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The author has made several investigations into problems related 
to the genus zero curve f ( y ) - x  = 0 for f ( y ) e  K[y] where K is a field. 
The progression of events can be best seen by a quick perusal of the se- 
pence of papers [4], [ 5 ] ,  [6], [TI, [B], whereby the very particular 
problems of [4], [,"), [6] have launched the general problems about 
tahe fields of definition of arbitrary models of Riemann surfaces in [7] 
and f8]. This latter work is just barely started, but it  has already shown 
the need for the development of arithmetic tools that far transcend the 
simple techniques the author has so far mustered to attack the problems 
of [6] and [7]. Oftentimes i t  turns out, the most powerful tools are those 
of group theory. Especially when a precise formulation of the problem 
can be made in terms of the branching of certain Riemann surfaces. See 
Lemma 2 for example. However, the context of the problem is often much 
too difficult (or complicated) for the present state of group theory. See 
[5], Section 3,  for a discussion of the general type of group theory que- 
stion that needs to be answered. Also, even with complete knowledge of 
the group theory aspect of the problem, the arithmetic question may 
still remain unanswered for the very reason that we are often reduced 
to asking questions about the field of definition of curves which are apriori 
defined only over C .  See [7], Section 1, for the precise formulation of 
general problems in this area. 

In this paper, we will return to some of the particular problems 
related to the curve f o - x  = 0,  and in so doing we will concentrate 
almost entirely on questions that can be answered by arithmetic; albeit 
simple arithmetic. A slight historical digression seems in order. We give 
a chronology of the author's work related to the problems to be discussed 
in this paper. Our con~ments on the other mathematicians who have 
made contributions to related problems is not meant to be complete. 
See [6] and [7] for references to these works. 

We need some notation which, will be used throughout this paper. 
Let K* be a fixed algebraic closure of a field K. A polynomial f(v) c .K[y] 



80 M. Pried 

is said to be decomposable over K if we can write f (y) = fi ( f o ) ,  where 
f u f z e  m y ]  and degree of f is not one for i = 1 , 2 .  We call fi and f, com- 
position factors of f. 

LEMMA 1. (Theorem 3.5 of [2] . )  If f l y )  e K [y] is decomposable over K*, 
then f(y) i s  decomposable over IT. 

E em a r  k. The corresponding result for rational functions f (y ) 2C (y ) 
does not hold. This is discussed in [4] ,  Section 1. 

Let x be an indeterminat-e over IT*, so that the zeros y,, . . . , y,, of 
f ( y ) - x  are also indeterminate over K*, where n = degree f. Let 4 
= K (yH . . . , y,, , x) = K(y^ ,  . . . , h), and let G ( q 4 / K ( x ) )  denote the 
Galois group of Qf_^ over K ( x ) .  Much of our discussion is related to t,he 
case where K is a anumber field. If f ( y ) e  K( y ) ,  then we may reduce f (y) 
modulo any prime p, of the ring of integers of IT, not dividing the deno- 
minators of the coefficients of f(g). Let V p ( f )  denote the values assumed. 
by f (y) modulo p (we count oo as a coset n~odulo p).  

I. General Schur problem. For IT a number field, f ( y ) e  K(y},  d e n  
is it possible for V f  ( f )  to consist of all cosets modulo p for i ~ ~ f i t ~ i t e l y  many 
primes p? I. Schur conject'ured that for f(y) e m y ]  this could happen 
only if f ( y )  was a composition of polynomials of two special types: 

1)  ayrL+ b (cyclic), 
2) w) = 2-Ã ( y2  + 4)112)fg+ b- (y2+ q/2jm} (Geby5e1- PO~J-- 

nomials). 
f o r  a simple proof of this see [ 6 ] ;  and for a discussion and partial 

results on the more complicated situation where f(y)  is not assumed to 
be a polynomial, see [ 5 ] ,  Section 1. 

MacCluer showed- that if f ( y ) e  Ii[y] where L is a finite field and. if 

3 )  w f ( s )  has no absolutely irreducible fact'ors, 
Y - s  

and. 
4) the function field w'x, y )  is tamely ramified over L ( x ) ;  

then f is one-to-one over L. For a slight generalization of this to rational 
funct-ions see [5], Section 1. It is known that polynomials satisfy- 
ing 3 )  and 4) must be compositions of polynomials of type 1) and 2 )  
(see [ 5 ] ,  Theorem 3). 

11. Values of polynomials. In  [4[ the author gave an analogue of 
I 

Schnr's conjecture. Let A ,  . . . , fge m y ] ,  and suppose U Vp(  fi) consi~t~s 
1-1 

of all cosets modulo p for all but a finite number of primes p (a.a.p). Then 
one of the polynomials f i ,  . . . , /; must be linear. If we only assume f,, . . . 
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. . . , f,e K(v}, this result does not hold (151, Section 2). Related situations 
have been studied in [4k [[7. One of the simplest of these is: 

5) suppose f ,  g K (y ), 
and 

6) V& = Vp(g) for a.a.p. 

A reduction process appears in [4], p. 101; to show that if 5 )  and 6)  
hold, with no loss we may replace / and g by composition factors of f 
and g, so that we may assume 

7) both f and g are indecornposable. 
In  addition 5 )  and 6) imply: 

8) = Q n  a: 1 

9) U Wi)) = U G(Qy-fi(s,)) where , . . . , sPÃ are the 
Vi. î 

zeros of a;, 

10) fly)-g(z) is reducible in the sense that it is a product of two 
elements of K(y, a) of lower degree. 

Kote that 10) is a consequence of 9) by simple group tbheory 
The aut'hor has shown {[?I, Section4) that 7 )  and 10) together cannot 

happen, if f (y) ,  g(y) e Q [y] unless flay + b) = g (y)  for some a ,  b e  Q. In 
particular, iff, g e  Q [y], and w) = V,, (g) for a.a.p., then /(ay + b) = g(y) 
for some a, b e  Q. See [7], Section 3, for an example of polynomials 
fl9 e Q (2) [y] for which Fp (f) == Vp (9) for a.a.p ; even though this 
simple relation does not exist between f and g .  It is not known if there 
are examples of polynomials f, g of arbitrary large degree satisfying 6), 
6), and 7) ,  imless f(ay4-&) = g(y) for some a, b e  K*. Examples of degree 
7 ,  11, 13, 15 and 21 are now known. 

111. A global Diophantine problem. Again let K be a number field 
and f e  K[y]. We denote by q, the ring of integers of K. Let: 

11) W(f) =- {a;, e  o k  f(y) - sty is reducible in K[y]}, 

12) V(f) = {a>,, E U ~  f (y)  -so has a linear factor in K[y]), 
7 (f) = {a!,? okl  JW - so has two linear factors in KM}. 

In [7l, Section 4, the author has shown that: excluding a finite set 
7 

of x,, W(f) c U V(gi) where 
1 

13) gi, * * . ,  9 i e K [ ~ l ,  
14) fW - g& i 8  reducible over K ,  i = 1 , . . . , I .  

The author has shown that if K = 0, and either: 
15) f is indecomposable, or 
16) degree f = $9' for some rational prime p ,  p # 2, 
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then W ( f )  is V ( f )  plus a finite set. This holds when 15) is satisfied by use 
of a result already mentioned. Under very general circumstances V'(f) 
is finite ([?'I, Section 4). 

Schinzel and the author have separately shown that if f ,  g e  Q[y] 
and f{y) - g{z) is reducible where degree f = p ( p  a rational prime), then 
there exists a polynomial h ( y ) e  Q*[y] such that f { h ( y ) j  = g(y ) .  In the 
next section we give a generalization of this to the case where 16) is 
satisfied. 

1. Reducibility of polynomials of form f ( y ) - g ( z )  over Q. We first 
give a lemma that demonstrates how questions about the existence of 
polynomials fo, g ( y ) e  C'[y] satisfying 10) can be reduced too group 
theory. As already has been mentioned, we may without loss assume 
that Qk = Qg-= (as in Lemma 4). Let. G* be a finite permutatmion group 
on the letters {w,, . . . , w,}.  For ae G*, write a as a product of disjoint 
cycles yi .. . ys. 

We define indo- (read index of a )  as 

LEMMA 2.  Let G* be a finite group with two permutation representations 
on the letters {y'̂ ..., y:} and {z:, .. ., g }  respectively. I f  {w,, ..., w-} 
are any set of letters on which i t  makes sense to represent Q*, for a* e G* let 
4 be the 'permtation of {w, , . . . , w,.} corresponding to a*. Then, there exist 
polynomials f ,  ge C[y]  such that: 

19) f ( y ) - g ( z )  i s  rediwible, 
i f  and only if  there exist elements a* (I), . . . , a* ( r )  in Q, such that: 

30) a* (I), . . . , a* ( r )  generate G*, 
21)  if we let a*(oo) = @ * ( I )  ... a*(r) ,  then d(00} = (x*, ...,sea 

(an n-cycle) and ( oo) = (z ,  , . . . , a:), 
r r 

Remark. Lemma 2 is a particular case of Proposition 5 of [7]. Accord- 
ing to Schinzel, Cassels has formulated problems about the reducibility 
of polynomials of type f ( y ) - g ( z )  in t?erms similar to those expressed by 
Lemma 2 (see [I]). Riemann's existence toheore  is the main tool used 
in t'he proof of Lemma 2. When group theory can be used to show the exis- 
tence of a Eiemann surface of certain type, there still remains a question 
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as to tshe field of definition of its function field. This is the general problem 
dealt with in [ 7 ]  and [8] .  

In  what follows we will use the Puiseux expansion about oo of f (y}Ã x. 
The notation we use is that of [A], p. 1.01, which contains a very down 
-to-earth explanation of these expansions. 

THEOREM. Let E be a field such that 

23). [ K ( C r ) :  K ]  = ( p - l ) p T  ' (where p + 2 ,  and C T  i s  a primitive 
pr-th root of I ) .  

Suppose that f ,  ge m y ]  where: 

2.4) degree f = p*", 

3 5 )  f (y)-g(ss)  i s  reducible in K[y,  isl, but f i ( y ) -g { s )  i s  not reducible 
for any polynomial f i ( y )  such that f ,  ( f a )  = f for some polynomial fy 

Then,  

2 6 )  there exists h ( y )  E K *  [ y ]  such that f {h ( y ) )  = g (g), 

The next two lemmas are needed for the proof of the theorem. They 
have been useful to the author in computations unrelated to the theo- 
rem above. For these lemmas we introduce the field 2' of any char- 
acteristic. 

LEMMA 3. Let f ,  ge F\v] be 'polynomials of degree 7% with the same lead'It~g 
coefficient. Assume -that ( 2 -  charF, a )  = 1. Then,  either 

27 )  F (w- , ,  x )  =- F ( y , ,  z,) w h e  w, = yl-a,, or 

28) wl  i s  a constav~t, where f (yi) = 2, g(zi)  --= x and the leading terms 
of the expansions for ŷ  and zi over os are the same. 

Kote. I f  W, is a conbtant, then f ( y )  = g ( y  + 6 )  for some be 3. 

Proof.  Let L, be a primitive wth root of one. The Puisenx ex- 
pansions over oo for yi+i are of the form 

29) Y i ,  I = a,! ~ d q -  a(,-+ % L 5'"" . for i = 0 , 1 ,  ..., 7%-1. 

30)  = b . l ~ + b , , + ~ x  ' I n ^  ... for i = 0 , 1 ,  ..., n-1, 
where we may assume a = b _ ,  because of the assumption of equality 
of the leading coefficients off and g. Thus, u\ has no term in its expan- 
sion over oo. Let Q,̂  = Siy,x- 

The quantity wi  + z ,  = y ,  has exactly n conjugates, all obtained 
by the substitutions &"' -> C ~ X ' ~ '  for j = 0 ,  . . . , n - 1. If  v,\ has no conju- 
gates over F{z,), then by the fundamental theorem of Galois theory, 

@I, + 6 
w ,  e F (a,). Thus, y ,  e 2' (z,). This implies - - Q for some 

cy .+d  

a, b ,  c, d c F. Therefore, f (y , )  and since g is a polyno- 
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mid we easily deduce that we may take c = 0, d = 1. from the assuinp- 
tion that leading coefficients of t-he expansions for yl and over w are 
the same we deduce a = 0. Thus w1 is a constant. 

'Sow, assume w l  is not a constant, and let w2 be a conjugate of wl 
over F(zi). If w2 has no xl'" term in its Puisenx expansion over w, then 
w2+z, would be a conjugate of y-, with leading term a ,x1i91. Thus, w2+ zl 
= y,, and w2 = wr Therefore, mg has leading term oa;"" where a # 0. 
We have 

31) yr = zl+ wa for some integer r.  
Look a t  conjugates of z ,  over F(wa, a;). If z is conjugat-e t-o z-, over 

F ( w 2 ?  x), then for some integer t ,  

32) yt = zs+w2. 

An examination of the xl^ ternis in 31) and 32) yields CT,"' Ã 1+ 
+ aa:; and '(,"I = K, l +  a a i .  

We obtain: 

33) G-'-1 =c-<,^i with Ã $1. 

If we arrange the r6 th roots of one in a regular polygon about the origin 
in the complex plane, we see that 33) implies that two pairs of vertices 
of this polygon are separated by parallel line segments of the same length. 
This can only happen when n is even, contrary to (Ãˆ 2) = 1. 

We conclude from the above argument that zl has no conjugates 
over -P(w2, x), or F (zi, y,) = F(w2, x). Since w2 was obtained, as a eon- 
jugate of w, over F(s',), for some ueGi(%/-,FT(x)), o-w2 = w,, ay^ = yl, 
m1 = zi. f rom this we obtain F(zi,  yi) = F(wi, a;). rn 

Tf Lemma 3 were true without the assumption ( n ,  2)  = 1, the proof 
of our theorem would apply to the case degree f = 2". However, t-here 
exist polynomials f ,  g eQ[y] such that f ( a y  + b )  # g (y) for a,b e Q,  
degree f = degree g = 4, and 25) holds. 

Consider : 
34) (y2+yz+&2+l) (y2-y^++z2+1) = y*+2~+*+z4/4+z2+-^  

where f[y) = y'+2$++ and g ( y )  = yv i+ i f+  4. 
LEMMA 1. (Proposition 7 of [TI.) Let f ,  ge  E [y]. Assume:  
35) f{y)- g(z) is reducible, but 
36) fi{y}- g,(^}  is not reducible if clegreg f l  < degree f or degree gl 

< degree g, and f i ,  g,  we composition factors (respectively)  off and g.  
T h e n  

37) degree f = degree g, and Qf = Q,,_y 
A8 usual, let yl , . . . , y- be the zeros of f(y) - a;, and zl a zero of g (s:}Ã a;. 

Let  -,̂  ..., y,̂  be the conjugates of y^ over K ( q ) .  
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3 8 )  K ( z J  =f ie ld  obtained by adjoining to E the symmetric polyno- 
mials in y^ya,, . . . ,gas. 

In  addition, i f  there exists ~y c  K* u { oc} such that 

39) f(y)-sco has a zero of multiplicity p" (where p i s  some rational 
prime) and p" does not divide the multiplicity of any other zero of f(y)- %, 

then 

Proof of T heorern. If we replace g ( y )  by some composition factor 
(say gi{y ) ,  "where g ( y )  = gi. ( g 2 ( y ) ) ) ?  then the hypotheses 3 5 )  and 36) of 
Lemma 4 are satisfied. By Lemma 1 we may assume that both gl and g2 
are in K [ y ] .  

With these assumptions we proceed to show that there exist con- 
stants a ,  b such that f ( a y + b )  = g ( y ) .  Since degree f =  pa, the hypoth- 
eais 3 9 )  is satisfied for sea = oc. Thus, there exist constants a ,  b c  K* 
such that 4 0 )  holds. With no loss we may assume that g ( y )  (but not 
necessarily f ( y ) )  is monic. Let d be the coefficient of the leading term 
in f ( y ) .  

Factor f ( y )  - g ( z )  into absolutely irreducible factors in K [ y  , s] to 
obtain 

Let SAy, z )  be the highest degree term of h,,[y, z) ,  so that 

This expression was introduced by Schinzel and earlier by MacCluer. 
Since n = pr where p =# 2, an wth root of d is not in K ( & )  unless d 

is an nth power from K .  I f  d is an wth power from K by a change of varia- 

ble ( y  Ã ?fly) we could then assume id is 1. 
" Â ¥  

Let \/d be any one of the zeros of J;"-d. Suppose d d  y-a1 H . i ( y Â ¥ ~ )  

has coefficients in K (?d). Otherwise, the coefficients Then -- 
* t _  

Vdy--8 
f t -  

of hi (y ? e) would not be in ~ ( d d )  and hi ( y  , z )  would have a conjugate 
n - Ã - 

$(y, z )  over ~ ( d d ) .  This Â¥woul imply that ^dy - z\~, and q, which 
is contrary to the fact that all factors of d y n - 9  are simple. 
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Assumption 23) for arbit,rar~ n may be phrased as [K (CÃ£ : K ]  equals 
[Q (L,): Q]. This implies for n = pT7 p 7= 2, that the only polynomials 

n -- 
dividing dyn- z"' having coefficients in ~ ( j d ) ,  are polynomials of form 

?& r r- 1 ?i. -- 

43) ~ [ H l y , s ) =  u y ^ { Y ~ , z j  where n y , ( y , z )  = y"-sfiundy,(y, I) 
1-1 1 

has as its zeros the primitive p i th  roots of 1. 

The expansions for y,, zj over co are of the form 39) and 30) vhere 
n- 

a- ,  = $d and &_, = 1. If, in the expression &(yaj, sJ we let the variable 
a?'/" -+ co, then this expression approaches \ (i/a., z) = 0. Therefore, 

- n.- 

y = yd pi '^ z  is one of the zeros of B^(y, 4 (as a polynomial in z). 
ffl (Y , z) Since - -- is of form 43), 

44) {Yz-l, . . . , rsl} run over t'he union of all primit,ive p̂  th roots 
of 1, for j = 1, ..., 6. 

Again, remember n = f. In t,he equation 40), consider the Puiseux 
expansion over oo of the right side of 40). The coefficient of a?""'" for 
(m,  p) = 1, is 

' . + [("g-o'n 45) (1 + $"z-l)n& 
in = aii*Cm- 

From 44), c,,, is independent of TO if we restrict m to integers relatively 
a 

prime t,o p. With this restriction we let eÃˆ = e. Thus, -- sL and 1/1 have 
c 

Puiseux expansions a t  x = co whose coefficients differ only a t  terms of 
form x u l n  where (u, n} # I .  

a 
Let. 4 = -2,. From Lemma 3,  if wl is not a constant we must have 

c 

46) K(wl, a)) = K (z;, y,) where to1 = 6- y,. 
However, w1 only has terms in its expansion over oo of f o r m ~ P ' ; ~  

where phi. Therefore y1 cannot be a rat'ional function of x and U J ~ .  Thus 
w, must be a constoant, and a r e  6  = y1 for some constants a '  6'. 
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