The Filvert-Siegel problems and SToup Theory solving cases of Chem by michael ∞ Fried Preprint remanent from 1986 from when el et U C Irvine to work \bar{t} lorica All other pieces of thin preprint have Nod appeared elsewhere (9/28/55)

Now we turn to the Hilbert-Siegel problems. Let \mathbb{K} be a number field and let $f(x, y) \in \mathbb{E}[x, y]$ be an absolutely irreducible polynomial. Define:

$$
R\left(f ; 0_{\mathbb{K}}\right)=\left\{x_{0} \leqslant 0_{\mathbb{K}} \mid f\left(x_{0}, y\right) \text { is reducible in } K[y]\right\}
$$

For $g \varepsilon \mathbb{K}(y)$ define $V\left(g ; 0_{K}\right)=\left\{x_{0} \leqslant o_{K} \mid\right.$ there exists $y_{0} \in \mathbb{K}$ with $\left.g\left(y_{0}\right)=x_{0}\right\}$.

LEMMA 1. 1 There exist $g_{1}, \cdots, g_{2} \in K(y)$ with these properties:
a) $\mathbb{P}_{y}^{I} \xrightarrow{\varphi\left(\mathrm{~g}_{\mathrm{i}}\right)} \mathbb{P}_{\mathrm{X}}^{\mathrm{I}}$ has at most two places over $\mathrm{x}=\approx$, $i=1, \cdots, 2$; and
b) $R\left(f ; 0_{K}\right)=V\left(g_{1} ; 0_{K}\right) \cup \ldots \cup V\left(g_{\ell} ; 0_{K}\right) \cup V^{\prime}$ where V^{\prime} is a finite set.

Proof. This is a slight generalization of [Fr, 4; Theorem I] and a special case of [Fro; Theorem I.I]. a

```
Assume in lemma 1.1 that }\mp@subsup{g}{1}{},\cdots,\mp@subsup{g}{2}{}\mathrm{ is a minimal set of rational
```

functions satisfying (1.II). Then g_{1}, \cdots, g_{2} is a complete list, up to linear fractional changes of the variables, of the rational functions g satisfying these properties: $O(g)$ satisfies (I.l) \mathbb{Q}); $f(x, g(y))$ is reducible; and for $g=g^{(1)}\left(g^{(2)}\right)$ with $\operatorname{deg}\left(g^{(2)}\right)>1$, $f\left(x, g^{(l)}(y)\right)$ is not reducible. For the rest of this section consider the case $f(x, y)=h(y)-x$. Then, according to Lemma 1.1, the study of $p\left(h(y)-x ; \imath_{K}\right)$ reduces to this:

THE IST HILBERT-SIEGEL PROBLEM: Describe explicitly, for all a and m
(1.2) $\{(h, g) \mid h \in C[y]$ of degree $a, g \in C(z)$ of degree m, $\boldsymbol{z}(\mathrm{h}, \mathrm{g})$ is newly reducible and (1.12) holds for $0(\mathrm{~g})\}$.
 In terms of group theory this means that we have a group $G(\varepsilon)$ for theseme
which expressions (1.7) a) and b), and (1.8) a) and b) hold, and (from $[F 7,7]$ which expressions (1.7) a) and b), and (1.8) a) and b) hold, and (from Lemma 1.3) either $n=m((1.7) c)$) or $T_{2}(\sigma(r))$ is a product of an m_{1}-cycle and an m_{2}-cycle with $m_{1}+m_{2}=m$ and n is the least common multiple of m_{1} and m_{2}. Further special cases:
(1.3) a) $\left[(h, g)\right.$ that satisfy (I.2) with $g=g_{I} / g_{2}$ the ratio of relatively prime polynomials of degree $2 \cdot n, g_{2}$ a power of a quadratic with distinct zeros\}; and
b) $[(h, g)$ that satisfy (1.3) with b indecomposablej.

THEOREM 1.2. For $h(y) \in Z[y]$ of degree unequal to S, the collection of $x_{0} \in Z$ for which $h(y)-x_{0}$ is reducible consists of $V(h ; Z)$ and a finite set. The exceptional cases of degree 5 include all polynomials that satisfy
(1.14)

> a) $\frac{d}{d y}(h(y))=(y-a) \cdot(y-b) \cdot(y-c) \cdot(y-d), a, b, c$ and d $\quad \frac{\text { distinct, and }}{}$
> b) $h(a)=h(b)$.

Reduction to ${ }^{\text {2 }}$.c) From [Fr, 4; Corollary 2] this follows from the classification of those h for which there exists g with (hg) satisfying (l.13)b). In turn, from expression (1.7), the result follows from the classification of double degree representations - §2.c). Example li for $n=5$ consists of polynomials which are exceptional for the statement of the theorem, but the general exceptional case is given by condition (I.14). This corresponds to $\left((12)(34),(15),(53),(12345)^{-1}\right)$ as a description of the branch cycles for $\mathbb{P}_{y}^{I} \xrightarrow{0(h)} \mathbb{P}_{X}^{I}$. To get a specific example with coefficients in Q, take $a=-b=\sqrt{2}$, so

$$
\begin{gathered}
h(y)=(1 / 5) \cdot y^{5}-((c+d) / 4) \cdot y^{4}+((c \cdot d-2) / 3) \cdot y^{3} \\
\\
+(c+d) \cdot y^{2}-2 \cdot c \cdot d \cdot y .
\end{gathered}
$$

Then $h(\sqrt{2})=h(-\sqrt{2})$ together with the condition that the coefficients are in \mathbb{Q} implies that $\mathrm{C} \cdot \mathrm{d}=-2 / 5$.
§2. Doubly transitive representations.
§2.a) With an n-cycle.

Return to the case (1.9) b) of Davenport's problem: h is an indecomposable polynomial, and g is linearly inequivalent to h, but Kronecker conjugate to b. From [Fr,l; Theorem 2.1], in addition to conditions (1.7) a), b) and c) with T_{1} replacing $T(h)$ and T_{2} replacing $T(g)$,
(2.1) T_{1} and T_{2} are equivalent (but permutation inequivalent) group representations - both doubly transitive.

From [CuKanSe] the classification of finite simple groups ([Gor]) yields the classification of all simple groups with a faithful douoly transitive representation. In particular, their results imply

THEOREM 2.1. If (1.7) c) and (2.1) bold, then either $n=11$ and $=$ $G(\sigma)=\operatorname{PSL}(2, Z(I I)) \quad$ or $\quad \operatorname{PSL}(K, \mathcal{F}(q)) \subseteq G(\sigma) \subseteq \operatorname{Pr} L(k, \mathbb{F}(q)) \quad$ with $n=\left(q^{k}-I\right) /(q-1)$ for some $k \geq 3$ and $q=p^{t}$ for some prime p. If, in addition, (1.7) a) (and b) hold, the allowable integers n are exactly $7,11,13, I \bar{y}, 21$ and 31 . Thus, these are exactly the integers for which there is a newly reducible polynomial pair (h,g) (今l.b)) With b indecomposable.

Notation and collation of results from $[F, I, 2,3]$ and $[F r, I]$. The general Iinear group $G I(k, I F(q))$ acts on $F(q)^{k}$. Denote the group generated by $G L(k, F(q))$ and the pth power map on the coordinates by $\Gamma L(k, \mathbb{F}(q))$. Then $P \Gamma_{i}(\xi, \mathbb{F}(q))$ is the quotient of $[L(k, \mathbb{F}(q))$ induced by the action of $\Gamma(k, \mathbb{F}(q))$ on the points of
$\mathbb{P}^{k-1}(\mathbf{F}(q))$ - the points of projective $k-1-s p a c e$ with coordinates in $\mathbb{F}(q)$. Finally, PSL(k, $\mathbb{F}(q))$ (resp., $\operatorname{PGL}(k, \mathbb{F}(q))$ is the image in $P T(k, \mathbb{F}(q))$ of the subgroup $S L(k, \mathbb{F}(q))$ of matrices of determinant 1 (resp., of $G L(K, \mathcal{F}(q))$).

The first sentence of the theorem is from [CuKanSe]. The second sentence is outlined in [Fr, I; p.592] and completed in detail in [F,I; Theorem 4]. These include simple demonstrations that $\underline{\mathcal{E}} \in\left(\mathrm{S}_{\mathrm{n}}\right)^{\text {r }}$ with $r=3$ or 4 and $r=4$ only if $n=7$ or 13. The groups that occur are these $([F, 2]): n=11$ and $G=\operatorname{PSL}(2, Z /(11))$; and $G=\operatorname{Pr} L(k, q)$ with $(k, q)=(3,2),(4,2),(5,2),(3,3)$ or $(3,4)$. The degree 11 (nonstandard) representations of PSL(2,Z/(11)) arise.from an Hadamard design ([H,2; p.291, item $\bar{\jmath} 5$ in Table l]). The approach to the case $n=13$ in the appendix avoids the [F,2] use of character tables; it is especially valuable in the case $n=11$.

One final point about the case $n=31$. The elimination of the case $(k, q)=(3,5)$ goes something like this: In the action of the group on $\left.\mathbb{P}^{2}(Z / 5)\right),[F r, I ; p .592]$ shows that we may assume that $r=3, \sigma(1)$ is of order 2 and $\sigma(2)$ is of order 3 , and ind $(\sigma(1))=(31-5) / 2=13$. From (1.7) a) conclude ind ($\sigma(2))=17$, a contradiction to $\sigma(2)$ being of order 3 . Thus the case $n=31$ arises from collineations acting on the points of $\mathbb{P}^{4}(Z /(2))$. We easily find elements $\sigma(1)$ and $\sigma(2)$ of order 2 and 3 mhose indices correctly sum to 30. With a little additional work we can guarantee that they generate a transitive group. From these two conditions an easy lemma shows that $\sigma(1) \cdot \sigma(2)=\sigma(3)^{-1}$ is an $n-c y c l e$. The alternative procedure of [F,2] uses the character table to show that in certain conjugacy classes represented by elements $f(1)$ and c(2) of order 2 or 3 there are elements $\sigma(1)^{\prime}$ and $\sigma(2)^{\prime}$ whose
product is an n-cycle. This method has the advantage that it automatically identifies $G(g)$ as a particular subgroup of P P $(k, \mathbb{F}(q))$. a
§2.b) With a double degree representation.

Recall the notation $G\left(T_{I}, I\right)=\left\{\sigma \in G \mid(I) T_{I}(\sigma)=I\right\}$.
Def.2.2. Call a triple (G, T_{1}, T_{2}) a double degree representation of degree n if T_{1} and T_{2} are faithful representations of G of respective degrees n and $2 \cdot n$, and the following conditions hold:
(2.2) a) T_{I} is doubly transitive and T_{2} is not doubly transitive;
b) there exists $\sigma \in G$ with $T_{1}(\sigma)$ an n-cycle and $T_{2}(\sigma)$ a product of two n-cycles;
c) $G\left(T_{1}, 1\right)$ contains none of $G\left(T_{2}, j\right), j=1, \cdots, 2 \cdot n$; and
d) the restriction of T_{2} to $G\left(T_{1}, I\right)$ is intransitive.

Let $\left(G, T_{1}, T_{2}\right)$ be a double degree representation of degree n.
Let X_{i} be the group character of T_{i}, for $i=I, 2$, and write $X_{i}=I+\theta_{i}$. Then θ_{I} is an irreducible character of G ([日,I;p.279, Th.16.6.5]). If $n=3$, then $G\left(T_{2}, 1\right)=\langle I d$.$\rangle and if n=4, G\left(T_{2}, 1\right)$ (of index 8 in G) must be contained in one of the subgroups of S_{4} isomorphic to S_{3}. In both cases these contradict (2.2) c), so $n \geq 5$

The next lemas consider separately the possibilities that T_{2} is primitive and imprimitive. In this subsection we apply them (to Proposition 2.5) somewhat frivolously: to the case that $n=p$ is a prime ≤ 23. In Theorem 2.6, however, we apply Lemma 2.3 in the case that $G=A_{n}$ or S_{n}. Since we require $\hat{S} 3$ for a full proof of Lemma 2.3 our perspective on the result could be misleading. Finally, as we comment in $\grave{3} 2 . c$), an easier argument than Lemma 2.4 suffices for

Proposition 2.7 (and therefore Theorem l.10). But, other applications (of 84) do seem to require the full lemma.

LEMMA 2.3. Suppose T_{2} is primitive. Then the following bold:
(2.3) a) $2 \cdot n=2^{2}+1$ for some positive integer 2 ;
b) $G\left(T_{2}, 1\right)$ has orbits of length $2 \cdot(2-1) / 2$ and $2 \cdot(2+1) / 2$

으 $\{2, \cdots, 2 \cdot n\}$;
c) $G\left(T_{2}, I\right)$ acts faithfully on the orbit of b) of length $2 \cdot(2+1) / 2$, and if $n \neq 5$, also on the orbit of length $2 \cdot(1-1) / 2$; and
d) $G_{2}=X+\eta$ for characters X and 7 of G wirb $M(I \dot{d})=$.$n .$

Reduction to $\bar{i} 3 . b)$. Consider the representation T_{3} of G acting on the ordered pairs of integers (i.j), $I \leq i \leq n, I \leq j \leq 2 \cdot n$ oy the following formula:

$$
\begin{equation*}
(i, j) T_{3}(\sigma)=\left((i) T_{I}(\sigma),(j) T_{2}(\sigma)\right), \sigma \in G . \tag{2.4}
\end{equation*}
$$

From (2.2) d), T_{3} is intransitive. The Lemma is therefore exactly the statement, described as an unpubiished result, of the opening paragraph of [Sco,3]. For $n=p$, a prime, this appears ia [Wie, 1] which also gives an indication for general n of how (2.3)d) implies the remaining results. An improvement for p prime, showing that 2 cannot be a prime, appears in [Sco,2]. ב

LEMMA 2.4. Suppose that T_{2} is imprimitive. If $\mathrm{is} \mathrm{a} \mathrm{prime}$, then either G has a subgroup of index 2 or G is one of the groups that appears in the statement of Theorem 2.1.
proof. There exists a subgroup H of G with $G\left(T_{2}, 1\right) \subseteq \mathbb{H} \subseteq G$. As n is a prime, either $(G: H)=2$ or $(G: H)=n$. Assume G has no subgroup of index 2. Let $T_{G}^{H}\left(T_{2}, 1\right)$ be the permutation representation of H given by the right costs of $G\left(T_{2}, I\right)$. Denote its group character by $I_{G}^{H}\left(T_{2}, I\right)$. In the rest of our arguments we use the Frobenius reciprocity theorem ([H, 1;p.284, Theorem 16.7.3]). In particular, $I_{G}^{H}\left(T_{2}, I\right)$ is $I_{H}-\alpha$ where α is a character of H, and $G(I d)=1$. Now consider α^{G}, the character induced by α on G. Recall: If $G=H \cup H \cdot g_{1} U \cdots U H \cdot g_{n}$ are the right costs of H in G, then $\alpha^{G}(g)=\sum_{i=1}^{n} \bar{\alpha}\left(g_{i} \cdot g \cdot g_{i}^{-I}\right)$ where
(2.5)

$$
\bar{\alpha}\left(g_{ \pm} \cdot g \cdot g_{ \pm}^{-1}\right)= \begin{cases}0 \text { if } g_{i} \cdot g \cdot g_{i}^{-1} \neq ⿴ & ([H, 1 ; \text { Theorem 16.7.1]). } \\ \alpha\left(g_{i} \cdot g \cdot g_{i}^{-1}\right) \text { if } g_{i} \cdot g \cdot g_{i}^{-1} \in \mathbb{B}\end{cases}
$$

We claim that the subgroup A induces a coset representation T_{H}^{G} of G that is equivalent as a group representation to T_{1}. Indeed, we have only to show that $I_{H}^{G}=I_{G}+j_{I}$ (in the notation prior to Lemma 2.3). Divide the remainder of the proof into parts.
part 1. \mathcal{F}_{1} appears in $I_{G}^{G}\left(T_{2}, I\right)$. Use the inner product (, $)_{G\left(T_{2}, 1\right)}$ to compute. For α^{\prime} a character of G let res ${ }_{G\left(T_{2}, I\right)}\left(\alpha^{\prime}\right)$ be the restriction of α^{\prime} to $G\left(T_{2}, I\right)$. since $I_{G}{ }^{-} \mathcal{E}_{1}$ is the character of T_{1}, and since restriction of T_{1} to $G\left(T_{2}, 1\right)$ breaks up into a sum of at least two permutation representations, this restriction contains the character $l_{G}\left(T_{2}, 1\right)$ 隹th multiplicity at least 2. That is

$$
\begin{equation*}
\left(1_{G\left(T_{2}, 1\right)}, \operatorname{res}\left(1_{G}+E_{1}\right)\right)_{G\left(T_{2}, 1\right)} \geq 2 \tag{2.6}
\end{equation*}
$$

From Frobenius reciprocity, the expression on the left of (2.8) equals

$$
\begin{equation*}
\left.\left(I_{G\left(T_{2}, I\right)}^{G}, I_{G} \div I_{1}\right)_{G}=\left(I_{G\left(T_{2, I}\right.}^{G}\right), I_{G}\right)_{G} \div\left(I_{G}^{G}\left(T_{2}, I\right), \hat{I}_{I}\right)_{G} \tag{2.7}
\end{equation*}
$$

Again, by Frobenius reciprocity, $\quad\left(I_{G}^{G}\left(T_{2}, I\right), I_{G}\right)=1$, so $\left(I_{G}^{G}\left(T_{2}, I\right), \hat{H}_{1}\right)_{G} \geq 1$. This statement means that \hat{i}_{1} appears in $I_{G}^{G}\left(T_{2}, 1\right)$.
 the irreducible representation \mathcal{F}_{1} appears either in H_{A}^{G} or in α^{G}. If \exists_{1} appears in α^{G}, then $\alpha^{G}=\exists_{1} \div \equiv$ for some character $\dot{3}$ of G. But $\alpha^{G}(I d)=.(G: E) \cdot \alpha(I d$.$) and \exists_{I}(I d)=.n-1$, so $\equiv(I d)=$.1 . Thus 3 is a rational degree I character. Either the kernel of 3 is a subgroup of G of index 2, contrary to our initial assumption that G has no such group, or $3=I_{G}$, contrary to the appearance of I_{G} in $I_{G}^{G}\left(T_{2}, I\right)$ with multiplicity exactly 1 . Conclude there is $n 0$. such j, and that \hat{j}_{1} appears in I_{H}^{G}.

Write $I_{H}^{G}=I_{G}+G_{I}+\lambda$ With λ a character of G. Since λ (Id.) is the degree of λ, clearly $\lambda=0$. So, the permutation representation T_{H} is group equivalent to T_{1}. But, from (2.2)c) these representations are permutation inequivalent. a

PROPOSITION 2.5. Let $\left(G, T_{I}, T_{2}\right)$ be a double degree representation of degree \square. Then either
(2.8) a) $A_{n} \equiv G \equiv S_{D}$, or
b) $\operatorname{PSL}(k, F(q)) \equiv G E \operatorname{PrL}(k, F(q))$
for some $t \geq 2$ with $n=\left(q^{k}-1\right) /(q-1)$ and T_{1} the representation of G on the doints of $p^{k-1}(\mathbb{F}(q))$ (notation as in Theorem 2.1.).

Proof. First exclude the possibility that G is a solvable group. Double transitivity implies that suct a group is of prime power degree ([Bu,2;p.202-Burnside notes that this appears in the letter of May 29th, 1832, from Galois to his friend Chevalierl). But, since $T_{1}(\sigma)$ is an n-eycle zor some $\sigma \in G, n=p$ a prime or $n=4$ and $G=A_{4} \quad([R i ; p .27])$. Further, if $n=p$, then a p-sylow is normal. Deduce that $\left|G\left(T_{I}, I\right)\right|=p-I,\left|G\left(T_{2}, I\right)\right|=(p-I) / 2$ and $G\left(T_{1}, I\right)$ contains some conjugate of $G\left(T_{2}, I\right)$ contrary to (2.2)c).

Since G is not solvable, [Curtanse] implies that the proposition holds or G is one of the following: (i) $\operatorname{PSI}(2, Z /(I I)), n=11$; (ii) the Mathew group of degree II; or (iii) the Mathew group of degree 23. In cases (i), (ii) and (iii), since $2 \cdot \mathrm{n}$ is not of the form $1+2^{2}$, Lemma 2.3 implies that T_{2} is imprimitive. These are simple groups, so they contain no subgroups of index 2. Thus, Lemma 2.4 implies that G has a permutation representation equivalent, but permutation inequivalent to T_{I}. This excludes (ii) and (iii) (Theorem 2.1). Also, a subgroup of index 22 of $P S L(2, Z /(I I))$ would be of order 30. This is impossible, however: in a group of order 30 the $3-s y l o w$ and 5 -sylow centralize each, so there is an element of order li. In the action of this element on the 12 points of $\mathbb{P}^{l}(\mathbb{Z} /(11))$, its $3 r d$ power would fix more than 3 points, and so would be the identity. This leaves only the groups in the statement of the proposition. a

First, a serious application of Lemma 2.3 to improve Proposition 2.5.

THEOREM 2.6. For $\left(G, T_{1}, T_{2}\right)$ a double degree representation of degree $\square \neq 5, \operatorname{PSL}(k, \mathbb{F}(q)) \subseteq G \subseteq \operatorname{Pr} L(k, \mathbb{F}(q))$.

Proof. We must eliminate case (2.8) a) from Proposition 2.5. Assume $\mathrm{n} \geq 6$. Since A_{n} is simple, a subgroup H of index $l<k<n$ in A_{n} would give an embedding of A_{n} in S_{k}, a clear impossibility. Thus A_{n} has no subgroup of index less than n. Consider two cases.

Case I. T_{2} is primitive. From Lemma 2.3, $\left|G\left(T_{2}, 1\right)\right| \leq(2 \cdot(2-1) / 2)$! With $2 \cdot n=2^{2}+1$. But $\left|G\left(I_{2}, I\right)\right| \geq n!/ 4 \cdot n=(1 / 4) \cdot\left(\left(2^{2}-1\right) / 2\right)$:. Thus, $2 \leq 3$ and $n \leq 5$, contrary to assumption.

Case 2. T_{2} is imprimitive. If $G\left(T_{2}, 1\right) \subseteq H \subseteq G$, then either $(G: H)=2$ or $1<\left(A_{n}: A_{n} \cap E\right) \leq n$. In either case A_{n} bas a subgroup of index n containing $G\left(T_{2}, 1\right)$. For $n>6$, any subgroups of A_{n} (or S_{n}) of index n are conjugate ([Bu,2;p.208]). So, contrary to (2.2)c), $G\left(T_{2}, 1\right)$ is contained in a conjugate of $G\left(I_{I}, I\right)$. If $n=6$, then $G=A_{6}$ has a subgroup of index 12 , and thus a subgroup of order 30; an impossibility by the same arsument that appears at the end of prooz of Proposition 2.j. This leaves only the elimination of the case $G=S_{6}$. We outline this interesting exercise.

Note that S_{5} has δ cyclic subgroups of order 5 . Denote the normalizers of these, groups of order 20 , by $N_{I}=N(\langle(12345)\rangle)$, N_{2}, \cdots, N_{6}. Let S_{5} act on these by conjugation to give an embedding $H(1)$ of S_{j} in S_{6}. Let $H(1), \cdots, H(6)$ be the conjugates of $H(1)$
and let $G(I), \ldots, G(6)$ be the conjugates of the standard copy of S_{5} in S_{6}. Any subgroup K of index 6 in S_{6} would have a subgroup of order 20 in common with each of $H(I), \cdots, H(6), G(I), \cdots, G(6)$. So the elements of K of order 3 would be distinct from those of $H(I), \cdots, G(6)$ - contrary to an easy computation. Conclude that an imprimitive subgroup of S_{6} of index 12 is a conjugate of $A_{6} \cap H(I)$ or $A_{6} \cap G(I)$. Now apply Lemma 2.3 and the observation that $A_{G} \cap H(I)$ is a transitive subgroup of S_{6}.

Proof of Theorem I.I0. From Theorem 2.6 we need only consider the possibility that $\operatorname{PSL}(k, \mathbb{F}(q)) \subseteq G \subseteq P \Gamma(k, \mathbb{F}(q))$. For the first time, however, we need the conditions $G=G(\sigma)$ where - (1.7)(2.9) $\sum_{j=1}^{r-1} \operatorname{ind}\left(T_{I}(\sigma(j))\right)=2 \cdot(n-1), T_{I}(\sigma(r))$ is an $n-c y c l e$ and $\sum_{j=1}^{r-I} \operatorname{ind}\left(T_{2}(\sigma(j))\right)=2 \cdot n$.

We divide the proof into parts.

Part I. Elimination of the case $k=2$ and q odd. Here T_{1} is the representation of G on the points of the projective Iine $P^{1}(\mathbb{F}(q)), n=q+1$. If we let the integer 1 correspond to the point at s, then $G\left(T_{I}, I\right)$ is the group of semi-linear iransformations on $A^{I}(\mathbb{F}(q))$ in G. ClearIy, $G\left(T_{I}, I\right)$ is $N_{G}(P)$, the normalizer in G of the $p-s y l o w$ group P of translations by elements of $F(q)$. Suppose B is a group for which $P=H E P \Gamma(2, \mathbb{F}(q))$. Compute easily that either H is a subgroup of $N_{G}(P)$, or else H contains $\operatorname{PSI}(2, F(q))$. If q is odd, then, With no loss, assume that $G\left(T_{2}, I\right)$ contains P. Since T_{2} is $\pm a i t n f u I, \quad P S I(2, F(q)) \neq G\left(T_{2}, I\right)$. So $G\left(I_{2}, I\right) \equiv N_{G}(P)=G\left(I_{I}, I\right)$, contrary to condition (I)d). If $\quad 0=2$
and $P \subseteq G\left(T_{2}, I\right)$ conclude again that $G\left(T_{2}, I\right) \equiv G\left(T_{1}, I\right)$. Thus We may assume that $p=2$ and $P \nsubseteq G\left(T_{2}, I\right)$.

Part 2. The case $k=2$ and $q=2^{e}$. Consider the group $H_{I}=\operatorname{PSI}(2, \mathbb{F}(q)) \cap G\left(T_{2}, I\right)$. If $q=2^{e}$, then $\left|H_{I}\right|=2^{e-I} \cdot(q-1) \cdot k$ where k dipides $q \div 1$. If K is a proper subgroup of PSI(2, $\mathbb{F}\left(2^{e}\right)$) Which contains no conjugate of the $2-s y l o w ~ P$, then K satisfies one of the following conditions ([Bu,3] and [Bu,2;p.452]):
(2.10) a) $E=\operatorname{PSL}\left(2, F\left(2^{f}\right)\right)$ for some f dividing e;
b) K contains a cyclic subgroup C Nith either $|C|=2$ or odd, and $(\mathrm{K}: C) \leq 2$; or
c) $|K|=12,24$ or 50 .

Take K to be H_{I}. Conclude: If (2.10)a), then $B=\operatorname{PSI}\left(2,2^{e-I}\right)$ with $e-1 \mid e$, so $e=2$;if (2.10)b) and $|C|=2$, then $2^{e-I} \mid 4$ and $a=3$, contrary to assumptions; and if (9)b) and $|C|$ is odd, then $e=2$. Finally, consider case by case the possibilities of (2.10)c). If $\left|H_{1}\right|=24$, then $e=4$ and $2^{4}-I| | E_{1} \mid$, phich is not the case. And if $\left|H_{1}\right|=12$ or 60 , then $e=3$ and $2^{3}-1| | H_{1} \mid$, which is not the case.

We have thus eliminated all cases except $q=2^{2}, n=5$. But $\operatorname{PSI}(2, \mathbb{F}(4))=A_{5}$, as permitted by the statement of the proposition.

Part 3. Elimination of the case $k>2$. Finally we use condition (2.9). A list of the possible cases appears in comments in Theorem 2.1. We identify these again to outline the analysis that preceeds from $[F, 2]$ to their elimination:
(i) $\operatorname{PSL}(3, Z /(2)), \square=7$;
(ii) PSL(3, $/ /(3)), n=13$;
(iii) $\operatorname{PSL}(4, Z /(2)), \mathrm{I}=13$;
(iv) PrL(3,F(4)), $n=21$; and
(v) $\operatorname{PSI}(5, Z /(2)), \quad \mathrm{I}=3 I$.

For H a subgroup of G and T_{H} the associated permutation representation of G, decompose T_{H} as a direct sum $\sum_{i=1}^{r} c_{i} \cdot r_{i}$ of irreducible group representations \vec{i}_{i} (with positive multiplicity c_{i}) of G. From [$\left.\mathrm{Bu}, 2 ; p .274\right], \sum_{i=1}^{\Gamma}\left(c_{i}\right)^{2}$ equals the number of orbits of H in the representation T_{H} and c_{i} is the number of times the identity representation on E appears in the restriction of F_{i}. to H. Also, $(G: H)=\sum_{i=1}^{r} c_{i} \cdot \operatorname{deg}\left(\Gamma_{i}\right)$. Thus, if the character table of G is handy, we may, on occasion, use it to exclude the existence of a subgroup of inder equal to aspecific integer a. List all positive Iinear combinations $\sum_{i=1}^{r} c_{i} \cdot X_{i}$ of Q-Valued characters for which $\sum_{i=1}^{r} c_{i} \cdot \operatorname{deg}\left(x_{i}\right)=n$. If the representation T_{H} is known to be nondoubly transitive, then $I \geq 3$ ([Bu,2;p.3381). These comments suffice to show that PSL(5, $Z /(2)$) contains no subgroup of index 82 and that PSL(4,Z/(2)) contains no subgroup of index 30 ([Li;p.267] and comments from [F,2;p.24]-2]). This eliminates (iii) and (v).

Eliminate cases (i) and (ii) by applying Lemma 2.3 to conclude that T_{2} is imprimitive, contrary, since $\operatorname{deg}\left(T_{1}\right)$ is prime, to [Fr, 4 ; proof of Corollary 3]. This application of [Fr, 4] uses (2.9), as we must also in case (iv). Follow the method of the Appendix in case (iv) ([F, 2; Theorem 2]) to see that me may assume that $\sigma(I)$ is of order 2 , $\sigma(2)$ is of order f, $\operatorname{ind}\left(T_{1}(\sigma(I))\right)=7$ and $\operatorname{ind}\left(T_{1}(\sigma(2))\right)=13$. From the character table, however, compute that $\operatorname{ind}\left(T_{2}(\sigma(1))\right)=21$ and $\operatorname{ind}\left(T_{2}(\sigma(2))\right)=29$ $\left(\left[F, 2\right.\right.$;Lemma 3.13]). This contradicts $\operatorname{ind}\left(T_{2}(\epsilon(I))\right) \div \operatorname{ind}\left(T_{2}(\epsilon(2))\right)=42$.

Finally, note that we could have eliminated any use of Lemma 2.4 from the proof of Theorem 1.10 by applying [Fr,4; proof of Corollary 3].
§3. The rank of primitive double degree representations.
§3.a) Orbital characters.

This small subsection is primarily a survey. Let $T: H \rightarrow S_{m}$ be any transitive permutation representation. Consider the representation $T^{(2)}$ of H acting on the ordered pairs of integers (i,j), $1 \leq i, j \leq m$ by this formula:
(3.I) $\quad(i, j) T^{(2)}(\sigma)=((i) T(\sigma),(j) T(\sigma))$ for $\sigma \in R$.

Denote by $0_{1}, \cdots, o_{t}$ the orbits of H under $T^{(2)}$ and order these so that $O_{I}=\{(i, i) \mid I \leq i \leq m\}$.

Def.3.1. The $j t h$ orbital character, γ_{j}, is defined by the formula $Y_{j}(h)=\left|\left\{u \in\{1,2, \cdots, m\} \mid(u,(u) T(h)) \in O_{j}\right\}\right|, b \in H$. Thus Y_{l} is the character of T. Note that $\sum_{j=I}^{t} Y_{j}(h)=m$ and that $\gamma_{j}(b)$ is a sum of the lengths of certain of the orbits of the centralizer, $\operatorname{Cen}_{H}(h)$, of h in H under the representation T.

The centralizer ring, $V(H, T)$, of the representation T on H consists of the matrices of $\mathbb{M}(\mathbb{m}, C)$ that commute with all permutation matrices arising from H through T. Define A_{i}, the matrix associated to the orbit O_{i} by this formula: the $j \times l<$ entry of A_{i} is 1 if $(j, k) \in O_{i}$, 0 otherwise. The collection $\left\{A_{i}\right\}_{i=1}^{t}$ is a Q-basis for $\nabla(H, T)$. Also, by using idempotents of $V(H, T)$, there is a natural correspondence between isomorphism classes of indecomposable c[H] submodules of C^{m} and irreducible $V(H, T)$ submodules of $C^{\text {m }}$ ([ScO, 4 ; p.I03]). Thus, to each irreducible character constituent, x_{s}^{\prime} of the character $X(T)$ of T, there is a corresponding character, Δ_{s}, of the centralizer ring. We may express the orbital characters in terms
of the $X_{s}^{\prime}{ }^{\prime} s$ and the $\Delta_{s}{ }^{i} s$. More precisely:
LAMMA 3.2. For eact i, $v_{i}=\sum_{s} \Delta_{s}\left({ }^{t r} A_{i}\right) \cdot \chi_{s}^{\prime}$. Also, for each s, $\Delta_{S}(1) \cdot x_{S}^{\prime}=\left(x_{S}^{\prime}(1) / m\right) \cdot \sum_{i=1}\left(\Delta_{S}\left(A_{i}\right) / n(i)\right) \cdot y_{i} \quad$ where

$$
n(i)=\left|\left\{j \in\{1, \cdots, m\} \mid(1, j) \in 0_{i}\right\}\right|
$$

Outline of proof. For $h \in H$, calculate that $Y_{i}(h)$ is the trace of $t_{A_{i}} \cdot T(h)$ to get the first equation. Denote the centrally primitive idempotent associated to Δ_{S} by c_{S}. Write c_{S} as a general linear combination of the $A_{i}{ }^{2} s$. Then multiply by A_{i} and take traces to calculate that

$$
\begin{equation*}
c_{S}=\left(x_{S}^{\prime}(I) / m\right) \cdot \sum_{i}\left(\Delta_{S}\left(A_{i}\right) / n(i)\right) \cdot t_{A_{i}} \tag{3.2}
\end{equation*}
$$

The second formula follows by applying $T(h)$ on the right of both sides of (3.2).

Certain orthogonality relations immediately follow by applying Δ_{s}, to expression (3.2):
(3.3) $\sum_{i}\left(\Delta_{S}\left(A_{i}\right) \cdot \Delta_{s},\left(\operatorname{tr}_{A_{i}}\right)\right) / n(i)=\left\{\begin{array}{cc}m \cdot \Delta_{S}(I) / x_{S}^{\prime}(1) \quad \text { if } s=s^{\prime} \\ 0 & \text { otherwise }\end{array} \quad\right.$.

If we take $X_{1}=1$, then $\Delta_{1}\left(A_{i}\right)=n(i)$. As a special case of
(3.3): $\sum_{i} \Delta_{S}\left(A_{i}\right)$ is m if $s=1$, 0 otherwise.

Observe that $V(\#, T)$ is commutative precisely when $X(T)$ is multiplicity free, or, equivalently, when $\Delta_{s}(I)=I$ for all s. There are two further orthogonality relations, the second of which requires that $V(H, T)$ be commutative, as a result of taking the trace,
respectively, of A_{i} and of $A_{i} \cdot{ }^{\operatorname{tr}} A_{j}$:
(3.4) a)

$$
\sum_{s} X_{S}^{\prime}(I) \cdot \Delta_{S}\left(A_{i}\right)= \begin{cases}m & \text { if } i=1, \\ 0 & \text { otherwise; and }\end{cases}
$$

b) $\quad \sum_{s} X_{s}^{\prime}(I) \cdot \Delta_{s}\left(A_{i}\right) \cdot \Delta_{s}\left(\operatorname{tr}_{A_{j}}\right)=\left\{\begin{array}{cl}\operatorname{m} \cdot n(i) & \text { if } i=j \\ 0 & \text { otherwise }\end{array}\right.$.

In addition, $\Delta_{S}\left(A_{i}\right)$ is an algebraic integer. For $\sigma \in G(\bar{Q} / Q), \Delta_{S}\left(A_{i}\right)^{\sigma}=$ $\Delta_{s^{\prime}}\left(A_{i}\right)$ whenever $\left(X_{s}^{\prime}\right)^{\sigma}=X_{s}^{\prime}$, and $\Delta_{s}\left({ }^{t r} A_{i}\right)$ is the complex conjugate of $\Delta_{s}\left(A_{i}\right)$.

Finally, crucial to the proof of Proposition 3.6 is an inequality from [HiN].

LEMMA 3.3. For each i, $\left|\Delta_{S}\left(A_{i}\right) / n(i)\right| \leq \Delta_{S}(I)$, with equality for $i \neq 1$ only when G is imprimitive.
§3.b) Proof of Lemma 2.3.
Return to the notation of $\$ 2 . b):\left(G, T_{1}, T_{2}\right)$ is a double degree representation with $X_{i}=1+\theta_{i}$ the group character of T_{i}. Denote by $\sigma(\infty)$ the element of G for which $T_{1}(\sigma(\infty))$ is an n-cycle and $T_{2}(\sigma(\infty))$ is a product of two n-cycles. From Part 1 of the proof of Lemma 2.4,

$$
\begin{equation*}
\theta_{1} \text { is a constituent of } x_{2} \tag{3.5}
\end{equation*}
$$

Let $U=\langle\sigma(\infty)\rangle$ be the group generated by $\sigma(\infty)$.
The next lemma allows us to use expression (3.4)b).

LEMMA 3.4. If T_{2} is primitive, then the nonidentity constituents of X_{2} are faithful. In particular X_{2} is multiplicity free. Therefore the centralizer ring $V\left(G, T_{2}\right)$ is commutative.

Proof. Let x^{\prime}. be an irreducible constituent of $x_{2}, x^{\prime} \neq 1$. Suppose that $\operatorname{ker}\left(X^{\prime}\right)$, the kernel of the homomorphism of G into the endomorphism space afforded by X^{\prime}, is nontrivial. Since T_{2} is faithful, Ker $\left(x^{\prime}\right)$ is not contained in $G\left(T_{2}, I\right)$. And, as T_{2} is primitive, $G=G\left(T_{2}, I\right) \cdot \operatorname{ser}\left(X^{\prime}\right)$. Clearly, therefore, the restriction, res $_{G\left(T_{2}, I\right)}\left(X^{\prime}\right)$, of X^{\prime} to $G\left(T_{2}, I\right)$ is still irreducible. Now.apply Frobenius reciprocity (as in Lemma 2.4):
(3.6) $\quad\left(I_{G\left(T_{2}, 1\right)}^{G}, \chi^{\prime}\right)_{G}=\left(I_{G\left(T_{2}, I\right)}, \operatorname{res}_{G\left(T_{2}, I\right)}\left(x^{\prime}\right)\right)_{G\left(T_{2}, I\right)}=0$.

Since $I_{G\left(T_{2}, I\right)}^{G}=X_{2}$, this contradicts that x^{\prime} appears in X_{2}, and thus $k e r\left(X^{\prime}\right)$ is trivial.

In particular, the above paragraph shows that X_{2} contains no I-dimensional character (excluding 1). Now use (3.5). If the irreducible representation θ_{1} occurs with multiplicity 2 , then $x_{2}-2 \cdot \theta_{1}-1$ is a dimension one character, contrary to our previous conclusion. Otherwise, the restriction of $X_{2}-\mathcal{F}_{1}-1$ to U consists of 1 -dimensional characters, each of multiplicity 1 . In particular, $x_{2}-\exists_{1}-1$, and therefore x_{2}, is multiplicity free.

The restriction of X_{2} to U contains the identity character on U with multiplicity 2. Let $x_{1}^{\prime}=1, X_{2}^{\prime}=\theta_{1}$ and x_{3}^{\prime} the unique irreducible constituent of X_{2}, different from 1 , whose restriction to U contains I Apply the notation of $\hat{\beta} 3 . a)$. Since X_{2}^{\prime} and
X_{3}^{\prime} are Q-valued, $\Delta_{2}\left(A_{i}\right)$ and $\Delta_{3}\left(A_{i}\right)$ are in Z for all i.

LEMMA 3.5. For each $i=1, \ldots, t$, and each $\sigma \in U, y_{i}(\sigma)=0$, a or $2 \cdot n$. For some value of $i, Y_{i}(\sigma) \neq 0$. If $Y_{i}(\sigma)=n$ there is a unique $j \neq i$ with $\gamma_{j}(\sigma)=n$; and if $\gamma_{i}(\sigma)=2 \cdot n$, then $Y_{j}(\sigma)=0$ for all $j \neq i$.

There is at most one value of i for which $Y_{i}(\sigma)=2 \cdot n$ for some $\sigma \neq I d . \quad$ in U. For such an $i, n(i)=n-1$ and $\Delta_{2}\left(A_{i}\right)=-1$.
proof. The first part is immediate from $Y_{i}(\sigma)$ being the sum of certain orbit lengths of $\operatorname{Cen}_{G}(\sigma)$, and the formula $\sum_{i} Y_{i}(\sigma)=2 \cdot n$. For the last paragraph of the lemma apply Lemma 3.2 to find x_{2}^{\prime} in terms of the $y_{i}{ }^{\prime} s$. Since $1+x_{2}^{\prime}$ is the regular character on $U, X_{2}^{\prime}(\sigma)=-1$. So
(3.7) $-1=(n-1) \cdot \Delta_{2}\left(A_{i}\right) / n(i)$ or $n(i)=(n-1) \cdot\left(-\Delta_{2}\left(A_{i}\right)\right)$.

If $n(i)=2 \cdot(n-I)$, then there would be $j \neq 1$ with $n(j)=1$. This contradicts the primitivity of X_{2}. Hence $n(i)=n-1$ and $\Delta_{2}\left(A_{i}\right)=-1$. Similarly, the index i is unique.

If $Y_{i}(\sigma)=2 \cdot n$ for some $\sigma \neq I d$. in Lemma 3.j, call i "bad." Otherwise call i "good."

PROPOSITION 3.6. If all $i \neq I$ are good, then $\sum_{i=2}^{t} \Delta_{3}\left(A_{i}\right) / n(i)=r-3$. In particular, $r=3$, and Lemma 2.3 holds.

Proof. Among the constituents of x_{2}, only x_{1}^{\prime} and x_{3}^{\prime} contain 1 when restricted to U. For any i, Lemma 3.2 implies that

$$
\left(y_{i}, l\right)_{U}=\Delta_{1}\left(A_{i}\right)+\Delta_{3}\left(\operatorname{tr}_{A_{i}}\right)=n(i)+\Delta_{3}\left(A_{i}\right)
$$

If i is "good," then y_{i} takes only the values 0 or n on U. Clearly, therefore, $\left(\gamma_{i}, \gamma_{i}\right)_{U}=n \cdot\left(\gamma_{i}, I\right)_{U}=n \cdot\left(n(i)+\Delta_{3}\left(A_{i}\right)\right)$. But Lemma 3.2 gives another expression for this:

$$
\left(\gamma_{i}, \gamma_{i}\right)_{T}=\sum_{s, s^{\prime}} \Delta_{S}\left({ }^{t r_{A_{i}}}\right) \cdot \Delta_{s^{\prime}}\left(A_{i}\right) \cdot\left(\chi_{S}^{\prime}, \chi_{S^{\prime}}^{\prime}\right)_{U}
$$

Divide by $n(i)$ and sum over all i to get
(3.8) $\sum_{i=1}^{t}\left(Y_{i}, Y_{i}\right)_{U} / n(i)=\sum_{S, S^{\prime}}\left(X_{S}^{\prime}, X_{S}^{\prime},\right)_{U} \sum_{i} \Delta_{S}\left({ }^{\operatorname{tr}} A_{i}\right) \cdot \Delta_{S},\left(A_{i}\right) / n(i)=$

$$
=\sum_{S}\left(X_{S}^{6}, X_{S}^{\prime}\right)_{U} \cdot(2 \cdot n) / X_{S}^{\prime}(I)=t \cdot 2 \cdot \square .
$$

Recall that $\gamma_{I}=x_{2}$ and therefore that $\left(\gamma_{I}, \gamma_{I}\right)_{U}=4 \cdot n$. Use the assumption that all ifl are "good" (and the first expression for $\left(\gamma_{i}, \gamma_{i}\right)_{U}{ }^{2}$ to recompute (3.8):
(3.9)

$$
\sum_{i=1}^{t}\left(y_{i}, Y_{i}\right)_{U} / n(i)=4 \cdot n+\sum_{i=2}^{t}\left(I+\Delta_{3}\left(A_{i}\right) / n(i)\right) \cdot n
$$

Combine (3.8) and (3.9) to get $\sum_{i=2}^{t} \Delta_{3}\left(A_{i}\right) / n(i)=r-3$.
From the inequality $I=\left(x_{3}^{\prime}, I\right)_{U} \geq\left(n-I+x_{3}^{\prime}(I)\right) / n$, concIude that $X_{3}^{\prime}(\sigma) \leq 0$ for some $\sigma \neq I d$. in U. From Lemma 3.5 there exist distinct i and j with $\gamma_{i}(\sigma)=\gamma_{j}(\sigma)=n$. Apply Lemma 3.2 to x_{3}^{\prime} to get $0 \geq\left(x_{3}^{\prime}(I) / 2\right) \cdot\left(\Delta_{3}\left(A_{i}\right) / n(i)+\Delta_{3}\left(A_{j}\right) / n(j)\right)$. From the expression of the last paragraph,

$$
\begin{equation*}
\sum_{k=1, i, j} \Delta_{3}\left(A_{k}\right) / n(k) \geq r-3 \tag{3.10}
\end{equation*}
$$

The left side of (3.10) has $r-3$ terms, so there exists k with $\Delta_{3}\left(A_{k}\right) / n(k) \geq 1$ if $r>3$. Since χ_{2} is primitive, conclude that $r=3$ from Lemma 3.3. Now conclude Lemma 2.3 from [Wie,i].

In the remainder of the subsection we assume that there exists a "bad" value of i; let it be $i=2$. This leads to a contradiction which, combined with Proposition 3.6, concludes the proof of Lemma 2.3. Note that, since $n(i)=n-1$ only for $i=2, A_{i}=\operatorname{tr}_{A_{i}}$.

LEMMA 3.8. For each $\sigma \in U, \gamma_{2}(\sigma)=0$ or $2 \cdot n$.

Proof. Use Lemmas 3.1 and 3.2 to calculate:

$$
\begin{gathered}
\left(y_{2}, y_{2}\right)_{U}=\sum_{s, s^{\prime}} \Delta_{s}\left(A_{2}\right) \cdot \Delta_{s},\left(A_{2}\right) \cdot\left(x_{s}^{\prime}, x_{s}^{\prime}\right)_{U}= \\
\sum_{s} \Delta_{s}\left(A_{2}\right) \cdot \Delta_{s}\left(A_{2}\right) \cdot x_{s}^{\prime}(I)+2 \cdot \sum_{s \neq 2} \Delta_{2}\left(A_{2}\right) \cdot \Delta_{s}\left(A_{2}\right) \cdot x_{s}^{\prime}(I)+ \\
\left(-2 \cdot \Delta_{2}\left(A_{2}\right) \cdot \Delta_{2}\left(A_{2}\right) \cdot(n-I)-2 \cdot \Delta_{2}\left(A_{2}\right) \cdot \Delta_{3}\left(A_{2}\right)-2 \cdot \Delta_{2}\left(A_{2}\right) \cdot \Delta_{I}\left(A_{2}\right)\right) \\
+2 \cdot \Delta_{1}\left(A_{2}\right) \cdot \Delta_{3}\left(A_{2}\right)=2 n \cdot(n-1)+0-2 \cdot(-I)^{2} \cdot(n-I) \\
+2 \cdot \Delta_{3}\left(A_{2}\right) \div 2 \cdot(n-1)=2 \cdot n \cdot\left(n-1+\Delta_{3}\left(A_{2}\right)\right)
\end{gathered}
$$

Thus $\left(\gamma_{2}, \gamma_{2}\right)_{U}=2 \cdot n \cdot\left(y_{2}, 1\right)_{U}$. But, if $\alpha($ resp., β) is the number of times that γ_{2} takes the value n (resp., 2.n) on U, then

$$
\alpha+2 \cdot \beta=\left(\gamma_{2}, 1\right)_{U}, \text { or } \alpha \cdot n+4 \cdot \beta \cdot n=\left(\gamma_{2}, \gamma_{2}\right)_{U}
$$

Conclude that $\alpha=0$ - the conclusion of the lemma holds

LEMMA 3.9. For $j>2$,
(3.1I) $\quad 0=n \cdot\left(\Delta_{2}\left(A_{j}\right)+\Delta_{3}\left(A_{j}\right)\right)+\left(\Delta_{3}\left(A_{2}\right)+1\right) \cdot\left(n(j)-\Delta_{2}\left(A_{j}\right)\right)$

Proof. From Lemma 3.5 combined with Lemma 3.8, $\left(y_{2}, y_{j}\right)_{U}=0$. On the other hand, a direct calculation of $\left(y_{2}, Y_{j}\right)_{U}$, as in Lemma 3.8 gives the result.

LEMMA 3.10. For $\sigma \in U-\{I d$.$\} and a=x_{3}^{\prime}(I) \cdot \Delta_{3}\left(A_{2}\right) /(n-I)$, either $\gamma_{2}(\sigma) \neq 0$ and $X_{3}^{\prime}(\sigma)=\mathrm{a}$, or $\quad \gamma_{2}(\sigma)=0$ and $\quad X_{3}^{\prime}(\sigma)=-\mathrm{a}$.

Proof. If $Y_{2}(\sigma) \neq 0$ then $Y_{2}(\sigma)=2 \cdot n$ (Lemma 3.8). So $Y_{j}(\sigma)=0$ for $j \neq 2$, and the result follows from an application of the second formula of Lemma 3.2 to X_{3}^{\prime}.

If $\gamma_{2}(\sigma)=0$, Lemma 3.5 produces unique i and j with $\gamma_{i}(\sigma)=\gamma_{j}(\sigma)=n, 2 \neq i \neq j$. Again apply Lemma 3.2:

$$
\begin{equation*}
x_{3}^{\prime}(\sigma)=\left(x_{3}^{\prime}(I) / 2\right) \cdot\left(\Delta_{3}\left(A_{i}\right) / n(i)+\Delta_{3}\left(A_{j}\right) / n(j)\right) \tag{3.12}
\end{equation*}
$$

Use Lemma 3.9 on each of the terms on the right side of expression (3.12):
(3.13) $0=n \cdot\left(\Delta_{2}\left(A_{i}\right) / n(i)+\Delta_{2}\left(A_{j}\right) / n(j)+\Delta_{3}\left(A_{i}\right) / n(i) \div \Delta_{3}\left(A_{j}\right) / n(j)\right)$

$$
\div\left(\Delta_{3}\left(A_{2}\right)+1\right) \cdot\left(2-\Delta_{2}\left(A_{i}\right) / n(i)-\Delta_{2}\left(A_{j}\right) / n(j)\right)
$$

Since $-1=((n-1) / 2) \cdot\left(\Delta_{2}\left(A_{i}\right) / n(i)+\Delta_{2}\left(A_{j}\right) n(j)\right)$ (use Lemma 3.2 on $\left.X_{2}^{\prime}\right)$, (3.13) gives

$$
\begin{align*}
0 & =n \cdot\left((-2 /(n-1))+\Delta_{3}\left(A_{i}\right) / n(i)+\Delta_{3}\left(A_{j}\right) / n(j)\right. \tag{3.14}\\
& +\left(\Delta_{3}\left(A_{2}\right)+1\right) \cdot(2+2 /(n-1)) .
\end{align*}
$$

A little rearrangement of (3.14) plugged into the right side of expression (3.12) concludes the lemma.

The conclusion of Lemma 3.10 is the key to the remaining argument. It, together with the multiplicity free Q - valued restriction of X_{3}^{\prime} to U, will force $X_{3}^{\prime}(I)$ to be $I, n-I$ or n. The first two cases contradict Lemma 3.4 since they imply that X_{2} has a nontrivial degree constituent. If $\chi_{3}^{\prime}(I)=n$, then the conclusion of Proposition 3.6 holds, anyway; although this contradicts Lemma 3.5 as $\gamma_{i}(\sigma)$ must be nonzero for at least•two values of $i>2$ for some $\sigma \in U$.

PROPOSITION 3.11. Let \mathcal{E} be a multiplicity free Q - Valued character on a finite cyclic group U of order a. Let a^{\prime} (resp., a) be the g.c.d of all values of ξ on U (resp., of all values of ξ on U-\{Id.\}) . Then $a^{\prime} \mid n$ and there exists a character v on the subgroup of index a^{\prime} in U such that $弓=\psi{ }^{U}$, the character induced on U by ψ.

Similary, if ξ is not the regular representation of U, then $a \mid n$ and $;=\psi$ where ψ is a character of the subgroup of index a. In either situation, if a^{\prime} (resp., a) >1, then 3 vanishes on any generator of U.

Proof. If $a^{\prime}=1$ we are done. Otherwise let p be a prime divisor of a^{\prime}. Then $3 \bmod p \equiv 0$, so $p \mid n$. Write. $U=U(1) \times U(2)$ Where $U(1)$ is a p-sylow of U, and let $U(0)$ be the subgroup of $U(1)$ of index p. We divide the rest of the proof into parts.

Part 1. Properties of characters of $U(1) \times U(2)$. The general irreducible rational character of $U(I) \times U(2)$ is ω. 0 where μ (resp., φ) is a rational irreducible character of $U(I)$ (resp., $U(2)$) . In addition, H is either I or the form $I_{L}^{U(I)}-I_{K}^{U(I)}$ with $L \subseteq K$ subgroups of $U(I)$ and $(K: L)=p:$ an easy combinatorial consequence of counting that this gives the correct number of ir: reducible rational characters of $U(1)$.

Part 2. $\left.\xi\right|_{U(0) x U(2)}=p \cdot \psi$. In the notation of Part 1 , if $K \neq U(1)$, then the restriction of $I_{L}^{U(I)}-I_{K}^{U(1)}$ to $U(0)$ is p times the character $I_{L}^{U(0)}-I_{K}^{U(0)}$. Thus, $I_{U(I)}$ and $I_{U(O)}^{U(I)}-I_{U(I)}$ are the only irreducible $\mu^{*} s$ whose restriction to $U(0)$ is not p times a character. These are the only $H^{\prime} s$ such that $\perp \bmod p \neq 0$.

Since $\overline{\bmod p} \equiv 0$ and the $\varphi^{i} s \bmod p$ are linearly independent, $\left(I_{U(0)}^{U(I)}-I_{U(I)}\right) \cdot \varphi$ must appear in ξ whenever $I_{U(I)} \cdot \varphi$ does; and vice-versa. Of course, the restriction of their sum to $U(0) \times U(2)$ is p times $I_{U(0)} \cdot 0$. We are done.

Part 3. Conclusion of the properties of a^{\prime}. From Part 2, $\xi \subseteq p \cdot y$. Since $弓$ is multiplicity free, $弓 \subseteq \psi^{U}$. But $\xi(I)=p \cdot \psi(I)=\psi^{U}(I)$ implies $\xi=\psi^{U}$. The properties of a^{\prime} therefore follow by induction.

Part 4. Conclusion of the properties of a. Let o be the regular character of U. Then $p-\xi$ also satisfies the hypotheses. If
$(\xi, I)=0$ then clearly a divides $\xi(1)$, and the conclusion of Part 3 applies.

Otherwise $(\rho-\xi, I)=0$ and Part 3 applies to $\rho-\mathcal{Z}: 0-\xi=\psi^{U}$ Where ψ is a character of the subgroup W of index a in U. So $\xi=\rho-\psi^{U}==^{U}-\psi^{U}=\left(I^{W}-\psi\right)^{U}$. As ψ is obviously multiplicity free, $I^{W}-\psi$ is a character. This completes the proof.

To finish the section (as stated prior to Proposition 3.11) we need only show that $\xi=\left.X_{3}^{\prime}\right|_{U}$ has $\xi(I)=I, n-I$ or n. Take a in Proposition 3.11 to be the value that is labeled a in Lemma 3.10.

If $a=0$, then f is the regular character and $\xi(I)=2$. If a. $\neq 0$, then Proposition 3.11 implies that $a= \pm 1$. Thus $(\xi, \xi)=\xi(I), n-I+\xi(1)^{2}=\xi(I) \cdot n$, and therefore $\xi(I)=I$ or $n-I$.
§4. Variants of the Hilbert-Siegel problem.

The precise result of Theorem 1.10 is a consequence of the hypotheses that $h(y)$ is an indecomposable polynomial with coefficients in Q . Without the indecomposability condition (but h Still in Q[y]) we would be considering condition (I.12): $\mathcal{A}(\mathrm{h}, \mathrm{g})$ is newly reducible with g a polynomial of the same degree as h or condition (1.13)a) holds. Let, however, σ (\oint I.a)) be a description of the branch cycles for $\mathbb{P}_{y}^{l} \xrightarrow{\varphi(h)} \mathbb{P}_{x}^{l}$. We can no longer assert that $G(\sigma)$ is doubly transitive (not even primitive) and therefore the classification of simple groups through [CuKanSe] would be of little immediate value unless we can understand $G(\sigma)$ in terms of branch cycles for the covers given by composition factors of h. Actually, there are practical possibilities in this direction ([Fr,2; §5.3, c)]), but they do not yield results like Theorem 1.10. Therefore, in all the rest of our discussion we retain an indecomposability (i.e., primitive group) assumption.

Replace Q by any number field K. The analogous study to Theorem 1.10 would consider O_{K}, the ring of integers of K, and those indecomposable $h \in O_{K}[y]$ for which the set $\left\{x_{0} \in \mathcal{O}_{K}\right.$ with $h(y)-x_{o}$ reducible\} consists of $V\left(h ; 0_{K}\right)$ and a finite set. From Lemma 1.9 this is the study of condition (1.12). In that statement it is easy to draw a further conclusion about $\mathrm{T}_{2}(\sigma(r))$:

IEMMA 4.1. If h is indecomposable and condition (I.12) holds, then either $T_{2}(\sigma(r))$ is an n-cycle or $T_{2}(\sigma(r))$ is the product of an n-cycle and an m_{2}-cycle with m_{2} a divisor of n greater than l (and $\left.\operatorname{deg}\left(T_{2}\right)=m=n+m_{2}\right)$.

Proof. First suppose that $m_{2}=1$. Then, since $\operatorname{deg}\left(T_{2}\right)=n+1$ and $T_{2}(\sigma(r))$ is a product of a 1 -cycle and an n-cycle, $G(\sigma)$ is doubly transitive in the representation T_{2}. But $G(\underline{\sigma})$ bas an intransitive subgroup, $G\left(T_{1}, 1\right)$, of index n according to condition (I.8). This contradicts an elementary lemma in group theory: A doubly transitive group has no intransitive subgroup of index less than its degree.

Suppose only that $T_{2}(\sigma(r))$ is not an n-cycle. The argument above shows that $\operatorname{deg}\left(T_{2}\right)=m_{I}+m_{2}$ is at least as large as n. Since $2 . c . m .\left(m_{1}, m_{2}\right)=n$, check that either m_{1} or m_{2} equals n. This concludes the lemma.

If $\mathrm{T}_{2}(\sigma(r))$ is an n-cycle, then the polynomials listed in Theorem l.8 $(\operatorname{deg}(h)=7,11,13,15,21,31-e . g .$, as in the appendix) give exceptional cases to a result analogous to Theorem 1.10. If $T_{2}(\sigma(r))$ is a product of two n-cycles, the degree 5 polynomials of Theorem l.IO give the only additional exceptional cases (over any field K). The serious remaining question: Are there other exceptional polynomials h for which $T_{2}(\sigma(r))$ is a product of an n-cycle and an m_{2} - cycle with $m_{2}<n$? We don't even know of any triples
 that $T_{2}(\sigma)$ be a product of an n-cycle and an m_{2}-cycle with $\mathrm{m}_{2}<\mathrm{n}$.

Variation of coefficients other than the constant term. Suppose $h \in Z[y]$ For $0<i<n$ consider $R\left(h(y)+x \cdot y^{i} ; z\right)=\left\{x_{0} \in Z \quad h(y)+x_{0} \cdot y^{i}\right.$ is reducible in $Z[y]\}$. In order to describe $R\left(h(y) \div x \cdot y^{i} ; Z\right)$, Lemma 1.9 tells us to find those $g \in C(z)$ for which $\mathcal{\gamma}\left(h(y) / y^{i}, g(z)\right)$ is newly reducible where condition (I.II)a) holds for g. In terms of
group theory we must find groups $G=G(\sigma)$ with (1.7)a) and b), (I.8)a) and b), $T_{I}(\sigma(r))$ is a product of an i-cycle and an (n-i) cycle, and $T_{2}(\sigma(r))$ is a product of two ($m / 2$)-cycles. Thus $m / 2$ is l.c.m(i,n-i). If i and n are relatively prime, indecomposability of $h(y) / y^{i}$ (i.e., primitivity of T_{l}) is an easy consequence. This case would not, however, include cases arising from the doubly transitive groups containing on n-cycle that appear in Theorem 2.1. Indeed, we would expect a similarly striking analogue to Theorem l.lo, but noone has worked out the group theory.

Mordell analogue of Hilbert-Siegel problem. The results above have all considered specialization of x to integer values. Consider, instead for $h(y) \in Q[y], P(h(y)-x ; Q)=\left\{x_{0} \in Q \mid h(y)-x_{0}\right.$ is reducible in $Q[y]\}$. In order to get a result similar to Theorem I.10 we must assume the Mordell conjecture: A nonsingular projective curve, of genus at least 2 , defined over a number field K has only finitely many K-rational points. With this assumption we have a variant on Lemma 1.9.

LEMMA 4.2. Let $Y(h ; Q)=\left\{x_{0} \in Q \mid h\left(y_{0}\right)=x_{0}\right.$ for some $\left.y_{0} \in Q\right\}$. Suppose that σ is a description of the branch cycles of the cover $\left.\mathbb{P}_{y}^{I} \xrightarrow{0(h)} \mathbb{P}_{X}^{I}(\hat{y} I . a)\right)$, and $G=G(\underline{G}) \subseteq S_{n}$, and that $G(\underline{\sigma})$ has no subgroup H with these properties:
(4.1) a) H is an intransitive subgroup of S_{n};
b) no conjugate of $G(I)=\{\sigma \in G \mid(I) \sigma=I\}$ contains H; and
c) $\sum_{i=1}^{r} \operatorname{ind}\left(T_{H}(\sigma(i))\right)=2 \cdot(G: H)$ or $2 \cdot(G: H)-2$.

Then $P(h(y)-x ; Q)$ is the union of $V(h ; Q)$ with a finite set. There are approximate converses (sic) to Lemma 4.2 ([Fr,2;ヶ8.6]), but they naturally rely on number theory rather than pure group theory. Thus, in some sense, condition (4.1) is the best tool for investigating analogues of Theorem 1.10. But, for every integer n there are indecomposable polynomials h of degree n for which $\mathcal{P}(h(y)-x ; Q)-V(h ; Q)$ is infinite. Indeed, these include polynomials h for which a description of the branch cycles of $\mathbb{P}_{\mathrm{Y}}^{\mathrm{I}} \xrightarrow{\varphi(\mathrm{h})} \mathbb{P}_{\mathrm{X}}^{\mathrm{I}}$ is given by expression 1.9 of Ex.I.5.

REFERENCES

[BE]	R. Biggers and M. Eried, Moduli spaces of covers
and the Hurwitz monodromy group, J. fir die reine	
und angewandte Mathematik, lg82.	

[$\mathrm{Fr}, \mathrm{l}]$	M. Eried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, The Santa Cruz Conference on finite groups, Proceeedings of Symposia in Pure Mathematics, Vol. 37 (1980), Providence R.I., 571-602.
[E r, 2]	M. Fried, Application's of Riemann's existence theorem to arithmetic and algebraic geometry, manuscript in preparation.
[Fr, 3]	M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials, Ill. J. Math. 17 (1973), 128-146.
[Er, 4]	M. Fried, On Hilbert's irreducibility theorem, Vol. 6, NO. 3 (1974), 211-232.
[$E=5$]	M. Fried, On a theorem of MacCluer, Acta Arith. 25 (1974), 122-127.
[$E r, 6]$	M. Fried, On a conjecture of Schur, Mich. Math. J. 17 (1970), 41-55.
[$E r, 7]$	M. Fried, Eields of definition of function fields and Hurwitz families..., Comm. in Algebra 5 (1), 1977, 17-82.
[Gor]	D. Gorenstein, Finite simple groups: an introduction to their classification, Academic Press, New York, 1982 .
[H,1]	M. Hall Jr., The theory of groups, Macmillan, N.Y., 1963.
[$\mathrm{H}, 2]$	M. Hall Jr., Combinatorial theory, Blaisdell Pub. Co., Waltham Mass., 1967.
[Ha]	H. Hasse, Bericht über neurere Untersuchungen und Probleme aus der theorie der algebraischen Zahlkorper, Jber. dt. Mat. Varein: Part I, 36 (1926), 1-55; Part Ia, 36 (1927), 233-311; Part II, Exg. Bb, 6 (1930), 1-204
[HiN]	D. G. Higman and P. Neumann,
[Je]	W. Jehne, Kronecker classes of algebraic number fields, J. No. Theory 9 (1977), 279-320.
[RI, 1]	N. KIingen, Atomare Kroneckerklassen mit speziellen Galoisgruppen, Escheint in Abh. Math. Sem. Hamburg.

[K1,2]	N. Kingen, Zahlkörpermit gleicher Primzerlegung, J. fur die reine und angewandte Mathematik, 299/300 (1978), 342-384.
[Kro]	E. Kronecker, Über die Irreductibilität von Gleichungen, Monatsber. Preuss. Akad. Wiss. (1380), 155-163 (Werke II, 85-93).
[Li]	D. E. Littlewood, The theory of group charcters, Oxford Univ. Press, New York, London, 1940.
[Ri]	J. Ritt, On algebraic functions which can be expressed in terms of radicals, T.A.M.S. 24 (1922), 21-30.
[S]	C. L. Siegel, öber einige unwendungen diophantischer approximationen, Abh. Preuss. dkad. Wiss, Phys. - Math. K1. 1 (1929), 14-67.
[Sc, 1]	A schinzel, Some unsolved problems, Mat. Bibl., 25 (1963), 63-70.
$[S C, 2]$	A. Schinzel, Reducibility of polynomials of the form $f(x)-g(y)$, Coll. Math. 18 (1967), 213-218.
$[S C, 3]$	A. Schinzel, Reducibility of polynomials, Actes Congress Intern. Math. 1970, Vol. 1, 491,496.
[Schu]	V. Schulze, Die Vertielung der primteiler von Polynomen auf Restklassen, I, J. reine und angew. Math. 280 (1976), 122-133; II, J. reine und angew. Math. 281 (1976), 126-148.
[Sch]	I. Schur, Zur theorie der einfach transitiven Permutationsgruppen, S. - B. Preuss. Axad. Tiss., Phys. - Math. Kl. (1933), 598-623.
[Sco, 1]	L. L. Scott, Uniprimitive Permutation Groups, in theory of finite groups, a symposium at Harvard University, W. A. Benjamin Inc., 1969, 55-62.
[Sco, 2]	L. L. Scott, on permutation groups of degree $2 p$, Math. Z. 126 (1972), 227-229.
[Sco, 3]	L. L. Scott, on the $n, 2 n$ problem of Michael Fried, proceedings of the conference of finite groups, Academic Press, New York, 1976, 471-472.
[Sco, 4]	L. $L . S c o t t, M o d u l a r ~ p e r m u t a t i o n ~ r e p r e s e n t a t i o n s, ~$ T.A.M.S. 175 (1973), 101-121.

[So] V.G. Sprindv̌uk, Reducibility of polynomials and rational points on algebraic curves, Seminar on Number Theory, Paris 1979-80, 287-309, Progress in Math. 12, Birkhaeuser, Boston, Mass., 1981.
[Tv] H. Tverberg, A study in irreducibility of polynomials, Dept. Of Math., Univ. of Bergen, 1968.
[Wie,l] H. Wielandt, Primitive Permutationsgruppen von Grad 2p , Math. Zeit. 63 (I956), 478-485.
[Wie,2] H. Wielandt, Permutation groups through invariant relations and invariant functions, Lecture Notes, Dept. of Math., Ohio State Univ., Columbus, Ohio, 1969.

