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Now we turn to the Hilbert-Siegel problems. Let K be a number 

field and let f(x,y) € K[x,yl be an absolutely irreducible polynomla:. 

Define: 

For g E: K(y) define V(g;OK)'" [xo €0KI there exis1:s Yo ~ K wi-:l:: 

g(yo) = x } . o 

LEMMA 1:1 There exist gl'" ', g2 ~ K(y) with these properties : 

has at most two places over x = =>(1.1) . a) 

b) 

i = 1 ···2 ; and, } -
R (f ;(}K) ,., V(gl;(}K)U 

a finite set. 

., • U V(g,t ;(}K) U Vi wbere Vi is 

Proof. This is a 

a speC i al case of 

slight generalization of 

[Fr,l; Theorem 1.1]. • 

[Fr,4; Theorem IJ and 

Assume in Lemma 1.1 that is a minimal set of ratlonal 
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func t ions satisfying (1.11). Then gl"" ',g2 is a complete list, 

up to linear fractional changes of the variables, of the rational 

functions g satisfying these properties: ~ (g) satisfies (l. t )(t ); 

f(x,g(y» is reducible; and for g = gel) (g(2») with deg(g(2» > 1 

f (x,gCl)CY») is not reducible. For the rest of this section consider 

the case f(x,y) = h(y)-x Then, according to Lemma 1. 1, the study 

of R ( h (y) - x ;0'K) reduces to this: 

THE 1ST HILBERT-SIEGEL PROBLL~: Describe explicitly, for all nand m 

( 1. .;1..) [(h,g)i hEC[Y} of degree n,gc:c ( z) of degree m , 


7"(h,g) is newly reducible and (1. 1)..) holds for o Cg) } 


[~~~~'~~'h~:9~~ 
In terms of group tneory thlS ~e~~we have a g~'fGk) for -et....t.~ - ~r~-
whic h expressions (1.7) a) and b), and ( 1.8 ) a ) and b) hold , a:J.d (from ;1. 
Lemma 1. 3) either n=m ((1.7) c») or T (0' ( r» is a product of an2
 

m - cycle and an m - cycle wi th m + m = m and n is the least

l 2 l 2 


common multiple of and Further special cases: 


C1'a) [ eh, g) that satisfy (1. :l., with r;r 
Q 

= "'I / g2 the ratio 

of relatively prime polynomials of degree 2'n,g2 a power 

of a quadratic with distinct zeros}; and 

b) [(h,g ) that satisfy C 1. 3)~ with h i.:1decomposable } . 

THEORE1'1 L a.. For hey) E Z [ Y] of degree unequal to 0, ",:he. c:.ol1~ lC.ti <!) n 


V( h;Z )
is reducible consists ofof x o Co 
- z. for which 


and a finite set. The exceptional cases of deg~ee 5 include all 


polynomials tha t satisfy 



• 


(1 . 14 ) a) d~ (h ( y» = (y - a) . (y - b) . (y - c) . (y - d) a, b J cand dJ 

distinct, and 


b) hea) = h(b) . 


Reduction to §2.c) From [Fr,4j Corollary 2] this follows from the classiiicatio[ 

of those h for which there exists g with (h,g) satisfying (1.13Yb). 

In turn, from expression (1.7), the result follows from the classificatior. 

of double degree represen tat ions - § 2. c). ..Example 1.5 for n = 5 consists 

of polynomials which are exceptional for the statement of the theorem, 

but the general exceptional case is given by condition (1.14). This 

corresponds to «12) (3 4) J (15) (53) J (l 23 45)-1) as a descriptionJ 

of the branch cycles for ]pl CD (h) • IPl To get a spec if ic example
y x 

with coefficients in ~ take a = - b v
./~2 

J so 

5h (y) (1/5) . y 

. 2 . 
+ (c+d)·y -2·c.d.y 

Then h (J2) = h (-)2) together wi th the condi tion tha t t!:le coetf ic ien ts 

are in ~ implies that c·d = -2/5 
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§2. Doubly transitive representations. 

§ 2 .a) With an n-cycle. 

Return to the case (1.9) b) of Davenport's problem: h is an 

indecomposable polynomial, and g is linearly inequivalent to b 

but Kronecker conjugate to h From [FrJl; Theorem 2.11, in addition 

to conditions (1.7) a),b) and c) with Tl replacing T(h) and T2 

replacing T(g) , 

( 2 .1 ) Tl and T2 are equivalent (but permutation inequivalent) 

group representations - both doubly transitive. 

From [CuKanSe] the classification of finite simple groups ([Gar]) 

yields the classification of all ~imple groups with a faithful doubly 

transitive representation. In particular, their results imply 

THEOREM 2.1. 11 (1.7) c) and (2.1) hold, then either n = 11 and 

G (Q:. ) - PSL(2}Z/(11» or PSL(K,lF(q»~ G(~) c PrL(k}lF(q» with 

k t n= (q -l)/(q-l) for some k > 3 and for some orime pq - P . 

If! in addi tion) (1.7) a) (and b» bold! the allowable integers n 

are exactly 7,ll,13}15,21 and 31. Thus, these are exactly the integers 

for which there is a newly reducible polynomial nair (h,g) (§ l . b) 

with h indecomposable. 

Notation and collation of results from [F , l,2,3] and [Fr,1 1 . The 

general linear group GL(k,lF(q» acts on F(q)k. Denote the 

group generated by GL(k,lF(q») and the pth power map on the co

ordinates by rL(k, IF(q)) . Th e n Pr L (k, :IF ( q) ) is the quotient o f 

rL(k .. lF ( q» induced by the action of rL(k, IF(q)) on the points of 
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~-l(F(q) - the points of projective k-l-space with coordinates in 

JF (q) Finally, PSL(k~IF(q)) (resp., PGL(k, F(q) is the image 

in PrL(k ! IF(q)) of the subgroup SL(k, IF(q)) of matrices of deter

minant 1 Cresp., of GL(K, F(q))) 

The first sentence of the theorem is from [CuKanSe]. The second 

sentence is outlined in [Fr,l; p.592] and completed in detail in 

[F,l; Theorem 4]. These include simple demonstrations that 

with r ~ 3 or 4 and r = 4 only if n· 7 or 13. The groups 

that occur are these ([F,2]): n - 11 and G - PSL(2,Z/(11)) ; and 

G,.. PrL(k,q) with (k,q):II (3,2), (4,2), (5 , 2), (3,3) or (3,4). The 

degree 11 (nonstandard) representations of PSL(2, Z/ (11» arise ."from 

an Hadamard design ([H,2; p.291, item ~5 in Table 1]). The approach 

to the case n = 13 in the appendix avoids the [F,2] use of charac

ter tables; it is especially valuable in the case n = 11 

One final point about the case n = 31 The elimination of the 

case (k , q) - (3 , 5) goes something like this: In the action of the 

2 group on lP (Z/ (5)) , [Fr,l; p.5921 shows that we may assume that 

r - 3 ,0-(1) is of order 2 and u(2) is of order 3, and 

ind (u (1)) = (31- 5)/2 ,.. 13. From (1.7) a) conclude ind (0- (2» = 17 , 

a contradiction to u (2) being of order 3. Thus the case n"" 31 

4arises from collineations acting on the points of lP (Z/(2» . We 

easily find elements u(l) and 0-(2) of order 2 and 3 whose indices 

correctly sum to 30. With a little additional work we can guarantee 

that they generate a transitive group. From these two conditions an 

easy lemma shows that u (l)'u (2) ... u (3) -1 is an n - cycle. The 

alternative procedure of [F,2] .uses the character table to show 

that in certain conjugacy classes represented by elements cr(l) and 

cr(2) of order 2 or 3 there are elements 0-(1)' and u(2)' whose 
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product is an n - cycle. This method has the advantage that it auto

matically identifies G(£) as a particular subgroup of P:L(k J ~(q)) .• 

§ 2.b) With a double degree representation. 

Recall the notation G(T }1) ... [0 E Gj (l)T (0) "" I}l l 

Def.2 . 2. Call a triple (G JT ,T2 ) a double degree representationl 

of degree n if Tl and T2 are faithful representations of G of 

respective degrees nand 2.n, and the following conditions hold: 

(2 .2 ) a) Tl is doubly transitive and T2 is not doubly transitive; 

b) there exists cr E G with Tl (cr) an n - cycle and T2 ' (c) 

a product of two n - cycles; 

c) G (T 1 J1) contains none of G(T 2J j) J j '" 1}···J2·n , and 

d) the restriction of T2 to G(Tl,l) is intransitive. 

Let (G,T1J T2) be a double degree representation of degree n 

Let be the group character of i - 1,2 J and write 

Xi '"" 1+9 · Then 8 is an irreducible character of G C[H J1;p.279}i 1 

Th.16.6.S]). If n'" 3 J then G(T2J l) ... <rd.> and if n ... 4 J G(T 2 ,l) 

(of index 8 in G) must be contained in one of the subgroups of S4 

isomorphic to S3' In both cases these contradict (2.2) c)) so n>5 

The next lemmas consider separately the possibilities that T2 

is primitive and imprimitive. In this subsection we apply them (to 

Proposition 2.5) somewhat frivolously: to the case that n'" p is a 

prime < 23 In Theorem 2.6} however, we apply Lemma 2.3 in the case 

that G = A or S Since we require §3 for a full proof of n n 

Lemma 2.3 our perspective on the result could be misleading. Finally) 

as we comment in §2.c)J an easier argument than Lemma 2.4 suffices for 
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Proposition 2.7 (and therefore Theorem 1.10). But, other applications 

(of 94) do seem to require the full lemma. 

LEMMA 2.3. Suppose T2 is primitive. Then the following bold: 

(2.3) 	 a)2 'n_ N 
12 _., 1 for-o~ me coS ~ ' t'~ve itn eger 


b) G(T ,l) has orbits of length 1.' (.2. -1) / 2 and 1.' (1.+ 1) / 2 
2 

f 2 .•. 2· n} .on t, J I 

c) G(T2J l) acts faithfully on the orbit of b) of length 

j.·(.t+l)/2 , and if n F 5 ) also on the orbit of leng':h 

1.' (1. - 1) / 2 and 

d) ... X .... f1 for characters 'I.., and of G with 1(Id.) =n9 2 	 1 

Reduction to §3. b). Cons ider the represent at ion T 3 of G act ing on the ordered 

pairs of integers (i,j») 1 < i < n ) 1 < j ~ 2' n by the following 

formula: 

(2 .4) 

Fram (2. 2) d) J T 3 is intrans it i v e . The Lemma is therefore exactly the 

statement) described as an unpublished resul t of the opening para-I 

graph of [Sco,3]. For n ,. p, a pri:;ne, this appears i.:1 [Wie,l] 

which also gives an indication for general n of how ( 2.3)d) implies 

the remaining results. An improvement for p prime, showing that L 

cannot be a prime) appears in [Sco J 2}. ~ 

2.4. Suppose that is imprimitive. If n is a pri:ne)LEMMA 	 T2 

one of 	the groupsthen either G has a subgroup of index 2 or G is 

that aeeears in the statement of Theorem 2.1. 
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given by the 

Proof. There exists a subgroup H of G with G(T2 ,l) ~ H ~ G . 

As n is a prime, eithe~ (G:H) 2 or (G:H) ~ n. Assume G has 

no subgroup of index 2. Let ~ be the pe~utation representationG(T2 ,l) 

of H rigb~ cosets of G(T2 ,l) Denote its group charac

ter by In the rest of our arguments we use the Frobenius 

reciprocity theorem C[H,l;p.284, Theorem 16. 7 .3 J) . In particular, 

IH 
G(T2 ,1) is 1E -:- a where a is a character of n and ~ (Id) = 1 


G
Now consider C:! J the character induced by a on G Recall: 

If G" H U H'g1U"·UH·O' are the rigbt cosets of H in G J thenOn 
~ - -1Ct? (g) = ~ a(g .• g.g. ) where 
i-I ~ ~ 

(2.5) 0 if g.' g . g -:-1 t H 
~ ~ 

=- ([H,l;Theorem 16.7.1]) . 
{ a(g '0"0'-1) if g '0"0'-1 ~ H 

:1 ° 0:1 i '" °i 

We claim that the subgroup H induces a coset representation 

that i~ equivalent as a group represen~ation to Tl . 

Indeed, we have only to show that ~ = IG -;- ~1 (in the notat:on 

prior to Lemma 2.3). Divide the remainder of the proof into parts. 

Part 1. '1 appears in 19(T ,1) Use the inner product 

2
 

-<) to compute. For a' a character of G letG(T2 ,l) 

resG (T l) (a') be the restric~ion of a' to G(T2 ,l) Since IG-;-:l 
2J 

is the character of T1 J and since res~riction of T1 to G(T2 ,l) 

breaks up into a sum of at least two per~utation ~epresen~ations, this 

restriction contains the character with multiplicity at least 

2. That is 

(2 . 6) 2 . 
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From Frobenius reciprocity) the expression on the left of (2.6) equals 

(2.7) 

Again, by Frobenius reciprocity) ) so 

This statement means that appears in 

G G G G" . LG.Part.2 :: 1 aooears ~n n Since IGCT ,l ) ,.. (~~cd -lH.;.-a
2 

Gthe irreducible represen~~tion either in ~ or in a 

G
If appears in et , then for some character 3 of 

G. But aG(Id.) - (G:H)'a(Id.) and dlCId. ) = n-l, so ~(Id.) = 1 

Thus 3 is a rational degree 1 character, Either the ker~el of 3 

is a subgroup of G of index 2, contrary to our initial assump~~on 

that G has no such group, or S - lG ' contrary to the appearance of 

appears 

with multiplicity exactly 1. Conclude there is no.in 

such ~ S 1 appears in ~ 

Write I GH - 1G.,..::7 l 
~, \" with a character of G . 3ince 

;-.. CId. ) is the degree of ,I., clearly ,\ 0, So) the pe~uta~ion 

representation TH is group equivalent to T1 But, fro m ( 2 . 2) c ) t he s e 

representations are pe~utation inequivalent. ~ 

} and tha t 

PROPOSITION 2.5. 

of degree n. Then either 

b) PSL(k,IF (q » G :::: P!"L(k,IF ( q ) 



for some k > 2 with n - (q 
k 

-l)/(q-l) the reDresentation. 
o f G on the points of pk-l OF (q» (notation as in Theorem 2 .1.) . 

Proof. First exclude the possibility that G is a solvable group. 

Double transitivity implies that such a group is of prime power degree 

([Bu J 2;p.202-Burnside notes that this appears i.n the letter of JIay 29"thJ 

1832 J from Galois to his friend Chevalier]). But; since Tl (0') is an 

n - cycle.. for some ~ E.~J n.- p a · prime or n ,.. 4 and 

G = A4 ( [Ri; p. 27]). Further, if n = p then a p - sylow is normal. DeduceJ 

that IG(TIJ 1) \ = p - 1 ; IG(T2 , l)! (p - 1)/2 and G(Tl,l) contains some 

conjugate of G(T2J l) contrary to (2.2)c). 

Since G is not solvable, [CUrKanSel implies that the Proposition 

holds or G is one of the following: ( i ) re L ( 2 , ZI (11» , n ,.. 11 

(ii) the JIathew group of degree 11; or (iii) the ~athew group of 

degree 	23. I!l cases (i), (ii) and (iii), since 2' n is not of the 

2form 1 -7 1. J Lemma 2.3 implies tha t T2 is imprimit ive. These 

are Simple groups, so they contain no subgroups of index 2. Thus, 

Lemma 2. 4 implies that G has a permutation representat ion equiv

alent, but permutation inequivalent to Tl . This excludes (1i) and 

(iii) (Theorem 2.1), Also, a subgroup of index 22 of PSL ( 2,Z/ (11» 

would be of order 30. This is impossible, however: in a group of 

order 30 the 3-sylow and 5-sylow centralize each , so there is an 

element of order 15 . In the action of this element on the 12 points 

o f wlez/ ell» , its 3rd power would fix more than 3 paints) and so 

would be the identity . This leaves only the groups in the statemen"t of 

the propos i tion. II 



§ 2 .c) Proof of Theorem 1.10 . 

First, a serious application of Lemma 2 . 3 to improve Proposition 2.5. 

THEOREM 2.6. For (G,T l ,T2 ) a double degree representation of degree 

Jn p 5 PSL(k, :IF (q» c G '= prL(k, :IF (q» 

Proof. We must eliminate case (2.8) a) from Proposition 2 . 5. Assume 

n > 6. Since A is simple, a subgroup H of index 1 < k < n in 
n 

An would give an embedding of An in Sk a clear impossibility. 

Thus A has no subgroup of index less than n . Consider two cases. n 

Case l. T? is .crimitive. From Lemma 2.3} I G (T 2,1) I < (.2.' (1.-1) / 2).. 
~with 2 0 n .. 1.

2 + 1 But IG(T 2 ,1) 1 -> n~/4'n ( 1/ 4) . ( ( 1. ... 
? 

- 1) 1 2) ! . 
Thus, 1. < 3 and n < 5 , contrary to assumption. 

Case 2. is imorimitive. If G(T 2 ,1) '- ~ G , then eitherT2 -
"1"" 

H 

(G:R) =- 2 or 1 < (A :A nH) < n In either case A has a sub-n n n 

g=oup of index n contai!ling G(T 2 ,l) For n > 6 , any subgroups 

of A (or S ) of index n are conjugate ( [ Bu, 2; p . 208} ) . So,n n 

contrary to (2.2)c), G(T 2 ,1) is contained in a conjugate of 

G(T1,1 ) . If n - 6 then G :a A6 has a subgroup of i.:ldex 12, andJ 

thus a subgroup of order 30; an impossibility by the same argument 

-chat apgears at the end of proof of Proposition 2.5. This leaves 

only the. elimination of the case G S6 . We outline this 

int eresting exercise. 

a 

Note that 55 has 6 cyclic subgroups of order 5. Denote the 

normalizers of these, groups of order 20, by Nl = N«(12345» ) , 

Let 5_
;) 

act on these by conjugation to give an embedding 

Let H (1),''' , H ( 6) be the conjugates of H( l) 
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and let G(l),' ",G(6) be the conjugates of the standard copy of 

S 5 in S6' Any subgroup K of index 6 in S6 would have a sub

group of order 20 in common with each of H(l)," ',H(6) ) G(1))"',G(6) 

So the elements of K of order 3 would be distinct from those of 

H(l))··· ,G(6) - contrary to an easy computation. Conclude that an 

imprimitive subgroup of S6 of index 12 is a conjugate of A6 n H (1) 

or A6 n G(l) . Now apply Lemma 2.3 and the observation that A6 ( 'I E(l) 

is a transitive subgroup of S6 a 

Proof of Theorem 
\ 

1.10. From Theorem 2 . 6 we need only consider the 

possibility that PSL(k) F(q) c G ~ PrL(k) F(q) . For the first 

time) however, we need the conditions G = G (~) where - (1.7) 

r-l 
(2.9) ,r; ind (T1 (c (j))) = 2· (n - 1) ) T 1 Co (r) ) is an n - cycle and 

J=l 

r-1 
~ ind (T 2 (0' (j ) ) ) 2'n . 

j=l 

We divide the proof into parts. 

Part 1. Elimination of the case k = 2 and q odd. Here Tl is 

the representation of G on the points of the projective 

line P1 (:IF (q) ) n ,. q + 1. If we let the integer 1 correspond to the 

point at ~ I then G(Tl1l) is the group of semi-linear ~ransfo~ations 

on Al(:IF(q)) in G. Clearly} G(Tl,l) is NG(P) the :lormalizerI 

in G of the p - sylow group P of translations by elements of IF (q) 

Suppose H is a g=oup for which P =H = P."L(2}IF(q» Compute 

easily that either H is a subgroup of NG(P) , or else H contains 

PSL(2 1 IF ( q) . If q is odd) then} with no loss} assume tb at 

G(T
2

, 1) contains P. Since T2 is faithful} PSL ( 2}IF (q»;t G(T 21 1) 

So G(T 2 1l) ~ NG ( P) = G(T11l) contrary to condition ( l)d). If p ~ 2I 
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and P ~ G(T2,1) conclude ag ain that G (T1 ) 1 ) . Th us 

we may assume that p ~ 2 and P ~ G(T )1) .
2

Part 2. The case k = 2 and q = 2e. Consider the group 

H1 - PS L ( 2 , :IF ( q» :1 G (T2 .J 1 ) . If q - 2
e 

) then j Hll - 2e - l '(q_1).k 

where it divides q.'1-l. If K is a proper subgroup of PSL(2)JF ( 2e » 

which contains no conjugate of the 2-sylow P, then K sa1:isfies 

one of the following conditions ([Bu)3] and [Bu,2;p.452]): 

f e(2 . 10 ) a) K ~ PSL(2,JF(2 » for some f dividing . 
1 

b) K con~ains a cyclic subgroup C ~ith either l c: - 2 or 

odd, and (K ; C) < 2 ; or 

c) IKI =- 12,24 or 60. 

Take K to be Hl Conclude: If (2.10) a), then H :.. PSL ( 2) 2e - 1 ) 

1wi.th e-l \• e , so e =- 2; if (2.l0)b) and 1CI == 2 , then 2e - 1 4J 

and n = 3 .J contrary to assumptions ; and if (9)b) and I ci is odd, 

then e - 2. Finally, consider case by case the possibilities of 

(2 .10)c). If IHll :a 24, then e =- 4 and 24 -1 f IH11 which is notJ 

23the case. And if IHli os 12 or 60, then e" 3 and - 1] 1gl l , 

which is not the case. 

We have thus el~inated all cases except But 

PS L ( 2, IF (4» A_, aspenlittedby the statement of the proposition.::.0 

o 

Part 3. Elimination of the case k > 2. Finally we use condition 

(2.9). A list of the possible cases appears in comments in 

Theorem 2.1. We identify these again to outline the anal ysis 

that preceeds from [F,2} to their elimination: 
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(i) PSL(3, zi (2)), n =- 7 (ii) 	 PSL(3,Z!(3)) J n =- 13 

(iv) ~L(3]lF(4»), n-21 and( iii) PS L ( 4 J Z! (2 ) ) II =- 13 

(v) 	 PS L ( 5 ] zi (2) ) n - 31 . 

the associated pe~u~ationFor H a subgroup of G 
r 

as a direct sum L: c, . r ' representation of G ] decompose , 1 ~ ~ 
~"" 

(with positive mult~p1ici~yof irreducible group representations ~i 
. r 2 

equals the number of oro itsc1.') of G. From [Bu,2;p.274I, ~ (c i )i-l 
is the number of times theof R in the representation TH and c i 

identity representation on H appears 	in the restriction of ',., to 
r - ... 


H Also, (G:H)'" L: c. ·deg(f.) Thus, i.f the character table of 

i-l 1. ~ 


G is handy] we may, on occasion, use it to e~clude the e~istence of 


a subgroup of index equal to a specific 	integer n. List all positive 
r 

linear combinations 2: c:((i of ~ - valued characters for ?lhich 
r . i-I 

2:.' c .. deg ('t.) - n -. If the representation Tu is known to be non-

i-I ~ ' '1. ~ 

doubly transitive, then r > 3 C[Bu,2;p.33S1). These comments suffice 

to show that PSL(5,Z!(2») contains no subgroup of index 62 and that 

PSL(4,Z/(2)) contains no subgroup of index 30 ([Li;p.267] and comments 

from [F,2jp.24l-2}). This el~inates (iii) and (v). 

Eliminate cases (i) and (ii) by applying Le~a 2.3 to conclude 

that T2 ~s imprimitive, contrary, Since deg(T ) is pri..:ne, to [Fr,4jl 

proof of Corollary 3}. This application of [Fr, 4J uses (2.9), as we must also 

in case (iv). Follow the method 0 f the Appendix in case (iv) C[F J 2; Theorem 2]) to 

see that we may assume that ~(l) is of order 2, ~(2) is of order 4, 


From the character table, 


however, compute that ind(T2(~ (1») ~ 21 and ind(T 2 (=(2») ~ 29 


C[ F,2;Lemma 3.13]). This con"tradic~s ind(T2 k(1») ~ind (T2k(2») =42 .• 



Finally, note that we could have eliminated any use of Lemma 2.4 

from the proof of Theorem 1.10 by applying [Fr,4; proof of Corollary 3}. 



§3. The rank of primitive double degree representations. 

§3.a) Orbital characters. 

This small subsection is primarily a survey. Let T: H ~ S be m 

any transitive permutation representation. Consider the representation 

T (2 ) of H acting on the ordered pairs of integers (i,j), 1 <i,j Sm 

by this formula: 

(3.1) (i,j)T(2) (0') - «1)T(0') (j)T(O'» for 0' ~ H .J 

Denote by ° l' ... 't ° the orbits of H under T(2) and order these 

Def.3.l. The jth orbital character, , is defined by the formulaYj 

y.(h) -1[u~[1,2'''''Jm} \ (u, (u)T(h»~O·}1 ,hER. Thus Y is the 
J . t J l 

character of T. Note that E y . (h) - m and that y . (h) is a sum 
j-l J J 

of the lengths of certain of the orbits of the centralizer, Ce~(h) J 

of h in H under the representation T . 

The centralizer ring, V(R,T), of the representation T on H 

consists of the matrices of ~(mJC) that commute with all permutation 

matrices arising from H through T Define A. , the matrix associated 
~ 

to the orbit 0i by this formula: the j x }~ entry of A. is 1 if 
~ 

. t 
(j,k) ~ 0i' ° otherwise. The collection CA. 

~ 
}. 
~-

1 is a ~ - basis for 

V(H,T) . Also, by using idempotents of V(H,T) , there is a natural 

correspondence between isomorphism classes of indecomposable C [H] 

submodules of em and irreducible V(H,T) submodules of em ([Sco,4; 

p.l03]). Thus, to each irreducible character cons t i tuen t, I of theXs 

character X(T) of T , there is a corresponding character, 6 , of s 


the centralizer ring. We may express the orbital characters in terms 




J.~ 

of the I 's and the t:. t S More precisely:Xs S 

T,EMMA 3.2. For eacb i, Y i - E t:.s (trAi)'X~' Also, for each s J 

. . t s 
t:. ( 1) .x' - (X' (l)/m)' I: (t. (A. )/n (i»·y. where 

s . s s ·1-1 s ~ ~ 

Outline of proof. For h E H , calculate that Yi(h) is the trace 

of trA.'-T(h) to get the first equation. Denote the centrally primitive 
~ 

idempotent associated to 6. Write as a general linears 

combination of the ALts . Then multiply by Ai and take traces to 

calculate that 

(3 .2) 

The second formula follows by applying T(h) on the right of both 

sides of (3.2). • 

Certain orthogonality relations Lmmediately follow by applying 

t:.S' to expression (3.2): _! if ~ s Im • t:. s (1 ) / X~ (I) s 
. tr 

(3.3) E(6. (A.).6. ,( A.»/n(i) . s ~ s ~ 
~ 0 otherwise 

If we take Xl - 1 then 6. 1 (Ai) - n (1) . As a special case ofJ 

(3.3): E 6. (A.) is m if s - 1 ,0 otherwise. 
i S J.. 

Observe that V(H,T) is commutative precisely when XCT) is 

multiplicity free, or, equivalently, when 6. (l) = 1 for all s . s 

There are two further orthogonality relations, the second of which 

requires that V(H,T) be commutative} as a result of taking the trace} 
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" "tr
respectively, of A. and of A.· A. 

~ 	 ~ J 

if i - 1 , 
(3 .4 ) a) 

otherwise; and 

if i" j" "" tr {mono(i)
b) 	 Z; y' (1)· A (A.). A ( A .) 

S ' '5 " s ~ s J 
 otherwise 

In addition, A (A.) is an algebraic integer. For cr E G(~/~) ,A CA . )cr =s ~ s ~ 

AS' (A~) whenever ( ,)cr , d C. (trA. ) is the complex conjugateXs - Xs' J an s ~ 

of c. (A . ) .
" s ~ 

Finally, crucial to the proof of Proposition 3.6 is an inequ~lity 

from [BiN J . 

~~ 3.3. For each i, lc.s(Ai)/n(i)l < As(l) , with equality for 

i F 1 only wben G is imprimitive. 

§3.b) Proof of Lemma 2.3. 

Return to the notation of §2.b): (G J T ,T2 ) is a double de~ee1 

representation with X' - 1 + e. the group character of T .. Denote 
~ ~ 	 ~ 

by cC=) the element of G for which Tl(c(=» is an n-cycleand 

T2 (c (=» is a product of two n - cycles. From Part 1 of the proof of: 

Lemma 2.4, 

(3 .5 ) 	 ~ a constituent of X2 .81 

Let 	 u .. < cr (=) > be the group generated by cr (=) . 

The next lemma allows us to use expression (3.4)b). 
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LEMMA 3.4. If T2 is primitive, then the nonidentity constituents 

of are faithful. In parti:cular X2 is multiplicity free. There

fore the centralizer ring V(G,T2 ) is commutative. 

Proof. Let X' be an irreducible constituent of X2 X' f; 1. SupposeJ 

that ker(x / ), the kernel of the homomorphism of G into the endo

morphism space afforded by X' is nontrivial. Since T2 is faithful, 


Ker(x') is not contained in G(T2 ,l) . And, as T2 is primitive, 


G - G(T2 ,l)oker(x') Clearly, therefore, the restriction, 


res G(T ,l) (X') , of X' to G(T 2 ,l) is still irreducible. Now.apply 

2 

Frobenius reciprocity (as in Lemma 2.4): 

(3.6) 

Since 1 G _ X2 ' this contradicts that x' appears inG(T2 ,l) 

and thus ker(X / ) is trivial.. 

In particular, the above paragraph shows that X2 contains no 

1 - dimensional character (excluding 1). Now use (3.5). If the ir

reducible representation occurs with multiplicity 2 , then81 

X2 - 20 91 - 1 is a dimens ion one char acter, contrary to our prev ious 

conclusion. Otherwise, the restriction of X2 - 3 - 1 to U consists1 

of 1 - dimens ional charact ers, each of mul t iplic i ty 1. In part icular ) 

X2 - - 1 , and therefore X2' is multiplicity free. 31 

The restriction of to U contains the identity character 

and the uniqueon U with multiplicity 2. Let 

irreducible constituent of X2) different from 1 whose restriction 

to U contains 1.. Apply the notation of §3.a). Since and 
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LEMMA 3.5. For each i - lJ·~~Jt J and each Y . (0')
1 

- 0 J n or 

2·0. For some value of i J Yi(O') ~ 0 If Yi(O') = n there is a 

unique j ~ 
I i with-Y j (0' ) .. n I and if Yi (0') - 2·n J then 

Yj (0') - 0 for all j 
I 

r i 

There is at most oDe value of i for which Y i (0') ... 2·n for 

some 0' f:. Id. in U. For such an i J n(i) - n - 1 and ~2 (Ai) .. - I 

Proof. The first part is immedia te from Y i (0') be ing 

the sum of certaLu orbit lengths of CenG(O') ) and the formula 

t Y . (0') .. 2·n . For the last paragraph of the lemma apply Lemma 3.2 
. :L 
l. ,
to find I in terms of the Y . ' s Since 1 is the regularX2 l. + X2 

character on U J X2(0-) - -1 . So 

(3 .7) 

If n ( i) = 2. Cn - 1) J then there would be j ~ 1 with n (j) = 1 . 

This contradicts the primiti'vity of X2' Hence n (i) ,. n - 1 and 

~ 2 (Ai) = -1. SimilarlYJ the index i is unique. 

...
If y. (0') .. 2·n for some 0-;: Id. in Lemma 3.5, call i "bad." 

l. 

Otherwise call i II good. " 

t 
PROPOS IT ION 3. 6 . If all i f:. I are good) then ~ ~ 3 (A. ) / n (i) - r - 3 . 

i-2 l. 

In particular) r ~ 3 J and Lemma 2.3 holds. 

Proof. Among the constituents of X2 J only and contain 1 

when restricted to U. For any i J Lemma 3.2 implies that 
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If i is "good)" then Y i takes ooly the values 0 or 0 on U . 
. . 

Clearly} therefore, (Yi'Yi)U - ~'(Yi,l)U'" o·(n(i) +6 3 (A i » • But 

Lemma 3.2 gives another expression for this: 

tr ... . 
~ 6 ( A . ) .6 I (A. ) • (y I , Y I I ) U ,s lo S lo ''5 ''5 s, s 

Divide by o(i) and sum over all i to get 

(3.8) 

Recall that YI - X2 and therefore that (Yl'Yl)U ~ 4·n. Use 

the assumption that all i f: 1 are "good" (and the first expression 

for (Y"Y')U1 to recompute (3.8):
~ .~ 

t t 
(3.9) ~ (y.,y.) /n(i) "" 4·n + ~ (1+6 (A.)/n(i).n

'1 ~loU" . 2 3 ~ lo- lo- . 

t 
Combine (3.8) and (3.9) to get r:6 (A . )/n(i) =r-3. 

. 2 3 ~ 
~-

From the inequality 1 = (X3) 1) U > (n - 1 + X3 (1) )/n , conclude 

that X3(cr) < a for some cr F rd. in U From Lemma 3.5 there 

exist distinct i and j with Yi(cr) - yj(cr) - n. Apply Lemma 3.2 

to to get a > (x;(1)/2)'.(c. (A )/n(i) + 6 (A )/n U » . From the
3 i 3 j
 

expression of the last paragraph, 
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(3 .10) 


The left side of (3.10) has r-3 terms, so there exists k with 

Since is primitive, conclude that 

r - 3 from Lemma 3.3. Now conclude Lemma 2.3 from [Wie,l}. • 

In the remainder of the subsection we assume\ that there exists 

a "bad" value of :L; let it be i - 2. This leads to a contradiction 

which, combined with Proposition 3.6, concludes the proof of Lemma 2.3. 

Note that, since o.(i) - n -1 only for i - 2 , Ai trAi 

I.EMMA 3.8. For each cr E U 'Y2(cr) - 0 or 2·0.. 

Proof. Use Lemmas 3.1 and 3.2 to calculate: 

, <. • 

(-2·6. (rl. )·u (A )·(n-l) - 2·6. (A )·6. (A ) - 2.0 (A )·6. (A ))2 2 2 2 2 2 3 2 2 2 1 2

.
2. (0. - 1) - 2.o.·(n - 1 + 6. (A )3 2 

But, if ~ Cresp.) p) is the number 

of times that takes the value n Cresp. , on U , thenY2 
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... 

a + 2·S - (Y2,1)u J or a·n + 4'~'n - (Y2 JY 2)U 

Conclude that a - 0 - the conclusion of the lemma holds. • 

LEMMA 3. 9 . For j > 2 J 

.. 

(3.11) o - n· (~2(Aj) + ~3(Aj» + (~3(A2) +l).(n(j) -~2(Aj» 

Proof. From Lemma 3.5 combined with Lemma 3.8, (Y2 JY j)U - o. On 

the other hand, a direct calculation of (Y2'Y j )U) as in Lemma 3.8 

gives the result. I 

LEMMA 3.10. For- a € U - [Id.} and a - X3 (1) '~3 (A 2 )/ (n - 1) " either 

Y 2 (a) F 0 and X3 (0') - a } or Y 2 (0') - 0 and X3 (a) - -a . 

Proof. If Y 2 (0') F 0 then Y 2 (0') - 2'n (Lemma 3.8) . So Y . (O'} - 0 
J 

for j ~ 2 J and. the result follows from an application of the second 

formula of Lemma 3.2 to X3 


If Y 2 (0') - 0 J Lemma 3.5 produces unique i and j with 


. J. .
Y i (0') -Y j (0') - n J 2 F ~ r J . Again apply Lemma 3.2: 

. . . 

(3 .12) X3(0') - (X3(1)/2).(A (A i )/n(i) + D. 3 (A )/n U » .3 j 

Use Lemma 3.9 on each of the terms on the right side of expression (3.12): 

(3 .13) o - n· (c. (A.)/n(i) +u2(A.)!n(j) + 63 (A i )/n(i) 76 3 (A .)/n U ») 
.. 2 ~ J J
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Since -1 - (n -1)/2) '(C!2(A i )/n(i) + C!2(Aj )n U )) (use Lemma 3.2 on 

XZ) ) (3.13) gives 

(3.14 ) 

+ (A (A ) + 1)· 
. " 

(2 + 2/ (n - 1) .
3 2

A little rearrangement of (3.14) plugged into the right side of 

expr ession (3.12) concludes the lemma. 

The conclusion of Lemma 3.10 is the key to the remaining argument. 

It, together with the multiplicity free ~ - valued restr ict ion of 

to U J will force X3 (1) to be 1, n -lor n. The first two cases 

contradict Lemma 3.4 since they imply that X2 has a nontrivial degree 

constituent. If '-<3(1) -n , then the conclusion of Proposition 3.6 

holds, anywaYi although this contradicts Lemma 3.5 asy. (0) must be 
1. 

nonzero for at least·two values of i > 2 for some C E U . 

PROPOSITION 3 . 11. Let ~ be a multiplicity free Q - valued character 

on a finite cyclic group U of order n ~ Let a' (resp., a) be 

the g.c.d of all values of on U (~'J of all values of on 

IT- [ Id.}) Then a' I n and there exists a character 'U on the sub

group of index a' in U such that ~ - '~ 
U 

,the character induced 

on U E.z. '¥ • 

S imil arl if is not the regular representation ofJ 

a\n and .:> - ¥
U where is a character of the subgrouo of index a . '

In either Situation, if a' (~'J a) > 1 , then vanishes on 

any generator of U. 
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Proof. If a' - 1 we are done. Otherwise let p be a prime divisor 

of a' Then ~ mod p == 0 J so pin. Write U - U(l) x U(2) 

where U(l) is a p - sylow of U J and let U(O) be the subgroup of 

U(l) of index p. We diVide the rest of the proof into parts. 

Part 1. Properties of characters of U(l) x U(2) . The general 

irreducible rational character of U(l) x U(2) is ~.~ where 

IJ. (resp. J rp) is a rat ional irreducible character of U(1) (resp. J 

l U(l) _ lU(l)U(2)) In addition, is either 1 or the form with 
\ L K 

L c K subgroups of U(l) and (K:L) - p: an easy combinatorial 

consequence of counting that this gives the correct number of ir-; 

~educible rational characters 01 U(l) . 

Part 2. - p' 'V . In the notation of Part 1 , if Krf U(l) ,~ IU(0)xU(2) 
lU(l) - lU(l)then the restriction of to U(O) is p times theL K 

lU(O) _ lU(O) 1U(1)_character Thus, and are the
L K • lU(l) U(O) l U(l) 

only irreducible IJ.I S whose restriction to U(O) is not p times a 

character. These are the only Wis such that ~ mod p f 0 . 

Since ~ mod p == 0 and the rp~s mod p are linearly independent, 

must appear in whenever does; and 

vice-versa. Of course, the restriction of their sum to U(O) x U(2) 

is P times lU (0) '<a • We are done. 

' UPart 3. Conclusion of the properties of a' . From Part 2, ~ c p. '¥ 

Since is multiplicity free, ~ c 'V U But ; (1) - p. 'jr (1) .. ' ~ U (1) 

implies ~ - WU 
. The properties of a' therefore follow by induction. 

Part 4. Conclusion of the prooerties of a. Let p be the regular 

character of U. Then p -~. also satisfies the hypotheses. If 
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(SJ1) - 0 then clearly a divides s(l) J and the conclusion of Part 3 

applies. 

Otherwise (0 - ~ J 1) - 0 and Part 3 applies to 0 - ~ o - ~ = . ~ 
u 

where ~ 1s a character of the subgroup W of index a in U. So 

u u u w u
S - 0 - t -=1 - ~ - (1 -'~) As ~ is obviously multiplicity 

Wfree) 1 - ~ 1s a character. This completes the proof. _ 

To finish the section (as stated prior to Proposition 3.11) we 

need only show that ~ - X3 1U has ~ (1) - 1 J n - 1 or n. Take _a 

in Proposition 3.11 to be the value that is labeled a in Lemma 3.10. 

If a - 0 J then ; is the regular character and ~ (1) an. If 

a ~ 0 then Proposition 3.11 implies that a - + 1. Thus 

2
(~JS) .. S (1) J n -1 +~ (1) -; (1) on and therefore ;; (1) -lor n - 1J . 
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§4. Variants of the Hilbert-Siegel problem. 

The precise result of Theorem 1.10 is a consequence of the 

hypotheses that hey) is an indecomposable polynomial with coef

ficients in ~. Without the indecomposability condition (but h 

still in ~[Yl) we would be considering condition (1.12): J(h,g) 

is newly reducible with g a polynomial of the same degree as h 

or condition (1.13)a) holds. Let, however, 0' (§l.a)) be a descrip-

]pI ca (h)tion of the branch cycles for .r We can no longery x 

assert that G(9) is doubly transitive (not even primitive) and . 

therefore the classification of simple groups through [CuKanSe] would 

be of little immediate value unless we can understand G(£) in terms 

of branch cycles for the covers given by composition factors of h. 

Actually, there are pract ical pass ibil it ies in th-is direct ion ([ Fr J 2; 

§5.3 , c))), but they do not yield results like Theorem 1.10. There

fore, in all the rest of our discussion we retain an indecomposability 

(i.e . ) primitive group) assumption. 

Replace ~ by any number field K. The analogous study to Theorem 1.10 

would consider OK' the ring of integers of K, and those indecomposable 

for which the set (x EOK with hey) -x reducible} cons ists . 0 o 

of V(h ;OK) and a finite set. From Lemma 1.9 this is the study of con

dition (1.12). In that statement it is easy to draw a further conclusion 

about T2 (0' (r)) 

LEMMA 4.1. If h is indecomposable and condition (1.12) holds, then 

either T2 (o-(r)) is an n-cycle or T2 (0'(r)) is the product of an 

n - cycle and an m2 - cycle with m2 a divisor of n greater than 1 

(and deg(T2)~m=n+m2) . 
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Proof. First suppose that ""1. Then, since deg(T ) - n+lm2 2 

and T 2 (0' (r) ) is a product of a 1 - cycle and an n - cycle, G (£) 

is doubly transitive in the representation T2 

intransitive subgroup, G(Tl,l), of index n according to condition 

(1.8). This contradicts an elementary lemma in group theory: A 

doubly trans it ive group has no intrans i tive subgroup of index less 

than its degree. 

Suppose only that T2 (0' (r)) is not an n - cycle. The argument 

above shows that deg(T2 ) - ml + m2 is at least as large as n 

Since 1..c.m. (m
l 

,m
2 

) = n J check that either ml or m
2 

equals n 

This concludes the lemma. _ 

I f T2 (0' (r) is an n - cycle, then the polynomials listed in 

Theorem 1. 8 (deg (h) ... 7,11,13,15,21,31 - e. g.) as in the appendix) 

give exceptional cases to a result analogous to Theorem 1.10. If 

T2 (0' (r) ) is a product of two n - cycles J the degree 5 polynomials 

of Theorem 1.10 give the only additional exceptional cases (over any 

field K). The serious remaining question: Are there other exceptional 

polynomials h for which T2 (0' (r» is a product of an n - cycle and 

an m - cycle with < n? We don't even know of any triples2 m2 

(G,T ,T ) as in Def. 2.2., with the relaxation on condition (2.2)b)
l 2 

that T2 (0') be a product of an n - cycle and an 1I12 - cycle with 

m2 < n . 

Variation of coefficients other than the constant term. Suppose h E: Z[y] 

For 0 < i < n consider R (h (y) + x.yi; Z) ... [xo E: Z[ h (y) + Xo .yi is' reduc

ible in Z[y]}. In order to describe R(h(y) + x.yi;Z) } Lemma 1.9 

tells us to find those g E: C (z) for which ,.l(h (y)/y1, g (z» is 

newly reducible where condition (l.ll)a) holds for g. In terms of 
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group theory we must find groups G - G(z) with Cl.7)a) and b), 

Cl . 8 )a) and b), Tl (0' (r» is a product of an i-cycle and an (n - i) 

cycle, and T (cr(r» is a product of two (m/2) -cycles. Thus m/22 

is l.c.m(i,n - i). If i and n are relatively prime, indecom

i
posabilityof h(y)/y (i.e., primitivity of T ) is an easy con1 

sequence. This case would not} however, include cases arising from 

the doubly transitive groups containing an n - cycle that appear in 

Theorem 2.1. Indeed, we would expect a similarly striking analogue 

to Theorem 1.10, but noone has worked out the group theory. 

Mordell analogue of Hilbert-Siegel problem. The results above haVe 

all considered specialization of x to integer values. Consider, 

instead for h (y) E ~ [y] , R (h (y) - x ; ~) ~ [xo E ~ I h (y) -x is reduc
a 

ible in Q[y]} . In order to get a result similar to Theorem 1.10 we 

must assume the Mordell conjecture: A nonsingular projective curve, 

of genus at least 2, defined over a number field K has only finit~lY 

many K - rational points. With this assumption we have a variant on 

Lemma 1.9. 

LEMMA 4.2. Let V(h; ~) =- [x E ~ I h (y ) = x f or some Yo E ~}o a 0 

Suppose that 0' is a description of the branch cycles of the cover 

lPI co (h) )- lPl (§ 1. a» , and G - G(_~) c S ,and that has no y x - n 

subgroup H with these properties; 

(4.1) a) H is an intransitive subgroup of S n 

b) no conjugate of G(l) = [oEGI (l)c=l} contains H and 
r 

c) r; ind(TH(c(i») = 2'(G:H) or 2· (G:H) - 2 
i=l 



Then R (h(y) - x;~) is the union of V(h;~) with a finite set. 

There are approximate converses (sic) to Lemma 4.2 ([Fr, 2; 98.6 J ) , 

but th~y n~tur~lly rely on number theory rather than pure group theory. 

Thus, in some sense, condition (4.1) is the best 

tool for investigating analogues of Theorem 1.10. But, for every 

integer n there are indecomposable polynomials h of degree n 

for which R(h(y) -x;~) - V(h;~) is infinite. Indeed, these include 

polynomials h for which a description of the branch cycles of 

]pl CD (h ) )0 lPl is given by express ion 1.9 of Ex .1. 5 . 
1 x 
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