), --,(a(r),b(r))

We refer to Y; as a loop around yv(i) and to the collection

Yo" "»Y, @as a sample bouquet (for =z ) based at B(zr) . From now
Nr L d

on take 4 = 7 , so that the prefix 4-gon will be unnecessary. In
addition, our concern is with homotopy classes of paths in 'Pl-{gr}
Thus the restrictions of (1.2) are excessive in practice. Here is a

\
prescription for choosing satisfactory a's and b's without condition

(1.2)a).
Let w' = min{0,Im(y(2)),---,Im(y(r))} -1 and let
a(i)'= (Re(y(i)) + Re(y(i+k+1)))/2 + J-T'w' ,i=2,:--,r-1
(as in Fig. 1). Take a(r)' = B(gr) . Let the smaller of 1 and
min {ly(j)-—y(i)[/z} be b' . Finally, take b(i)' to be the
1<i<j<r

point along the line segment from a(i)' to y(i) that is a distance



of b' from y(i),i=2,---,r

Use (a(i)' ,b(i)') to form a loop y(gr)i around y(i) - just

as we did with (a(i),b(i)),1i = 2,---,r - with 4 = 7 . Call the
ordered collection (Y(gr)z,---,y(gr)r) the tied bouquet associated
to Z. We use the tied bouquet from this point to give representatives

of the paths that appear in Lemma 1.2. Let F(r-1) denote the free

group on generators +,S From Lemma 1.2 it is isomorphic to

S2’-.

1 by the map that sends [y(z,);l to s,,i=2,---,r

T

Iy

Consider any real point =z' to the right of B(gr) along the
real axis. Compare the groups ﬂlﬂpl-{gr} ,B(gr)) and nlapl-—{gr},z')
; (1) (2) =z ., .(2)y-1 (1) -1 :
as follows. Write Y(Er)i as 61 6i Yi (6i ) -(6i ) relative
to (a(i)' ,b(i)') in the notation above. Then replace 6§1) by

5: (1)
1

, the straight line segment from z' to a(i)' , to obtain a

oo s (1) (2) 2 (2)\-1 o, (1)1 L
path Yi éi 6i Yi (6i ) (6i ) , 1 1, ,r . Take A
to be the path along the real line from B(ET) to z' . The map that takes a closed

path P based at B(gr) to the path (h)-l-Pah based at z' induces an isomorphism

v(B(z,),2") ﬂlﬂpl-{gr},ﬁ(gr))l* ﬂlﬂpl-{gr},z') . In addition,
¥(B(z.),z') takes [v(z.);] to [vil,i=1,---,r
Now we add z(r+1) to {gr} . Form B8(z,.,;) and identify

ﬂlapl"{Er}, B(Er+1)) with nlﬂpl-{gr},ﬁ(gr)) using W(B(Er)’s(gr+1))'

Let x(gr+1) be the tied bouquet corresponding to Zri1 The inclusion
1 . 1 .
of P~ - {%r+1} in P~ - Lgr} induces a natural map
(r+1) _ 1 1
(1~3) nl - ﬂl(]p - {'%r*'l}’s('%r"'l));—’ nl(]P - {Er},5(5r+1))
that takes [Y(%r+1)i] to [Yi] ,i=1,""-,r , and [Y(zr+l)r+1] to the identity.
) . -1
Define Ppil 1 ﬂ§r+1)‘4 ﬂir) to be the composition of (1.3) and ¢(B(gT+1),B(ET)) .

Then take
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CPS,S—lOcPs—l,s—ZO' . -ocpr_l_l’r for s>r to be Since

cPs,r cPt,socPs,r:cPt

for t > s >r , we may form the projective limit of the gréups

{ﬂir)}r=1,2,'°° to obtain a group isomorphic to F(«) : the free
group on generators 32,33,"' . In addition, this induces a projective
limit of the groups {G(r)}r=2’3“’= (the respective profinite comple-

tions of {nir)}r=2 3 ... ). From it conclude this folklore statement:

PROPOSITION 1.3. The absolute Galois group, G(@(z)) , is profree

on a set of generators that are in one-one correspondence with the

elements of '@ . The element Sp*Sgttr = S, is the inverse of a

natural inertial group generator for a place of @(z) 1lying over

7 = @



2.1

§2. Branch cycle computation.

Here we no longer assume that the elements of Q' are ordered.
Rather-, take z(1l),---,z(r) to be the points of d(f) U {«} (i.e.,
z(l) =®) where f e¢ @Qlz,w] is an irreducible polynomial, monic and
of degree n in w

For each z' ¢ © - d(f) there exist n distinct power series

in z -z' , w(z',v;z-2z2' v=1,"",n : each convergent in the open
? b ? ?

disc D(z') of radius r(z') min {|z -z'|} , and each giving a

z''ed(f)
point (z,w(z',v;z-2')) on f(z,w) = 0 in the ring &(D(z')) of
functions holomorphic in D(z') . Recall the parameters (a(i)',b(i)')

for the ith loop of the tied bouquet x(gr) (§1). Refer to Fig. 2.

o0 2

a(i)' °*

Fig. 2. Data for the ith branch cycle.




Select a, to be the point along the line segment from B(Er)

to a(i)' - whose distance from B(Er) is

min{|a(i)' - 8(z) | , (2/3)-r(B(z.))}

Then select an to be the point along the line segment from 2, to

a(i)' whose distance from aq is min{la(i)'-uall,(2/3)'r(a1)}
Continue inductively until there is a k for which 2, = a(i)' . Now
use the same process with a(i)' replacing B(Er) and b(i)' replacing

a(i)' to find bl’bZ""’bz along the line segment from a(i)' to
b(i)' with bz = b(i)' . Label the vertices of the 7-gon around
y(i) 1in clockwise order by b(i)' ,cl,cz,---,c6

Consider the following list of points: B(Er)’al’aZ""’an ,
bl’b2""’bﬂ’cl’CZ""’Ca’bﬂ’bz—l""’bl’ak’ak-l"°"5(5r) . Rename
them as Zg1Zq "2y (i.e., zo=zt=B(5r) and t=2-(k+4+4))

. . . n
Now we compare the numbering of the n functionmns {w(zj,v,z--zj)}v=1

. . - n
with that of {w(zj+1,v,z zj+1)}v=1 through rearrangement

of power series [Sp;p.63-65],j = 0,--- t-1 . Write w(zj,v;z-zj) as
-]

a power series z a(z.,v,u)-(z-—zj)u . A switch of summations in the
=0

expression w(zj,v;z-zj+1)

w(zj,v;z-zj+1) =

© u
= I a(z.,v,u)-( Z

u,. _ -4 -z
Z . (z) (zj+1 Zj) 1 (2 =-2

o



yields a new power series about Zj+1 when we collect terms. Since

(z,w(zj,v;z-zj+f) is a point of f(z,w) = 0 with coordinates in

N(D(zj+l)) , there exists cj € Sn for which

(2.1) w(zj,v;z-z. ) = w(z, (v)cj;z-zj+l)

Let o(i) = ,°¢1°"'¢._1 - This records the effect of analytically
continuing the n functions {w(zo,v;z--zo)}g=1 around the ith loop

) .

of the tied bouquet: w(zo,v;z-zo) becomes w(zo,(v)c(i);z-z

o
v=1,,n. Form o(2),---,6(r) by following the same procedure
for each i = 2,-:,r . Let o(l) = (¢(2)---o(r)) }

Def. 2.1. The ordered r-tuple ¢ = (¢(1l), - -,0(T)) ¢ (Sn)r is the

(set of) branch cycles of f(z,w) relative to

¥(z,.) and the
ordering of {W(ZO»V?Z"ZO)}:=1 . A change in the latter by a permutation
of the v's by 7T e Sn would result 1in the _new branch cycles
(T—l'c(l)'T,"',T-l'c(r)'T) = T_l'g-T . If, however, instead of the

loops of the tied bouquet we use other r-l-tuples of paths representing

free generators of nlﬂPl-?{gr},B(gr)) , the set of resulting branch

cycles has a more complicated description in terms of g LFr,2;p.577-578]

The remainder of this section analyzes three problems that obstruct

an effective determination of g from the coefficients of £

i) We must compute {5r} to some reasonable approximation.
ii) Although we may inductively (and algebraically) find
a(zj,v,u-Fl) in terms of a(zj,v,O),---,a(zj,v,u) , We must

compute a(zj,v,O) to some reasonable approximation.



iii) The coefficients of w(zj,v;z-zj+1) are power series in
Zj+1 - Zj , and to obtain approximate values for these we

must estimate a reasonable point of truncation.

Let {a(zj,V,O)'} be a collection of approximations to the

respective elements of {a(zj,v,O)} yjJ=0,-+-,t-1 , v=1,-"-,n , and
let m(j),j =20,---,t-1 be a series of integers. Form a polynomial
approximation, w(zj,v;z-zj)' , of degree m(j) to w(zj,v;z-zj) by

using a(zj,v,O)' in the formula for a(zj,v u) in place of

b

a(zj,v,O) ,u=1,---,m(J)
Then rearrange w(z.,v;z-2z.)' about =z. to obtain
g (J J) 5+1

w(zj,v;z-zj+1)' . Denote its constant term by a( v,0)" . Our

Z5410
goal is to choose the collections {a(zj,v,O)'} and {m(zj)} so that

we uniquely determine the element cj through the following formula:

(2.2) min {|a(z,,,,v,0)" -a(z,, ,,s,0)'|} =
1<s<n g+l g+l
" t = ..
la(zj+lyvyo) _a(zj"'l’(V)cj’O) l y V 1: ,
*

Let e, = max{la(zj,v,O)-a(zj,v,O)'l} . Let a(zj+1,v,0) be the

j,V 4 . o
constant term of w(zj,u;z-zj+1) (i.e., a(zj+1,v,0) = a(zj+1,(v)cj,0))

* . . »

and let e, = ?az{la(zj+1,v,0) -a(zj+1,v,0) |} . For simplicity the

next result assumes that the coefficients of the polynomial f(z,w)

are explicit elements of @(/-1)

THEOREM 2.2. There is an effective procedure for calculating

d(f) U {«#} and the branch cycles g (up to conjugation by an element

-

of Sn) of an irreducible polynomial f ¢ ®(/-1) [z,w] , monic and




of degree n in w , relative to the tied bouquet computed from d(f)

Proof. Use the notation above. The result follows from an effective

computation of ¢, ,j=1,:---,t-1 . Let € be 1less than

J
(2/3)+ min {|a(z.,k,0)-a(z,,£,0)|} , 1 <k<4&4<n, j=0,1,-,t-1
. . J J — -
J,k,4
Choose {a(zj,v,O)'} so that -.e¢; and €, are less than /2 . Then
expression (2.2) determines oj uniquely, j=0,°°-,t-1 . Thus, we

are done if we give an effective procedure for finding {'a(ZJ- ,V,O)}j ,v’é 64 .a.nd
€g - We use Newton's method [Sm; see §3] throughout the proof when-
ever we need approximations to the zeros of a polynomial g(x) e CLx]
whose coefficients are given explicitly as elements of Q(J:T) .  The
remainder of the proof divides into parts. One subtlety: We don't
know the elements of d(f) (Part 2 below) except by approximation.

Thus we must form our tied bouquet from approximations to these elements,

rather than from the elements themselves.

Part 1. Root-difference algorithm. For g(x) ¢ Q(/-1)[x] apply
2

d d .

Euclid's algorithm to g , a;(g) , ;;E(g),"' to find the 4

multiplicity of the roots of g , and to factor g(x) into 7 g;(x)
i=1

where g, (x) e QW-1)[x] , g;4, divides g;,1=1,"7-,4-1 and all zeros of

g are of multiplicity one. Replace g by 'gl , Which we assume'td be of degree n'

Compute the discriminant of g, , d(g;) [Wae;p.87] . 1If X,"", %, are the
zeros of gy > then d(gl) = (@ (xi-—xj))2 . With no loss assume that

i<j
g1 is monic so that a bound for the absolute values of the roots of

t

g1 is given by 1 plus the sum of the absolute values of the coefficients

of g, denote this by A . Then

(2.3)  min  {|x; - x]) > Jacg/@-t BT 2 g

1<i<j<n'
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Part 2. Choose data for Fig. 2. For f ¢ Q(/-1) [z,w] given in the

statement of the theorem, first compute approximations to the values

of d(f) . The set d(f) is the set of zeros of h(z) , the discriminant
of f regarded as an element of @Q(/-1,z)lw] . Compute h(z) explicitly
from [Wae;p.87] . Use Part 1 to compute A'(h) , a lower bound on the

absolute values of the differences of the roots of h(z) ; and to compute
hl(z) , 4 polynomial whose zeros are of multiplicity one and exactly
the same as the zeros of h

Approximate all the zeros of hl(z) to within A'(h)/12 by
elements {z(2)',---,z(r)'} . Let y(2)',:-+,y(r)' be the lexico-
graphical reordering of 2z(2)', - :,z(r)' (i.e., y(2)' <---< y(r)')
Now form the data of Fig. 2 with y(i)' replacing y(i),i=2,---,r
Our parameters guarantee that the paths of the tied bouquet 1(5})
give the same homotopy classes in nlOPl-{gr},B(gr)) (via the map
¢(B(gé),5(gr)), or its inverse) as do the paths of the tied bouquet
x(gr) given by the actual elements of d(f) . Therefore the branch

cycles computed from f with respect to x(gé) will be the same as

those computed with respect to x(gr) - up to conjugation by an element

of Sn

Part 3. Computation of €,€q ggg €y - Here we assume that the

points Zort 2 (as in expression (2.1)) come from Fig. 2 for

the {z(2)',---,z(r)'} data. Take approximations to 21,72y in
@(/-1) that are within A'(h)/12 of their actual values. Let

gj(w) = f(zj,w) . Choose € less than one-half of the minimum of

the absolute value of the difference of the roots of gj(w) , j=0,---,t-1

A standard majorant argument [Hi; p.94] allows us to express the bound

%
€, for the absolute value of the difference of a(zj+1,v,0) and



a(
value
m(Jj)

is at

proof

Zj+1’

v,0)" in terms of m(j) and a bound, say ei , on the absolute
of the difference between a(zj,v,O) and a(zj,v,O)' . Choose
and' ei appropriately, according to this relation so that €q
most ¢€/2 . Now let €, = min(e/z,ei) . With these‘choices the
is complete. ]



3.1

§3. Computer computation of branch cycles.

We have written a computer program for computing branch cycles
for a polynomial f(z,w) in §2 of the form F(w) - z . This simplifica-
tion hides none of the real difficulties, which we shall analyze below

using the following two examples:

Example 1. [Fr,1;81] F(w) = w5/5 - (c*—d)-w4/4-+(c-d-—2)-w3/3

+ (c+d)-w® - 2-c-d-w where c-d = -2/5, F(c) # F(d) and c + d ¢ @

Example 2. [Fr,2; p.593]

7 5

F(w) =w - 7-A-t-w 4

3

+ (4-A)-t-w? + (14-A-35)-t2.w

2

— (8-A+10)-t2.w% + [(B=A)-t2+7.(3.A+2).t5]-w-13/3 ,

where A = (1-4/-7)/2 and t ¢ @

Note how practical examples force us to consider coefficients
outside of @(i) . Examples of this type arise in many arithmetic
geometry problems. In particular the F(w) in Example 1 have the
property that {zoe Zl F(w)-—zO is reducible, but has no linear factor}
is infinite. For polynomials F(w) that cannot be written as a compo-

sition of nonlinear lower degree polynomials (indecomposable) this can

only happen if deg(F) = 5 - a consequence of the classification of
finite simple groups. Similarly, the F(w) in Example 2 have the
property that each of them has the same range as their complex conjugates as
functions on all the residue class fields of ZL/=7] , even though they
are not obtained from one another by linear change of the variable.
Such examples of nonlinearly related polynomial pairs F and G for

indecomposable polynomials F(w) (and some ring of integers of a number



field K) occur only if deg(F) = 7,11,13,15,21 and 31 and not at all
if K =@ (again, a consequence of the classification of finite simple
groups).

Part 2 of the proof-algorithm of Theorem 2.2 involves finding,

for a given polynomial F , the zeros OIS AU of F'(w)=0 and
the resulting branch points F(wl),---,F(wn_l) (called z(2),:--,z(r)
in the proof) . For a polynomial of moderate degree, this is usually

a routine calculation. To solve F'(w)=0 apply Muller's method to
the polynomial deflated by the previously found zeros, and follow with
Newton's method applied to F'(w)=0 to compensate for inaccuracy
induced by the deflation [AK;2.9-2.10].

Wavrik [W] points out that the Euclidean algorithm, as it appears
in Part 1 of the proof of Theorem 2.2, for computing the exact multi-
plicity of the zeros of a polynomial with integer coefficients presents
severe computer difficulties. We can bypass this, since we know a'priori
that both examples have 3 finite branch points, and thus we can decide
the multiplicity of specific branch points. But, at present our program
relies on this deus ex machina for computing multiplicity of branch
points.

In Example 1, the choice of the parameters ¢ = 2 and d = -1/5
leads to two branch points (-.41192 and 8) of multiplicity 1 and one
branch point (9) of multiplicity two.

In Example 2 the choice t = 1 is unsatisfactory: two of the
branch points (3.16667 + 25.9223i and 3.16667 + 25.8783i) are so close
as to effectively limit the accuracy of the computation to about three
decimal places in the most critical part of the continuation around

the branch points. (Note that with branch points as close as these,



it is reassuring to know that there are 3 branch points.) The choice
t = 2 separates the branch points nicely, but the coefficients of the
resulting'polynomial are large enough to interfere with our later need
to accurately evaluate F and its derivatives at other points (e{g.,
the coefficient of W is 206 - 216.952i). We chose t = 1.2 by hand.
The most interesting part of the computation involves the re-
arrangement of power series to compute the branch cycles that arise
from analytic continuation around the tied bouquet (Fig. 2). Choose
the base point B = B(g%) as in §1, where gé are the approximations
to the branch points that we have just computed. To determine the
n distinct values of the algebraic functions that satisfy F(w) = =z
at z =B , solve for w in F(w) = B to get wl(B),"',wn(B) using
the same algorithm which applied to find the branch points. It is
mathematically trivial, but computationally significant that one need
only continge from the base point to the ''stem" where the straight line
intersects the circle about a given branch point (b(i)' in Fig.2),
cortinue around the circle back to the stem, and then compare the values
of the w's . Although we must begin at the base point in order to
compare the permutations about the various branch points, it is un-

necessary to continue all the way back to the base point.

Follow the argument of §2 up to (2.1) to continue wl(z),'--,wn(z)
as functions of =z up to the "stem point', & = b(i)' of the ith
branch point to get wl(s),-'-,wn(s) , i=2,--+,r . Then continue
around the circle back to s to obtain %1(s),---,Wn(s) . The per-

mutation ¢(i) has the property that (j)e(i) 1is for each j the
integer k that minimizes le(s)-Wk(s)[ )
The analytic continuation repeats the following process: Given

a point p; on the path (of Fig. 2) and a value w(pl) satisfying
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F(w(pl)) =Py find the values w(pz) at the next point P, on the

path. This 1is a classical problem in inversion of power
series., From the power series (polynomial) F(w) = =z , find
«©
the inverse series w(p,;Zz-p,) = w(p,;) + Z a(p,,u)-(z-p )u and
1 1 1 =1 1 1
rearrange this series about Py to find w(pz)
The first 7 coefficients a(pl,l),---,a(p1,7) appear in [AbSt;p.18]
as a function of the coefficients of F (the first 13 in [0]) . For

these computations, however, it is more efficient to use Knuth's power
series inversion algorithm S [Kn;p.448-9]. Knuth calls algorithm S

sequential: one can compute m coefficients in the inverse series

without specifying m in advance. But there are asymptotically superior

algorithms [BKu] .

With an example of any complexity - rather than, say, wz = 7z -

it is necessary to vary the step size along the path according to the

majorant Part 3 of the proof of Theorem 2.2 in order to guarantee
reasonably rapid converge of the series as we approach the branch points.
But the majorant estimate is generally too conservative and repetitious
calculation of the majorant terms is inefficient. Therefore we proceed
as follows.

Given Py and wj(pl) , J =1, -+,n , compute M1 , the minimum
distance from p; to a branch point, M2=min{lF'(Wj(p1))[ :1<j<n} ,
and choose the next point p, so that [pz-pll < R-min{Ml,Mz} with
the convergence factor R, 0 < R < 1/2 , chosen below. The M2 constant
results from a linear change of variables to put F(w) = z 1in a form
so that. F(0) = 0 and the inverse series for wj at p2 is of the
form % + 8yZ" +.-- with Z = (pgy-py)/F'(w5(pp))

Begin with R = 1/2 . This often gives rapid convergence of the

series for wl(pz),--- wn(pz) ; using the convergence criterion that
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the last term in the series has modulus at most a small fraction of
the Wj values between which we are trying to distinguish (say, at
most (1/100)'min{[wj(p1)-wk(pl)[ : j # k}) . If this criterion is
not satisfied by the first twenty terms of the series, reset R to
R/2 , compute a new Py » and try again. Since halving the size of
roughly doubles the computation time, for any R < 1/2 we try to
satisfy the coﬁvergence criterion with 2R every fifth point of the
path.

Appendix 1 gives the program output for a computation of the
branch cycles of Example 1.

For Example 2 this program gives answers which are interesting
and incorrect. Here is the result of continuation about the third
branch point, which uses 138 points.

Values of w at the stem:

Before continuation After continuation
w #1‘ - .630237 + ,711137i - .871076 + .963909i
w #2 1.64127 - 1.256811 1.87107 - 1.189891i
w #3 ~ .896993 + .974962i - .616436 + .708794i
w #4 1.87896 -~ 1.185381 1.62158 - 1.28227i
W #5 - .911095 + 1.042591i - .610312 + .68854i »
w #6 1.59555 - 1.2871 1.88399 - i;18467i
w #7 - 2.49507 + ,956932i - 7.49507 + .956962i

This is, of course, impossible since the resulting "permutation”
has both 2 and 6 going to 4 and both 3 and 5 going to 1.

The problem is that the base point is 6.472, the second branch
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point is 5.472 + 45.43271 , and the third branch point is 5.472 + 4€.57161 .

The straight line which joins the base point to the third branch point
is very close to the second branch point, and so, in spite of repeatedly
halving R and using 138 points, some of the values of the wj's come
too close together to be distinguishable as we pass the second branch -
point. We resolve this specific problem by moving the base point; see

Appendix 2 for the program output which gives the branch cycles of

Example 2.

The poinf of this discussion of the above problem is not why it arisé;méhd how it
may be resolved, in hindsight that is all clear, but that it is possible to numerically
continue w and get a value which is wrong even though it is plausibly close to one of
the possible values._ Note that the values given are obtained by repeated approximate
numerical continuation of the series and that there is only one application of Newton's
method; the initial application at the base point. The program in this way deviates
from the proof of Theorem 2.2 so that in the final results one can see the cumulative
error due to the sequence of analytic continuations. Any application of Newton's method
would cover up these errors. Nevertheless the error contribution to the final calculatic
of that initial application of Newton's method cannot be dismissed. Thus, for future

applications, it is worth analyzing the effect of [Sm] - to which we now digress - on

_an algorithm like tha@ggf_Ihgorem 2.2.
We must find all roots of a sequence of polynomials h,(z), gj(w), j=0,---,t-1

where the polynomials themselves derive algorithmically from a single
polynomial f e Q(J:T)[z,w] . The zeros of these polynomials are all
of multiplicity one. The polynomials go(w),---,gt_l(w) depend on the
zeros of hl(z) and on f . Of course, there are r-1 = [d(f)l in-
dependent such calculations. In order to discuss theoretical bounds on
the running time of our algorithm we need a condition that bounds r
and the coefficients of f . Assume that n and m are given:

deg(f) < m (along with degw(f)= n) : and all coefficients of £ are

bounded in absolute value by 1 (along with f monic in w) . In



particular this gives computable bounds for the quantities r (e.g.,
r < m2°(n—l)) and the absolute value of the coefficients of hl(z)

We can giveva bound for t 1in terms of an estimate of the maximum of
the differences of the absolute values of the zeros of hl(z) along
with A'(hl) (expression (2.3)) . And the computation easily produces
values zo,"',zt_l , for each value of j , 2 < j <r (as given in

Part 2 of the proof of Theorem 2.2). From Part 1 of the proof of

Theorem 2.2, bounds on Zoy 2y q give bounds on the coefficients of
go,---,gt_l and therefore a bound away from O on the absolute values
of the differences of the roots of each of the gj’s , jJ =0, ,t-1

Thus there is an estimate for ¢ 1in terms of n and m alone.

At this point, according to the algorithm of Theorem 2.2 we have
an explicit bound on the allowable error for the approximations to the
roots of hl(z) and gj(w) , jJ=0,--,t-1 . This bound can be given
in terms of n and m alone. In order to estimate the "running time"
for the algorithm of Theorem 2.2 we need now to estimate the number of
iterations required from Newton's algorithm to make an estimate within
the allowed tolerance - denoted ¢€'(n,m) - for the collection of zeros
of hl(z) ) gj(w) , J =0, ,t-1

Newton's method, however, has a quixotic dependence on the initial
approximation to a zero of a polynomial p(x) , and on the location of

the zeros of é%(p(x)) . Smale [Sm] defines an approximate zero of

p(x) to be a value X, for which, starting with X, the uth iterate
of Newton's method gives a value x_  for which [p(xn)|<:(l/2)u'lp(xo)l .
In the space of monic polynomials of degree n' with coefficients bounded
by 1 we induce a measure on subsets of the space by identifying.them with
subsets of the '"unit cube'" in imn' . The whole unit cube is assumed to

have measure 1 , and therefore we regard the space of monic polynomials
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of degree n' with coefficients bounded by 1 as a probability space.
Then [Sm;p.31] shows that for p(x) ¢ Q(/-1)[x] in this space and
for 0 < w <1, with probability 1 - # Newton's method starting at

X = 0 arrives at an approximate zero in s = [lOO~(n'-F2)9/#7] steps.

Here [ ] denotes the '"greatest integer" function. A true analySis
of any program's running time would necessarily need to incorporate
such estimates for Newton's algorithm.

One measure of the complexity of these calculations is the time.
it takes to run the examples. The program was written in BASIC and
run on a personal computer (a TRS-80 Model I, 48K). In interpreted
BASIC, Example 1 took a half hour. Consequently it was useful, partic-
ularly for debugging, to compile the program using ACCEL 3 (ACCEL 3,
A Compiler for TRS-80 BASIC, (copyright 1982), Southern Software,
Box 11721, San Francisco, CA 94101). After compilation, Example 1
took 10 minutes, Example 2 took 17 minutes (and Example 2, with the
unfortunate choice B = 6.572 , took one hour).

A program listing can be obtained by writing to the authors.
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Appendix 1

PROGRAM ENCORE
ANALYTIC CUNTINUATIOV AROUND A TIED BDUGUET.
JULY 12 1983

F(HY IS A POLYNOMIAL OF DEGREZ S WITH COEFFICIENTS:

J COEFFICIENT OF THE J=TH FOWER OF W
0 : 8 + 0 i

1 4 + 0 i

r4 9+ 0 i

3 -4 + 0 i

4 ~2.25 + 0 1

S- 1+01i

THE BRANCH POINTS ARE:
MULTIPLICITY ERANCH FOINT

1 - -+41192 + 0 i
1 8 + 0 i

2 ? + 0 i

THE BASE POINT P(0) OF THE BOUQUET IS 10 + 0 4

AT THIS POINT THE W'S HAVE THE INITIAL VALU:So
W NUMBER WC(P(D))

1.38833 +~.3464E55
1.38833 + ,3648B4%5
=-1,43039 + .182(042
-1.43039 +-,182042
2.33411 '+ 0 i

UhWNF
[EREPRE VR VS

RESULTS FROM CONTINUATION AROUND THE BRANCH POINT S( 1 ) = =,41192 + 0 i
USING SERIES WITH 35 POINTS,

VALUES OF W, AT THE 'STEM' OF THE CIRCLE,BEFORE AND AFTER CONTINUATIONS
H&E 1. '

+ 0259558 +-.0234236 i
-+418575 +-8.,15218E-03 i

W ¥ 2
2,25207 + ,407027 i
2425537 + .404094 i .

H+ 3
~+419491 + ,022795 i .
+ 0284884 + 7.733%9E-03 i

H & 4
~-1.,86382 +-1,88483E-03 i
-=1.,86354 + 1.082497E-03 i

R+&& S
2425462 +-,403966 i
2.25083 +-.,406257 i

THE PERMUTATION IS:



" USING SERIES WITH
VALUES OF Wy

HE 1
1.07561
1,10219

HE 2
1.81131
2,17408

H+ 3

-1,23032

-1.24617

R*E 4

’1057167'

-1.55982

H¥E S
2.16636
1.77896

3.10
1 2 3 4 -]
3 2 1 4 -]
.RESULTS FROM CONTINUATION AROUND THE BRANCH POINT 8¢ 2 ) = 8 + 0 i

19 POINTS.

AT THE 'STEM' OF THE CIRCLE,BEFORE AND AFTER CONTINUATION?

+=-.0876477 i
+=,0773605 i

+ .161285 i

~+=,0659881 i

+ .0537482 i
+ +0468737 i

+~.0380733 i
+=.034118 i

+-.089079 i
+ 134702 i

THE PERMUTATION IS¢ .

RESULTS FROM CONTINUATION AROUND THE BRANCH POINT S¢ 3 ) =
USING SERIES WITH

VALUES OF We AT THE

R+ 1

1,39708 +-

1.36385

R+ 2
1.39908
1.43444

H$ 3
-1.42244
=1.40408

e 4

-1042244
=1.4493¢

<e29544

~ PERMUTATION IS:

4 3

4 2

940 1i
13 POINTS. :

'STEM' OF THE CIRCLE,BEFORE AND AFTER CONTINUATION?

12466209 i

+ ,260401 i

+ .266209
+=.267171

+ 130355
+-,131211

+-,130355 i
+ 2126805 i

+ 0116205 i
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Appendix 2

PROGRAM ENCORE}
ANALYTIC CONTINUATION AROUND A TIED BOUGUET.
JULY 14 1983

F(H) IS A POLYNOMIAL OF DEGREE 7 WITH COEFFICIENTS:
J COErFICI:NT OF THE J~TH FOWER OF W
76 « 0 i
45 936 +-46.0996 i
«20.16 + 15,2395 i
=40,32 +=-286.669Z i
+ 1,58745 i
+ 11.1122 i
g i
0 i

NS UMABNRES

4,2
-402
0 +
1+

THE BRANCH POINTS ARE:

MULTIPLICITY  BRANCH POINT
2 54472 +=21.1417 i
2 5,472 + 45,4337
2 5,472 + 46,5716 i

e

THE BASE POINT P(0) OF THE BOUGQUET I5 6.472 + 46 i

AT THIS POINT THE W'S HAVE THE INITIAL VALUES?
W NUMBER H(PC0))
- 559284 + ,760862
1.82917 +-1,29506
-e 9266508 + .843631
1.70893 +-1.3470°
-?B4696 + 1.21809
1.864855 +-1.13948
"=2.49314 + ,959045
ELBOU AND STEM FOR BRANCE POINT 2

N DWW
T Y N N Ty VY

El = .6.,472 + 46 i AND E2 = 5,48047 +-20,5728 i

SMALLER R? = .25 AT POINT # 23 .
LARGER R? = .5 AT POINT & 27

RESULTS FROM CONTINUATION AROUND THE BRANCH FOINT S¢ 1 ) = S.472 +-21,1417 i
USING SERIES WITH 32 POINTS.

VALUES OF W» AT THE 'STEM' OF THE CIRCLE.BEFORE AND AFTER CONTINUATION:
HE 1
4227359 +-.248574
«865793 +=,357644

[VRNVR

HE 2
«5646544 +=-,355008
+421042 +-,249458

- -

W+ 3
-2.10998 + ,925282
-2.,18444 + .9”938°

-
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W% 4
1.65338 +-1,87378 i
1.65333 +-1:87379 i

Wt S
~.445793 + 1.73316 i
-.445729 + 1.75931S i

WE 6
2.30072 +-1,12787 i
2,30072 +-1.12792 i

H$ 7
-2.19978 + 931244 i
-2,09182 + ,924103 i

THE PERMUTATION IS

1 2 3 4 5 3 7
2 1 7 4 5° T4 3
ELBON AND STEM FOR BRANCH POINT # 2

ElL = 4,472 + 456 i AND.EZ = 5,96708 + 45.7141 i

RESULTS FROM CONTINUATION AROUND THE BRANCH POINT S¢ 2 ) = 5,472 + 45.4337 i
USING SERIES WITH 14 POINTS. a ‘

VALUES OF Ws AT THE 'STEM' OF THE CIRCLEsBEFORE AND AFTER CONTINUATION?
H'$ 1 '

-+.588677 + .724854 i

-+600956 + 73221 i

Wt 2
1,46467 +-1.29305
1.67307 +~1.30483

e

H# 3
=+947286 + ,910628 i
=«989358 + 1.:17415

»

H+ 4
1,66687 +-1,320F7 i
1,4664 +=-1.30071 i

W% S
~e97547 + 1.17848 i
= 922274 + ,F13756 i
W$ 6

1.87339 +=-1,16515 i

1.86478 +-1.16945 i

W& 7
-2,49366 + 957936 i
=2.49395 + 95776 i’

THE PERMUTATION IS:
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. ELEOW AND. STEM FOR ERANCH POINT # 3-
El = 6,472 + 46 i AND EZ = 5.94595 + 46.2893 i

RESULTS FROM CONTINUATION AROUND THE BRANCH POINT S( 3 ) = 5.472 + 46.5716 1
USING SERIES WITH 14 POINTS.

VALUES OF Ws AT THE 'STEM' OF THE CIRCLE,BEFORE AND AFTER CONTINUATION?
e 1 . . '
=,606706 + 776723 4 A L

-.89084 + ,823733 i T T I

HE& 2
1.44327 +-1.323749 i
1,43556 +-1,32733 i
H+ 3
—.891024 + 0849563 i
-,602707 + 793713 i

H % 4
107213 +’1029929 i
1.83507 +-1,15002 i

"WE S
-1,01447 + 1,19739 i
-1.01974 + 1,20563 i

HE &
1.84249 +-1.1576°9
1.73653 +~1.30486

-

NE 7 »
-2,49486 + ,958052
-2.49516 + .958204

= -

THE PERMUTATION IS:

i1 -2 . 3 4 S é 7
3 2 1 é S 5 7
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Referee's Report on

"Effective Branch Cycle Computations' by M. Fried and R. Whitley

(submitted to Geometriae Dedicata)

in this article the authors investigate the problem of explicitely
determining (by computer) the monodromy of branched coverings of ZIP'.
This is certainly an interesting question. However, the authors present

only little new information in too many pages. | do not think that the

content justifies a publication of this lenght. My suggestion would be

that the authors rewrite the paper in a very condensed form and then
incorporate it in a paper on the mathematics of this type of examples.

My criticism is based on, for instance, p. 1.4-1.8, p.3.5-3.8,
the presentation of the output, and the comments in §3 referring back to §2.
The details on p. 1.4-1.8 are so obvious, that one does not have to spell
it out for the human reader; the reader is here almost treated as a
non-understanding computer. The discussion of what went wrong in one
of the tests of the program (on p. 3.5-3.6) is not worth on page; the
mistake is too obvious. The story of the complexity and running time
on p.3.6-3.8 is too vague to really estimate something. The lay-out
of p. 3.9-3.13 is ridiculous; things can be tabulated and grouped together
much more efficiently, so that in printed form it would take maybe only one page.
Finally, look at theorem (2.2): the statement is so obvious that for the
pure math side a proof is superfluous; the authors give a proof which also
contains an algorithm for computing, but then in 83 they remark that
some of the steps cannot be used for an actual computer program;

so what then is the use of §27?



