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Abstract. This is the Master’s Thesis of Tai Kaufman at UCI Irvine, June
2001, directed by Professor Michael Fried. Group theory arises with symmetry
investigations of data. When groups of symmetries are (almost) simple, there
is an interesting phenomenon: Two randomly selected elements selected among
those symmetries can, with high probability, generate the whole group. If the
group is simple, that probability is close to 1. This holds for the symmetric
group on n letters, Sn, or its index two alternating subgroup, no matter the
size of n. We take as a hypothesis, that two elements generate Sn. Then, we
consider how they generate Sn. We call this more subtle aspect of generation
the correlation between the generators. Our concentration is on the special
case n = 8. This value is big enough to produce interesting relations with such
famous problems as (2,3)-generation from the literature. It is small enough to
pose questions on whether human perception can detect the phenomenon of
parity of permutations.
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CHAPTER 1

INTRODUCTION

We investigate the first group that arises in probabilistic group theory, the
group of permutations of all integers 1, 2, . . . , n. Mathematicians denote this Sn,
where the letter S stands for symmetric. To get insight on the group of all permu-
tations, we chose to focus on the case n = 8 – permutations of just eight objects.
This might seem like arbitrary choice. We found, however, that the number eight
was just large enough to pose combinatorial variability and yet just small enough
that our limited group theory backgrounds could handle applying mathematics to
it. Prof. Fried is not a group theorist, though he uses group theory in his work,
and this thesis clearly uses much of his technical expertise.

We will raise and answer several questions about this group. For example,
which pairs of elements of S8 can generate all of S8? Can we visualize S8 in
some simple way? Such questions may appear overwhelming, since S8, having
order 8! = 40, 320, appears large. I found, however, I could greatly simplify these
problems using subjects from my algebra classes at UCI, like subgroups, conjugacy
classes, and orders of elements; and topics from my complex variables classes, like
Möbius transformations.

This paper researches a substantial problem in group theory and relates the
mathematics to practical situations and the value of elementary group theory in
secondary school mathematics. Thus it will be of interest to students and teachers
of group theory, math researchers, and high school math teachers. We assume the
reader knows the basic definitions behind group theory, but may need reminders of
some definitions and conventions. Since the groups in this thesis are explicit, we
don’t require much from the reader’s background.

In this first chapter, after declaring our goals and previewing our mathematical
results we begin by illustrating commutative and noncommutative operations in
everyday life. Then, we show how noncommutativity produces complexity and
lends mystery to our research questions, which we state at the end of the chapter.
We also discuss group theory basics and probabilistic group theory results germane
to our questions. Then we approach our research questions in two parts, first
treating a specific case in Chap. 2, then the more general case in Chap. 3. We find
the latter to require some theory of primitive groups, which we treat in Chap. 4.
In Chap. 5 we conclude with pedagogical aspects of our work and visualization of
the problems with BASIC programs.

1. OVERVIEW GOALS

Prof. Fried and I to answer a question that many students ask: What is the
group theory of a first-year graduate student for? Is it possible to explain its relation
to high school mathematics and its value to many high school teachers or students?
Is is possible to show that operations generating groups do appear naturally in
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6 1. INTRODUCTION

everyday life? We consider these hard tasks, not finished here. Still, we hope a
high school teacher hearing our efforts to make these connections could say he now
has a better idea of group theory being more than just a subtle topic suitable for
separating graduate students according to their technical abilities.

1.1. Noncommuting operations. Pairs of invertible operations on sets arise
in everyday life, for the display of physical objects, and generation of data. There
is a major difference between commuting and noncommuting operations. In the
former case such a pair will usually generate only a small pair of total operations.
This thesis explores the latter case: How to decide the maximal group of operations
two noncommuting operations can generate. A major phenomenon in group theory
is that two elements randomly chosen from even some large complicated groups can
generate the group with high probability. One condition guaranteeing this is the
group has large order and is a member of a sequence of simple groups. To consider
how two elements generate a group we introduce a statistic we call the correlation.
The correlation of two elements x and y of a group G is 〈(x, y), (y, x)〉, a new group
inside G × G.

The idea that the order is large requires considering natural series of groups.
The classification of finite simple groups includes many such series. Still, there are
other series, like the symmetric groups that aren’t simple, and are even more likely
to have applications. We explore that for these the probability of generation for a
random pair (assuming the order is large) approaches some fixed number smaller
than 1. We intensively investigate the case G = S8, describing the possible corre-
lations. One case comes out especially interesting. That was where two elements
were in the same conjugacy class. The correlation then depends on the element
giving the conjugation between them.

1.2. Proof versus computer program. Further, we compare the software
program GAP with pure mathematical proof. We find that proof is immensely
more efficient and revealing about what is causing certain phenomena. Sometimes,
however, an expeditious use of GAP showed there was something to find. Since
finding proofs requires great training, using GAP gave surprising motivation in
acquiring that training.

We also wrote BASIC programs to visualize the groups and problems in ques-
tion. These programs confirm for even small values of n results about the distribu-
tion of the number of cycles and orders of elements in Sn discovered by Erdös and
Turán. These results drove much of modern research in probabilistic group theory.

1.3. Seeing group structures. Finally, we argue the value of introducing
geometric situations from group theory into high school mathematics. Algebra and
geometry have different domains in most high school classes. Understanding the
effect of composing simple geometric operations benefits from geometric visualiza-
tion. Having command of the total possible geometric operations generated by any
two requires the algebra of conjugacy classes in groups, and a more modern form
of proof than that of geometry. We claim a problem similar to ours, combined with
a treatment of probability and statistics in Algebra II courses, would effectively
reveal how groups generated by noncommuting operations belong in high school.
In the present system both geometric and algebraic use of function composition
(called change of variables) is a great hurdle for most students in several variables
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calculus. This topic runs any higher use of mathematics in applications. Yet, the
curriculum crams it in such a small place, few ever master it.

The notion of two sets being in parity appears in our visual discussion of the
correlation of two banks of lights §3. We would not expect someone viewing the
visual displays illustrating correlation between generators to catch that behind this
lay the alternating group of degree 8 and that its essential property is from Galois’
Theorem that it is a simple group. Yet, the only constraint on the displays from the
two banks of lights is that they will always be in parity. This is essentially equivalent
to the special case of Galois’ Theorem. So, if a viewer of these displays could detect
that parity agreement is the only constraint, this might mean that simple groups
can reveal themselves visually. It is actually a psychology experiment we haven’t,
though could have, performed: Can the human eye (perception system) detect
parity agreement?

2. SUMMARY OF TECHNICAL CONTRIBUTIONS

We make contributions to a conjecture that two randomly chosen elements from
Sn generate all of Sn has probability tending to 3/4 as n �→ ∞ (Chap. 1 Conj. 6.1).

Much of this thesis is about understanding how someone works with groups,
their subgroups and conjugacy classes. We apply this to computations in S8. Two
results in the paper call for determining subgroups in challenging situations gen-
erated by two elements x and y. We denote the subgroup by the notation 〈x, y〉.
Key notions are transitive and primitive subgroup. Given specific elements x and
y it is usually obvious when 〈x, y〉 is a transitive subgroup. The case of Chap. 3
Lem. 9.3 is where x has order four and cycle type (2)(2)(4) acting on the integers
{1, . . . , 8} and y is the conjugation of x by an element β of order two. The result is
a characterization of this situation so that 〈x, y〉 is a primitive group, from which
we deduce it is S8. This produces cases that achieve the most interesting of the
correlation groups Cor(x, y).

Chap. 4 Prop. 5.3 produces the one primitive proper subgroup of S8 that is
not in A8, and so it completes our classification of primitive subgroups of S8, a key
to deciding when 〈x, y〉 = S8. The group in this case is PGL2(F7) which is like
the group of Möbius transformations in complex variables, except the functions
z �→ az+b

cz+d (with ad − bc �= 0) have a, b, c, d in the finite field F7 instead of in the
complex numbers. This group and certain of its subgroups play appear in the
problem of (2,3)-generation that motivated many results from [Sh01].

Chap. 4 Prop. 1.1 shows that A8 is not (2,3)-generated. We explain why this
is an interesting borderline to Miller’s Theorem. It was especially interesting to us,
because it corroborated that our intuitive choice of using S8 as our explicit focus
group revealed many historically interesting mathematical phenomena.

Chap. 4 Prop. 5.4 gives the other significant proper primitive subgroup of S8,
the group generated by translations by elements in the vector space (Z/2)3 = V
and the matrix operations of G = GL3(Z/2), invertible 3× 3 matrices acting on V .

Finally, we tried to show that our investigations fit nicely with an advanced
research topic, on probabilistic generation of finite simple groups. The recently
proved Main Conjecture in that area is Thm. 4.1.
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3. COMMUTING AND NONCOMMUTING OPERATIONS

We recall the definition of commutativity. Call an operation on any finite set S
invertible if its range includes each point of S. It is then automatic that no pair of
distinct points goes to the same point. A common use for the word operation is a
function from S to S. Then, the invertible operations Aut(S) form a group by using
composition of two such as multiplication. We say two elements g1, g2 ∈ Aut(S),
commute if for s ∈ S, the effect of g1 on g2(s) gives the same result as the effect of
g2 on g1(s). In mathematical notation g2 ◦ g1 = g1 ◦ g2, where ◦ means compose.

It may surprise even those who have had traditional group theory course how
little information one must give to create a very big group from only a few of its
elements if the elements are far from commuting. This group itself is a measure of
the meaning of what it means to be far from commuting.

In everyday life we often come upon commuting operations. For example: If
a lazy Susan set of shelves contains books or art objects for a display, people will
look at the items in the shelves by turning the lazy Susan an appropriate number of
degrees. The display of the shelves by a turning of θ1 degrees, followed by someone
else turning it θ2 degrees leads to a total turn of θ1 + θ2 degrees, the exact same
result for the two people turning the shelves in the opposite order.

Less common, though still present in everyday life, we see noncommuting op-
erations. For example: Suppose a globe has two rods, called R1 and R2, through
the center sticking a short way out of it, at an angle (in their plane) of 90 degrees.
Suppose further you can choose either one of the rods and you can rotate the globe
any desired angle around either rod. The purpose might be to rotate the globe to
display part of the surface. Then, the operation of rotating through an angle of θ1

degrees around R1 followed by rotating through θ2 degrees around R2 might not
lead to the same show of the globe’s surface as first rotating θ2 degrees around R2,
then rotating through θ1 degrees around R1.

In our main example — closely related to our research questions — we picture
the operations A and B as a way of getting a variable display of colored lights. The
eight numbers 1 through 8 might correspond to an even spacing of eight colors on
bulbs, from red to violet, with two banks Bank1 and Bank2 of such lights. Then,
A corresponds to switching the colors on the first two lights of Bank1 and shifting
the colors to the right on Bank2 (wrapping the last light around to first position).
Then, B corresponds to doing the same thing with the two banks of lights switched.
The goal here is to offer an interesting display of great variability in the colors in
the two banks of lights through the simple device of having a somewhat random
choice each second of whether it is A or B that goes into effect.

Would the arrays that come up in each bank then appear purely random? Also,
would there be other special properties, like a correlation between the colors seen
on Bank1 versus those on Bank2?

As a final example, it is also possible to describe biological processes as the
result of two disparate though related operations on the state of an organism. The
operations could lead to the organism either orienting itself to its environment or
displaying itself for sexual attraction in an interesting way.

4. PROBABILISTIC GROUP THEORY PUZZLES

The bank of lights example was interesting to us, for it displayed through
mathematics that two operations, because they were noncommuting, could generate
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so many visual possibilities as total possible operations on the two banks of lights.
When we saw [Sh01], we realized that more than a century of mathematical papers
had topics closely related to our curiosity about selecting elements randomly from
a group. Our topic of investigating the possibility of making something from the
group theory of a simple master’s level course was close to doing serious research
in mathematics.

The most fundamental notion of group theory is the subgroup, and distin-
guished in the topic of subgroups is that of a normal subgroup (§5). There is no
particularly useful classification of all finite groups. There is, however, a classifi-
cation of all groups having no proper normal subgroups: the simple groups. This,
one of the biggest theorems in Twentieth Century mathematics, is called the clas-
sification of finite simple groups. This theorem is very difficult to understand. I
understand few mathematicians can even state it precisely. Still, group theorists
have found it extremely useful, and among its corollaries is the following (explained
in [Sh01]). For a set S use the notation |S| for its cardinality.

Theorem 4.1. Suppose G is a finite group and LG is the number of pairs
(x, y) ∈ G×G such that x and y generate G (see below; 〈x, y〉 = G). Then, if G is
simple, PG = LG

|G|2 approaches 1 as |G| gets large.

Since the set of simple groups is large and complicated, this theorem is a qual-
itative expression of how two simple noncommuting processes generate many com-
plicated processes by iteration. There are reasons for considering other series of
groups, not necessarily simple, such as the symmetric groups, for they are likely to
be the actual groups that appear in applications.

A near corollary of Thm. 4.1 is our Conj. 6.1: That for n large, roughly three
out of four times, when you select two elements x and y from Sn, these elements
will generate the whole group of permutations. Another way to put this: Given
any small positive number ε, there exists a number N such that if n is greater than
N , then for a random pair (x, y) ∈ Sn ×Sn, the smallest subgroup of Sn containing
both x and y is just Sn with probability 3

4 − ε. The near proof uses only the case
of Thm. 4.1 for the subset of simple groups called the alternating groups (§5).

Galois discovered the alternating groups and the series of simple groups called
PSL2(Fq) by 1830. It wasn’t until the 1950s that the list of simple groups extended
much beyond Galois’ knowledge of them. We use only those simple groups he knew.

It is usually not obvious what is the the smallest subgroup containing a given
x and y. We denote this subgroup by 〈x, y〉, and think of it as group closure in
the way that topology thinks of the closure of a set. Chap. 3 §4 illustrates it takes
nontrivial ideas to figure what is 〈x, y〉 even for subgroups of S8.

5. GROUP BASICS FOR INVESTIGATING S8

We review some basics and declare our terminology and notation. First, disjoint
cycle notation will be useful. To illustrate it, suppose n = 16, and g is given by(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 12 9 8 1 3 2 5 6 10 11 7 4 13 14 15

)
.

The notation indicates g maps 9 to 6. Disjoint cycle notation for g represents g as
a product of disjoint cycles of integers. It requires fewer symbols than the complete
permutation notation. Also, it shortens computations in Sn by parsing the group
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action into memorable pieces. The disjoint cycle representation for g is

(1 16 15 14 13 4 8 5)(2 12 7)(9 6 3).

Within each cycle, g(i) is placed to the right of i; the order of the disjoint cycles
is unimportant. That is, g(1) = 16 appears to the right of 1, and the cycle closes
at 5 because g(5) is 1, at the beginning of the cycle. Further, exclude the cycles of
length 1 (g(10) = 10 gives a cycle (10)) for efficiency. An element of Sn is a k-cycle,
k > 1 if it has one and only one cycle — of length k — of length bigger than 1.

Example 5.1 (Noncommuting). Suppose g ∈ Sn. If g is an n-cycle, written
as (i1, . . . , in). Then the only elements h that commute with g are the powers
of g. More generally we will use, in some computations, that it is easy to write
down the collection of elements in Sn commuting with any particular g′ ∈ Sn

— called the centralizer of g′ — if we have a practical display of its disjoint cycle
decomposition. For example, in Ex. 7.1 we write down the centralizer of an element
in S8 having disjoint cycle shape (2)(2)(4). That centralizer appears in the examples
using elements of that shape.

Often the crucial property we ask for a subset S ⊂ Sn is this: Is S closed
under composing its permutations? That is, for g, g′ ∈ S, is gg′ ∈ S? This is the
necessary and sufficient condition that S is a subgroup of Sn.

The most important subgroup of Sn is the alternating group An. This is the
subset of permutations one can write as products of an even number of 2-cycles.

For any two elements g, h in a group, a key operation is that of conjugation
of h by g. This produces the element ghg−1. For any set S, denote the result of
conjugating every element in S by g by gS. If S is a group in Sn, then gS will
be also. So, assume G = S is a group. The effect of conjugating G by g ∈ Sn is
to consider G as exactly the same elements, though regarded as permutations of
{1′, 2′, . . . , n′} where j′ is the integer g(j). That is, we have merely renamed the
integers {1, 2, . . . , n}. In looking at subgroups G of Sn, for many tasks there would
be no point in distinguishing the groups G and gGg−1.

A subgroup H of another group G is called normal if for each h ∈ H and each
g ∈ G, hgh−1 ∈ H. That is, H is closed under conjugations by elements from G. A
group G is called simple if it has no normal subgroups except itself and {1}. Galois
(1840) proved that An is a simple group if n ≥ 5. We use that A8 is a simple group
in every aspect of our examples.

Cyclic groups are those generated by a single element. The cardinality of a
cyclic group is called the order (of the element generating it). Cyclic groups look
easy and very understandable to us. They appear in many undergraduate courses
under the title of generalizations of clock arithmetic. If the order of a cyclic group
is a prime number, the cyclic group is also simple. It has no proper subgroups at
all! These, however, are the trivial simple groups, and we exclude them from now
on when referring to simple groups.

6. DIXON’S 1969 CONJECTURE [D69]

Dixon proposed that two randomly chosen elements of a finite simple group G
generate G with probability approaching 1 as |G| �→ ∞. [KL90] and [LiSh95] have
since shown this. This theorem can be applied to the sequence of alternating groups
{An}∞n=5, since since they are (finite) simple groups. In combinatorial practice,
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operations are from groups that contain simple subgroups properly. We confined
our thinking to the example of Sn and we made the following conjecture.

Conjecture 6.1. The probability that two randomly chosen elements from
Sn generate all permutations tends to 3/4 as n �→ ∞.

Proof depending on a hypothesis. Suppose there is a fixed integer N and
N words w1, . . . , wN in the letters x and y so the following holds.

(6.1a) For each i, and (x, y) ∈ (Sn \ An) × An, wi(x, y) ∈ An.
(6.1b) For some ix,y ∈ {1, . . . , N},

2|{wix,y (x, y), y)}(x,y)∈(Sn\An)×An
|/(n!)2 �→ 1 as n �→ ∞.

There are four cases to consider: (x, y) ∈ An × An, (x, y) or (y, x) in (Sn \
An) × An or (x, y) ∈ (Sn \ An) × (Sn \ An). In the first case the probability is 0
that 〈x, y〉 = Sn. We want to show, in each of the other cases, that the probability
of 〈x, y〉 = Sn approaches 1 for large n. Assume the second case holds.

Apply Dixon’s Conjecture to the case of the alternating groups. By hypothesis
(6.1), with probability 1 for n large, there is a choice of i so that 〈wi(x, y), y〉 = An.
Since xAn = Sn \ An, we get 〈x, y〉 = Sn with probability 1.

We don’t need an extra hypothesis when both x and y are in Sn \ An because
〈x, xy〉 = 〈x, y〉 and (x, xy) is appropriate for hypothesis (6.1). Hence, for n large,
3/4 of the time we will be able to write all elements of Sn as words in x and y. �

We give an example of two elements x and y generating Sn.

Lemma 6.2. Let x = (1 k) and y = (1 . . . n) with (k− 1, n) = 1. Then 〈x, y〉 =
Sn.

Proof. First do the case when k = 2. Note that z = xy = (2 . . . n). The
conjugate of x by zj is zjxz−j . This is a 2-cycle that permutes 1 and j+2: (1 j+2).
Conjugating 2-cycles of form (1 k) by powers of y gives all possible 2-cycles in Sn.
Therefore 〈x, y〉 = Sn.

Now consider the general case when (k − 1, n) = 1, and let & be an integer so
that &(k − 1) ≡ 1 mod n. Then, 〈y�〉 = 〈y〉, so 〈x, y�〉 = Sn. If we write y� as
(1′ . . . n′) by changing the names of the integers so that 1 = 1′, then 2 is renamed
to k. The general case now follows from the particular case. �

7. OUR QUESTIONS

Some subtler questions have not been investigated by probabilistic group theory
to our knowledge. This thesis introduces terminology and notation in what we call
the correlation between (or of) x and y. It is the group generated in Sn × Sn by
the two elements A = (x, y) and B = (y, x). Denote this Cor(x, y). Our questions
below show points of interest in computing Cor(x, y). We use conjugacy classes
under Sn of two element sets {x, y}x,y∈S8 . In Chap. 2 we then focus on the case
n = 8, x = (1 2) and y = (1 2 3 4 5 6 7 8). Then Chap. 3 addresses general pairs
{x, y} when n = 8.

We carefully inspect answers to these questions:

(7.1a) For a given n and a given pair x and y, what are the possible elements
in Cor(x, y)?
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(7.1b) If the answer to (7.2a) indicates a certain element should be in Cor(x, y),
how can we construct it as a product of a string of the elements A =
(x, y) and B = (y, x)?

More difficult for us are the following questions, to which this investigation
provide clues.

(7.2a) Suppose the answer to (7.1a) predicts that a certain element, C, should
be in Cor(x, y). Assume on the jth trial we randomly select an operator
Oj from {A, B}, and form the words

O1 = w1, O1O2 = w2, . . . , O1O2O3 · · ·Oj = wj , . . .

With what frequency does C appear within k trials for k large?
(7.2b) Given again a certain element C of Cor(x, y), if we systematically gen-

erate elements of Cor(x, y) by multiplying longer and longer strings in
A and B (like binary numbers), after how many trials will that given
element of Cor(x, y) appear?

(7.2c) What is the distribution of those randomly generated elements?
(7.2d) What is the expectation profile for hitting elements by all products of

length ≤ k?
(7.2e) Given x and y (and so A and B giving the correlation) that generate

Sn, suppose k is large and even. Will the distributions of elements that
are exactly k products from {A, B} be the same as that for k + 2?



CHAPTER 2

FIRST INVESTIGATIONS FOR n = 8

This chapter answers (7.1) when n = 8, x = (1 2) and y = (1 2 3 4 5 6 7 8).

0.1. ANSWERS TO (7.1a). We already know from Chap. 1 Lem. 6.2 that
x and y generate S8. The generators A and B are both (odd,odd) elements. Denote
the subgroup of S8 × S8 consisting of pairs (g1, g2) with g1g

−1
2 ∈ A8 by S8 ×∗ S8.

Lemma 0.1. For x and y in our special case, let K be the subgroup of Cor(x, y)
consisting of elements of the form (1 k). Then, K contains (1, (1 5)(2 6)(3 7)(4 8)) =
(1, h), (1, h∗) = (1, (2 5)(1 6)(3 7)(4 8)) and (1, hh∗) = (1, (1 2)(5 6)). Conclude that
Cor(x, y) = S8 ×∗ S8.

Proof. Notice K contains (x, y)4 = (1, h). To see K is a normal subgroup of
Cor(x, y), note that for any g = (a, b) ∈ Sn × Sn and any (1, k) ∈ K,

g(1, k)g−1 = (aa−1, bkb−1) = (1, bkb−1)

is still in K. So, K also contains B(1, h)B−1 = (1, h∗). Notice that K is isomorphic
to a subgroup of S8 via the projection (1 k) �→ k. Since K is normal in Cor(x, y),
its image in S8 is also normal in S8. The image of K in S8 is nontrivial because it
contains (x, y)(x, y) = (1, yy).

Further, as two (odd,odd) elements generate Cor(x, y), all elements in Cor(x, y)
have the form (even,even) or (odd,odd). So, (1, k) has the form (even, even).
Therefore the image of K is a subgroup of S8 inside of A8, the alternating group
on eight elements. By Galois’ theorem, A8 is a simple group and so K must equal
the set of elements of the form (1, u) with u ∈ A8. Similarly, the set of all (even, 1)
is another subgroup of Cor(x, y). So, Cor(x, y) contains all (even, even) elements.

As the generators of Cor(x, y) have the form (odd, odd), we conclude Cor(x, y)
also contains all (odd, odd) elements. Since Cor(x, y) must be a subset of (odd,odd)
∪ (even,even), this implies Cor(x, y) is precisely all (odd,odd) and (even,even) per-
mutations of S8 × S8. �

1. USING THE PROOF

We look first at a specific case. Since (x, x) has the form (odd,odd), our answer
to (7.1a) shows it belongs in Cor(x, y). How can we express (x, x) as a word in
A = (x, y) and B = (y, x)?

My first approach to this was to multiply some short strings of A and B to
try to produce (x, x). I reasoned that such a simple element should be expressible
as a product of a very short string. After trying repeatedly without success, I
turned to writing a QBASIC program (see Program 1 Chap. A), ”S8S8CAL2,”
to systematically search through all string products to find it. Yet, S8S8CAL2
computed the products of all A − B strings from length 1 through length 10 and
failed to generate (x, x).

13
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I thought that the proof of Lem. 0.1 would not tell me how to generate a
specific element. When Prof. Fried challenged this assumption, I started to look
for something in the proof indicating how to generate (x, x).

So here is how I used the proof to generate it. The proof builds elements of
Cor(x, y) from the subgroup, K, of elements of the form (1, k). Use Lem. 0.1 and
the elements (1, (1 5)(2 6)(3 7)(4 8)) = (1, h), (1, (2 5)(1 6)(3 7)(4 8)) = (1, h∗) and
(1, hh∗) = (1, (1 2)(5 6)) to produce (x, x). For example, if (1, xy) appears, then we
can produce (x, x) = (1, xy)(x, y)−1 = (1, xy)A−1. Note that xy = (1 3 4 5 6 7 8).

Conjugating (1, k) by A (resp. B) is the same as replacing k by conjugation
by x (resp. y). This conversation gets the result from the following lemma about
computing words w(x, y) (or strings) in x and y that achieve particular conjugations
from the one element hh∗ = z. Write u = z1z2z3 with z1 = z, z2 = (2 3)(5 7) and
z3 = (2 4)(1 6), so u = (1 3 4 2 6 7 5). We are using that it is easy to form whatever
shape in A8 we want by multiplying conjugates having the shape (2)(2).

Lemma 1.1. An explicit word wi(x, y) conjugates z to zi, i = 2, 3. Finally,
an explicit word w4(x, y) conjugates u to z. Putting this together gives (x, x) as a
specific word in A and B.

Proof. Conjugation by β = (1 3)(6 7) takes z to z2. So, if we write β as a
word in x and y that gives the word w2. The proof of Chap. 1 Lem. 6.2 is explicit
in finding words in x and y that give any two cycle in S8. So we easily get (1 3)
and (6 7) as words in x and y. Then multiply these to get the word w2(x, y). The
other cases are essentially the same. �

This demonstrates how two proofs apply to write any element of Cor(x, y) as
a word in A and B. Keeping track of all the intermediate words that are useful in
writing x and y as products of conjugates of hh∗ makes it look like a formidable
process, though it all comes from recognizing how to use that all elements in S8 of
the same shape are conjugate.

2. LESSONS LEARNED FROM A PROOF

Our answer to (7.1b) used our proof of Lem. 0.1. It told what elements are
in Cor(x, y), and it showed how to get a particular choice like (x, x). Though our
proof did not explicitly say how to produce each given element of the group, it
gave clues. There are several lessons I learned from this. It shows that proof is a
powerful analytical tool. The proof was far more powerful than random guessing
or a computer program in showing how to generate a specific element of the group.

Previously I thought of proofs as non-constructive, whereas this one does give
a construction. I suspect many algebra proofs do give clues on how to construct
objects that they declare to exist, though the amount and obviousness of the clues
varies from proof to proof. For example, in contrast to this proof which gave only
subtle clues, our proof of Lem. 6.2 explicitly shows how to get any 2-cycle. So it
produces all permutations that it claims to exist in the group.

The proof of Lem. 0.1 and the construction in §1 also taught me something
about groups which I had not understood from my graduate abstract algebra
courses. It vividly reinforced that normal subgroups and isomorphisms are pow-
erful tools in analyzing groups. For example, the proof used the normal subgroup
K and an isomorphism between K and A8. It showed that in examining Sn, the
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alternating subgroup and the parity of permutations are important ideas. Further-
more, it showed the value of conjugation in constructing desired elements (as in our
construction of (x, x)).





CHAPTER 3

COMPUTING CORRELATIONS IN S8

In answering our questions in the more general case, at first it appears there are
many choices to take for elements x and y — so many choices that it is prohibitive
to try all pairs. Conjugation, however, diminishes the work of many computations.

1. USING CONJUGATION IN Sn

Suppose we start with a particular x and y and then take any element g ∈ Sn

to form a new pair {gxg−1, gyg−1}, the conjugate of {x, y} by g. This new pair
will have the same properties as did the old pair for most questions.

So, with no loss it makes sense to look at only one pair {x, y} in each conjugacy
class. Here are the questions we would ask.

(1.1a) How to list all conjugacy classes of pairs {x, y} that generate S8.
(1.1b) How to figure the group Cor(x, y) as we run over these conjugacy classes.
(1.1c) How to interpret the data we get.

We again concentrate on the case n = 8.

2. LISTING S8 CONJUGACY CLASSES

Before answering which classes of pairs generate S8, first consider how to list all
classes of pairs. To represent the conjugacy classes of single elements in S8, we can
write all permutations as products of disjoint cycles of decreasing length. Example:
(1 2 3)(4 5). Denote the cycle description of this element by (3, 2; 3) meaning a 3-
cycle, followed by a 2-cycle, followed by three 1-cycles. Then conjugacy classes
correspond to partitions of the integer 8 via the following notation:

(n1, . . . , nm; 8 − (n1 + · · · + nm)), n1 ≥ n2 ≥ · · · ≥ nm > 1, n + 1 + · · · + nm ≤ 8.

Thus the conjugacy classes in S8 are
[cycle lengths larger than 1 ; number of fixed elements]
[8; 0]
[7; 1]
[6, 2; 0] [6; 2]
[5, 3; 0] [5, 2; 1] [5; 3]
[4, 4; 0] [4, 3; 1] [4, 2, 2; 0] [4, 2; 2] [4; 4]
[3, 3, 2; 0] [3, 3; 2] [3, 2, 2; 1] [3, 2; 3] [3; 5]
[2, 2, 2, 2; 0] [2, 2, 2; 2] [2, 2, ; 4] [2; 6]
[; 8]
Our goal is to list pairs {x, y}, up to the conjugation action of S8 where 〈x, y〉 =

S8. Using conjugation by S8, we keep the first element, x, in simplest form, filling
in its cycles with the numbers 1 through 8 in order. Then, systematically vary
the possibilities for the second element y. For example, pairs of elements from

17
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the conjugacy classes having the form [5, 2; 0] and [7; 1] include such classes as
((1 2 3 4 5)(6 7), (1 2 3 4 5 6 7)) and ((1 2 3 4 5)(6 7), (1 2 3 4 5 6 8)).

These pairs represent distinct classes since only the latter moves the element 8.

3. S8 ACTION ON UNORDERED PAIRS

Fixing x still allows conjugating y by elements in S8 commuting with x. It
is easy to figure out the elements that commute with a given x (see Lem. 3.1
for examples). We call this group ZS8(x). So the problem of computing the S8

conjugacy classes on pairs is straightforward. Still, computationally it is worth
checking how hard it is to list the resulting pairs.

For simplicity, stay only with those pairs {x, y} that could possibly generate
S8 (this will be explained below). In answering the question of which classes of
pairs generate S8, we now investigate some particular cases. From this point we
extensively use the notion of primitivity from Chap. 4 §4. We use that S8 (and A8)
are primitive groups in their action on {1, . . . , 8}.

Lemma 3.1. The centralizer of any n-cycle w in Sn consists of the group of
powers of w. Let x = (1 2 3 4 5 6 7 8) (representing the form [8; 0]). Then, up to
S8 conjugacy, pairs of form {x, y} with y of form [2; 6] generate S8 if and only if
y = (1 j) with j ∈ {2, 4}.

Proof. If x = (1 2 3 4 5 6 7 8) then ZS8(x) = 〈x〉. To see this, let z ∈ S8

be an element that commutes with x. If z(1) = k, replace z by x−(k−1)z = z′,
another element that commutes with x, but this one takes 1 to 1. Use z′x = xz′

to inductively conclude that z′(t) = t for each integer t ∈ {1, . . . , 8}. Example:
z′x(1) = z′(2) = xz′(1) = x(1) = 2. The same idea works for an n-cycle in Sn.

Given any 2-cycle (i j), we have already computed how conjugation by powers of
x works (proof of Chap. 1 Lem. 6.2). The result allows replacing (i j) by (i+k j+k)
for any integer k mod 8. So, choose k so the distance between i + k and j + k is
at most 4, and one of the integers is 1. The result is y = (1 j′).

Chap. 1 Lem. 6.2 shows that if j′ is even, since j′ − 1, 8) = 1, such x and y do
generate S8.

If, however, j′ is odd, then x and y induce an action on the two sets U1 =
{1, 3, 5, 7} and U2 = {2, 4, 6, 8}. That is they generate a group that is not primitive
(§4) and so it cannot be S8.

�

The next easy lemma essentially appears in the proof of Chap. 1 Lem. 6.2.
Lemma 3.2. Among the pairs of the form ([7; 1], [2; 6]) take x = (1 2 3 4 5 6 7).

Up to S8 conjugacy, if 〈x, y〉 = S8, then y = (1 8).
We may also eliminate {x, y} if both elements are in A8. This allows us to

assume one of x or y is in S8 \ A8. For simplicity we assume from this point the
following conditions.

(3.1a) x ∈ S8 \ A8.
(3.1b) 〈x, y〉 acts primitively on the integers 1,. . . , 8.
Lemma 3.3. Among the pairs of the form {(1 2 3 4 5 6 7), [2, 2, 2; 2]}, up to S8

conjugation assume y = (1 8)(i1 i2)(j1 j2). The 1
2

6!
2!2!2! = 32 · 5 choices of y give

pairs of distinct S8 conjugacy classes. Each of these S8 classes {x, y} automatically
has 〈x, y〉 primitive. Then, 〈x, y〉 contains a 2-cycle exactly when 〈x, y〉 = S8.
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Proof. For 〈x, y〉 to be primitive on {1, . . . , 8} requires y to include 8 in the
support of one of its 2-cycles. Write y = (k 8)(i1 i2)(j1 j2). By conjugating y by xj

we leave 8 fixed, and replace k by k + j mod 7. This allows us to assume k = 1.
The centralizer of x in S8 consists of the powers of x. Suppose y = (1 8)(i1 i2)(j1 j2)
and y′ = (1 8)(i′1 i′2)(j

′
1 j′2). For any power of x, xjyx−j conjugates the 2-cycle (1 8)

to (1 + j 8) (with 1 + j regarded mod 7). So, it does not move y to an allowable
element unless j ≡ 0 mod 7. Conclude: {x, y} and {x, y′} are conjugate if and
only if y = y′.

The elements in 〈x, y〉 that fix 8 include x, which is transitive on the remaining
integers. From Lem. 5.2, this implies 〈x, y〉 is primitive.

If 〈x, y〉 is S8, then it contains all 2-cycles. Suppose, conversely that 〈x, y〉
contains a 2-cycle u = (i i′). Then, apply Lem. 3.2 to conclude 〈x, y〉 = S8. �

4. 〈x, y〉 FOR ((7),(2)(2)(2))

Consider the pairs {x, y} in Lem. 3.3, up to S8 conjugacy: x = (1 2 3 4 5 6 7) and
y = (1 8)(i1 i2)(j1 j2). Chap. A §2 shows output from the program TAIJOB1.BAS.
Like Lem. 3.3, its output shows some 2-cycle is in 〈(1 2 3 4 5 6 7), (4 5)(6 7)(1 8)〉, so
that this group is S8. This is a simple case where we can compare proof with a
program. We discuss a subtler case, where the results of a program led us deeper
into using proofs.

See Chap. 3 §3 for how the computer program GAP works. Here is the result
of applying GAP. Of the 45 different S8 conjugacy classes {x, y}, only twice does
〈x, y〉 = S8 not hold. Chap. 4 Prop. 5.3 explains, without using GAP, the group
of order 336 that appears in the remaining two cases. There is exactly the right
number of pairs {x, y} (two) representing S8 conjugacy classes from Lem. 3.2 as to
give the list below. We use x for the 7-cycle (1 2 3 4 5 6 7).

5. Cor(x, y) FOR ((7),(2)(2)(2))

To compute the corrolation in this case, we first give it to GAP. The result in
the case of the first item from Table 4 is the following.
h:=Group((1,2,3,4,5,6,7)(16,9)(12,13)(14,15),
(8,1)(4,5)(6,7)(9,10,11,12,13,14,15));
[ [ 2, 14 ], [ 3, 4 ], [ 5, 2 ], [ 7, 2 ] ]

The group these generate is S8 × S8. The mathematical argument is as previ-
ously similar to that of Lem. 0.1.

Lemma 5.1. All {x, y} from Table 4 have Cor(x, y) = S8 × S8.

Proof. The key property is that the group Cor(x, y) projects onto each factor
to be S8. That is, Cor(x, y) is isomorphic to S8 via (g, g′) �→ (g, 1) and via (g, g′) �→
(1, g). Further, in this case, Cor(x, y) is not contained in the pairs (g, g′) such that
g′g−1 ∈ A8, because x is odd and y is even. Following the argument of Lem. 0.1,
we must show there is a nontrivial element of the form (1, g) in Cor(x, y). To get
such just take (x, y)2. �

6. OTHER POSSIBILITIES FOR Cor(x, y)?

There are some difficult cases we have not considered, though many ingredients
are ready. From the computations of §4, we must inspect those S8 conjugacy classes
pairs {x, y} from S8 where 〈x, y〉 = S8. While it is not always easy to list those cases
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where the group is primitive, we do this efficiently enough to reduce the problem to
the following consideration. Do x and y both lie in a subgroup of S8 conjugate to
the group appearing in Chap. 4 Prop. 5.3, called PGL2(F7). Otherwise, according
to Chap. 4 Prop. 5.3 and Prop. 5.4, they cannot lie in a (proper) maximal subgroup
of S8. So, 〈x, y〉 = S8.

Table 1. ((7),(2)(2)(2))

h:=Group(x,(8,1)(4,5)(6,7)); # S_8
(Group h, generated by two displayed elements, is S_8)
h:=Group(x,(8,1)(4,2)(6,7)); # S_8 h:=Group(x,(8,1)(4,3)(6,7)); # S_8
h:=Group(x,(8,1)(3,2)(6,7)); # 336 [[2,4], [3,1],[7,1]]
(Prime factorization of 336, the group’s order)
h:=Group(x,(8,1)(2,5)(6,7)); # S_8 h:=Group(x,(8,1)(3,5)(6,7)); # S_8

h:=Group(x,(8,1)(4,2)(5,7)); # S_8 h:=Group(x,(8,1)(4,3)(5,7)); # S_8
h:=Group(x,(8,1)(2,3)(5,7)); # S_8 h:=Group(x,(8,1)(6,2)(5,7)); # S_8
h:=Group(x,(8,1)(3,6)(5,7)); # S_8 h:=Group(x,(8,1)(4,6)(5,7)); # S_8

h:=Group(x,(8,1)(3,2)(4,7)); # S_8 h:=Group(x,(8,1)(5,2)(4,7)); # 336
h:=Group(x,(8,1)(2,6)(4,7)); # S_8 h:=Group(x,(8,1)(3,5)(4,7)); # S_8
h:=Group(x,(8,1)(3,6)(4,7)); # S_8 h:=Group(x,(8,1)(5,6)(4,7)); # S_8

h:=Group(x,(8,1)(4,2)(3,7)); # S_8 h:=Group(x,(8,1)(5,2)(3,7)); # S_8
h:=Group(x,(8,1)(2,6)(3,7)); # S_8 h:=Group(x,(8,1)(4,5)(3,7)); # S_8
h:=Group(x,(8,1)(4,6)(3,7)); # S_8 h:=Group(x,(8,1)(5,6)(3,7)); # S_8

h:=Group(x,(8,1)(4,3)(2,7)); # S_8 h:=Group(x,(8,1)(5,3)(2,7)); # S_8
h:=Group(x,(8,1)(3,6)(2,7)); # S_8 h:=Group(x,(8,1)(4,5)(2,7)); # S_8
h:=Group(x,(8,1)(4,6)(2,7)); # S_8 h:=Group(x,(8,1)(5,6)(2,7)); # S_8

h:=Group(x,(8,1)(4,2)(5,6)); # S_8 h:=Group(x,(8,1)(4,3)(5,6)); # S_8
h:=Group(x,(8,1)(2,3)(5,6)); # S_8

h:=Group(x,(8,1)(3,2)(4,6)); # S_8 h:=Group(x,(8,1)(5,2)(4,6)); # S_8
h:=Group(x,(8,1)(3,5)(4,6)); # S_8

h:=Group(x,(8,1)(4,2)(3,6)); # S_8 h:=Group(x,(8,1)(5,2)(3,6)); # S_8
h:=Group(x,(8,1)(4,5)(3,6)); # S_8

h:=Group(x,(8,1)(4,3)(2,6)); # S_8 h:=Group(x,(8,1)(5,3)(2,6)); # S_8
h:=Group(x,(8,1)(4,5)(2,6)); # S_8

h:=Group(x,(8,1)(2,3)(4,5)); # S_8 h:=Group(x,(8,1)(2,4)(3,5)); # S_8
h:=Group(x,(8,1)(4,3)(2,5)); # S_8
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There is one nontrivial point in the argument for computing Cor(x, y) in Lem. 0.1.
We know from that lemma of two possible outcomes: Cor(x, y) is either S8 ×S8 or
the index two subgroup of pairs (g1, g2) ∈ S8 × S8 where g1g

−1
2 ∈ A8: S8 ×∗ S8.

One of these two must happen (dependent on whether xy ∈ S8 or in A8),
assuming that Cor(x, y) contains an element of form (1, g) with g �= 1. This last
was automatic if x and y have different orders. We have not dealt with the case x
and y have the same order.

Proposition 6.1. Suppose there is an automorphism α of S8 having order
two that takes x to y. If 〈x, y〉 = S8, then Cor(x, y) is the subgroup of S8 × S8

isomorphic to S8 given by S8,α = {(g, α(g)) | g ∈ S8}. Otherwise, Cor(x, y) is
S8 × S8 or S8 ×∗ S8.

Proof. Suppose there is such an automorphism α of order 2. Then the group
S8,α contains (x, α(x)) and (α(x), α2(x)) = (y, x) and so it equals Cor(x, y).

Now assume the general case. Suppose Cor(x, y) contains two elements (g, h1)
and (g, h2) with h1 �= h2. Then, it contains (g, h1)(g, h2)−1 = (1, h2h

−1
2 ), and we

already know what is Cor(x, y). The negation of this situation is that for each
(g, h) ∈ Cor(x, y), the map g �→ h is a one-one map. This map must therefore be
an automorphism: g1g2 �→ h1h2. Call this automorphism α.

We show α has order 2. Under the assumptions, since (x, y) ∈ Cor(x, y),
y = α(x). Since (y, x) ∈ Cor(x, y), x = α(y). Apply α to both sides of this
last equation, to conclude α(x) = y = α2(y) and, similarly, x = α2(x). Since
〈x, y〉 = S8, we know α2 from its effect on x and y. Therefore α2 is the identify
automorphism. This concludes the proof of the proposition. �

The following result is in [Isa94, 79-80].
Lemma 6.2. The automorphisms α of Sn having order 2 are either conjugations

by an element of order 2, or n = 6.

7. Cor(x, y) WITH ORDERS OF x AND y THE SAME

We now investigate the possibility the orders of (x, y) are integers (n, n) with
1,≤ n ≤ 8. We need, however, that at least one of x or y (assume x for certain)
in S8 \ A8. So, n odd is out. So is n = 2 out: Two elements of order 2 generate a
dihedral group (rigid motions of a regular polygon) of order 2k where k is the order
of xy.

For each of n = 4, 6, 8 we discuss the subcases for determining Cor(x, y). For
each such n consider elements by their cycle type. For the pairs x and y we use
combinatorics around the centralizer subgroup of x to to assure the group they
generate is primitive (Chap. 4 §4). Then we need only show x and y are not both
in a proper primitive subgroup of S8 containing an element of S8 \ A8. The only
possibilities are that some conjugate of PGL(F7) contains x and y.

Example 7.1 (Illustration of (x, y) cycle type). ((2)(2)(4),(4)(4)) means x has
cycle type (2)(2)(4) and y has cycle type (4)(4). Conjugation of x and y by an
element of S8 allows us to assume x = (1 2)(3 4)(5 6 7 8). Conjugating y by any
element in the centralizer, ZS8(x), of x does not change the problem, so for 〈x, y〉
to be primitive, y is determined only up to conjugation by 〈(5 6 7 8), (1 3 2 4), (1 2)〉.
Conclude: If 〈x, y〉 = S8, then Cor(x, y) = S8 × S8 since the possibility of S8,α

requires that x and y have the same cycle type.
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According to Prop. 6.1, we know the outcome unless y is the conjugate to x by
an element of order 2.

8. THE CASE n = 8

The case n = 8 is especially easy for y must also be an 8-cycle. So y is conjugate
to x = (1 2 3 4 5 6 7 8). Further, 〈x, y〉 primitive means the 8-cycle for y must move
some even integer to an even integer. With no loss, by conjugating by x, assume
y either has the effect 2 �→ 4 or 2 �→ 6. (6,6) (and (8,8) (both eight cycles). The
following shows 〈x, y〉 = S8 for certain.

Lemma 8.1. The group PGL(F7) contains no element of order 8.

Proof. An element of order 8 would be in a 2-Sylow subgroup of such a group.
A 2-Sylow of PSL2(F7) is a subgroup of A8 and all its elements of 2-power order
have order 2. So, the biggest order of a 2-power element in PGL(F7) is four. �

We summarize the result of all of this.
Proposition 8.2. Consider any h ∈ S8 that maps some odd integer to an even

integer and some even integer to an even integer. If h has order two, then with the
automorphism αh given by conjugation by h, Cor(x, hxh−1) = S8,αh

. If, however,
h ∈ S8 does not have order 2, then Cor(x, hxh−1) = S8×∗S8. This gives a complete
description of all possibilities for Cor(x, y) where x and y both have order 8.

9. THE CASE n = 4

Suppose x has the shape in Ex. 7.1. A set of imprimitivity must have cardinality
2 or 4. If 〈x, y〉 is transitive, with no loss we may assume a set of imprimitivity
contains any a priori integer.

Lemma 9.1. Suppose 〈x, y〉 is transitive, but not primitive. If a set of imprim-
itivity has cardinality 2, we may assume it is {5, 7} (or {6, 8}).

If a set of imprimitivity I has cardinality 4, then with no loss we may assume
I contains {5, 7}.

Proof. Assume the set of imprimitivity has cardinality 2 and it contains the
integer 5. If the set is a subset of {5, 6, 7, 8}, then use that for n-cycle, (1 2 . . . n),
the group generated by this has only the sets of imprimitivity consisting of the
integers ≡ a mod k for some integer a and divisor k of n. If the set is not a subset
of {5, 6, 7, 8}, then by apply x2 to the set you find it also contains 7, and so has
four elements.

If a set of imprimitivity has cardinarily 4, then x2 maps this set into itself:
Either it fixes at least one integer in the set or the set consists of {5, 6, 7, 8}. So,
the set contains {5, 7}. �

Here are examples where x has the shape in Ex. 7.1 and 〈x, y〉 is primitive.
Recall the centralizer of x is 〈(5 6 7 8), (1 3 2 4), (1 2)〉.

We comment on this table. Guaranteeing that 〈x, y〉 is primitive is trickier with
an irregular shape. For example with y = (1 5)(2 6)(3 4 7 8), {5, 7, 3, 6} is a set of
imprimitivity for 〈x, y〉.

Apply Lem. 9.1 to 41 to inspect a possible set of imprimivity I containing {5, 7}.
Square y to see 4 ∈ I. If any other integer from {1, 2, 3, 6} is in I another integer
from this set would have to be in there too. So, 〈x, y〉 is primitive in 41. Apply the
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Table 2. Cases n = 4

n shape pair y Cor(x, y)
41 ((2)(2)(4),(4)(4)) (1 2 3 6)(5 8 4 7) S8 × S8

42 ((2)(2)(4),(2)(4)) (2 3)(4 6 7 8) S8 × S8

43 ((2)(2)(4),(2)(2)(4)) (1 5)(2 3)(6 7 4 8) S8 ×∗ S8

44 ((2)(2)(4),(2)(2)(4)) (7 2)(8 4)(6 5 1 3) S8,(1 7)(3 8)(5 6)

same thinking to y = (1 5)(2 3)(6 7 4 8) (43 in the table). A set of imprimitivity I
must contain {5, 7, 8}, and so it contains 6, and then 4. So 43 is primitive.

For 42, a set I of imprimitivity containing {5, 7} would also contain 4 (from
applying y which fixes 5). To add another integer, it would have to be in {1, 2, 3}.
Since x takes 5 to 7, if 1 ∈ I (or 2 ∈ I), then 2 (or 1) would be also. This leaves
only the possibility 3 ∈ I, which implies x maps I to I, a contraction. So, 42 is
primitive.

It is easy to get y that is conjugation of x by an element, β, of order 2. For
example try y = (1 5)(3 6)(2 4 7 8), conjugation of x by (2 5)(4 6). The problem
is that 〈x, y〉 has {2, 3, 5, 7} as a set of imprimitivity. The explanation of 44 in
Table 9 is in Lem. 9.3 which considers the case of conjugating x by a product of
three disjoint 2-cycles. The minimum number of 2-cycles necessary to assure 〈x, y〉
is transitive is two. Conjugating β by an element of the centralizer of x doesn’t
change the problem. Lem. 9.2 shows we can’t take β a product of two disjoint
2-cycles. The case where β is a product of four disjoint 2-cycles breaks up into
cases similarly, so we didn’t write it out.

Lemma 9.2. If β has order 2 and is a product of two disjoint 2-cycles, then
〈x, βyβ−1〉 is not primitive.

Proof. To assure conjugation by β having order 2 gives 〈x, y〉 primitive re-
quires assuring there is no set of imprimitivity I containing {5, 7} and either the
first and 3rd integers from β(5 6 7 8)β−1 or the second and 4th integers from this
same element. Each disjoint cycle in β has an integer of {5, 6, 7, 8} in its support.
Conjugating β by the center of x assures β = (1 5)(3 i2) with i2 ∈ {6, 7}. If i2 = 7,
then I = {5, 7} is a set of imprimitivity.

Now consider the case i2 = 6. This would add give 1 ∈ I by applying y2. Then,
we find with 4 ∈ I, we get a set of imprimitivity. �

Now consider the case β is a product of three disjoint 2-cycles. Tacitly we
assume 〈x, y〉 is transitive.

Lemma 9.3. Suppose one 2-cycle of β has support in {5, 6, 7, 8} and no 2-cycle
of β has support in {1, 2, 3, 4}. Then, modulo the centralizer of x, β is one of
β1 = (1 7)(3 8)(5 6), β2 = (1 6)(3 8)(5 7). When β = β2, Gβ = 〈x, βyβ−1〉 has a set
of imprimitivity of cardinality 2. When β = β1, Gβ is primitive.

Suppose one 2-cycle of β has support in {1, 2, 3, 4} and no 2-cycle of β has sup-
port in {5, 6, 7, 8}. Then, modulo the centralizer of x, β is one of β3 = (1 3)(2 5)(4 6)
or β4 = (1 3)(2 5)(4 7). When β = β4, Gβ = 〈x, βyβ−1〉 has a set of imprimitivity
of cardinality 2. When β = β3, Gβ is primitive.

Suppose one 2-cycle of β has support in {1, 2, 3, 4} and one 2-cycle of β has
support in {5, 6, 7, 8}. Then, modulo the centralizer of x, β is one of β5(i1, i2) =
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(1 3)(2 5)(i1 i2) with i1, i2 ∈ {6, 7, 8}. Then, Gβ5(6,7) and Gβ5(7,8) are primitive,
though Gβ5(6,8) has a set of imprimitivity of cardinality 4.

Suppose no 2-cycle of β has support in {1, 2, 3, 4} and no 2-cycle of β has
support in {5, 6, 7, 8}. Then, modulo the centralizer of x, β is one of β6(i1, i2) =
(1 5)(3 i1)(4 i2) with i1, i2 ∈ {6, 7, 8} and i1 < i2. Then, Gβ6(6,8) is primitive, and
Gβ6(6,7) and Gβ6(7,8) have sets of imprimitivity of cardinality 4.

Proof. For the case β = β2, it preserves the imprimitivity set {5, 7} of cardi-
nality two for 〈x〉. When β = β1, y = (7 2)(8 4)(6 5 1 3). So a set I of imprimitivity
containing {5, 7} also contains 3 (apply y2). Now put any other integer into I and
conclude there must be a 5th integer in it.

Again, β = β4 preserves a cardinal two set of imprimitivity having order 2, so
Gβ4 is imprimitive. The primitiveness of Gβ3 is similar to that of Gβ1 .

The remaining examples are similar. �

The number of elements in S8 with the shape (2)(2)(4) equals 8! divided by the
order of the centralizer of x. So, there are 8!

4!8 = 7 · 6 · 5 such elements. As with the
case n = 8, we need to know 〈x, y〉 is not in PGL(F7). As with n = 8, no elements
in this group have shape (2)(2)(4).

Lemma 9.4. The conjugacy class of x = (1 2)(3 4)(5 6 7 8) does not meet PGL(F7).

10. THE CASE n = 6

In this case x has cycle type (2)(3)(3) or (2)(3), and y has possible cycle types
(2)(2)(3), (2)(3)(3) or (2)(3). This follows similar calculations to the case n = 4,
though we will keep it brief, hitting only the differences between the two cases. One
quick point is that x3 is an order two element fixing six integers. If, however, an
element of PGL2(F7) fixes as many as three integers, it must be the identity.

For x = (1 2)(3 4 5), the centralizer of x is 〈(1 2)〉× 〈(3 4 5)〉×S3 where the last
copy of S3 is acting on the integers {6, 7, 8}. To see this use the argument Chap. 1
Lem. 3.1 to get the centralizer of each disjoint cycle. Then, combine this with the
group permuting the integers that x fixes. The appearance of 3-cycles in x2 and y2

(and 2-cycles in x3 and y3) make it easy to assure primitivity. Analogous to the
examples with n = 4 we give some for n = 6 in this table. We leave it to the reader
as an exercise to fill in the chart.

Table 3. Cases n = 6

n shape pair y Cor(x, y)
61 ((2)(3),(2)(2)(3)) (2 3)(4 7)(5 6 8) S8 × S8

62 ((2)(3),(2)(3)(3)) (2 8)(1 3 7)(4 5 7) S8 ×∗ S8

63 ((2)(3)(3),(2)(2)(3)) (7 2)(8 4)(6 5 1) S8 × S8

64 ((2)(3)(3),(2)(3)(3)) (1 3)(2 4 6)(5 7 8) S8 ×∗ S8

65 ((2)(3)(3),(2)(3)(3)) (3 6)(1 4 5)(2 7 8) S8,β

66 ((2)(3)(3),(2)(3)) (1 6)(3 5 7) S8 ×∗ S8

Note: The type ((2)(3),(2)(3)) is missing. The next lemma explains that.

Lemma 10.1. If (x, y) has type ((2)(3),(2)(3)), then 〈x, y〉 is intransitive.
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Proof. Three integers, {6, 7, 8} are missing from the support of y. They must
appear in the support of y to give 〈x, y〉 transitive. So, too, must one integer each
from the 2 and 3-cycle in x, and then there must be a join of each 2 and 3-cycle
of y to the 2 and 3-cycle of x. There aren’t enough integers for this, and 〈x, y〉 is
intransitive. �





CHAPTER 4

PRIMITIVE GROUPS

[Sh01] produces a function that probably has many interesting properties. It
is akin to various so-called zeta functions. For a finite group G, let M denote a
subgroup of G with no group properly between it and G (a maximal subgroup). As
in Thm. 4.1 let PG be the probability that two randomly selected elements from
G will generate G. Then, ζG(s) =

∑
M maximal

|M |
|G|

s
has this property: 1 − PG ≤

ζG(2). So, Dixon’s conjecture follows from proving that ζG(2) �→ 0 as |G| �→ ∞
running over simple groups G. The papers that [Sh01] references use the famous
classification of finite simple groups. This tells enough about maximal groups of
simple groups to prove Dixon’s conjecture.

In §8 and §9 we use a practical version of this. To consider what pairs (x, y) ∈ S8

generate S8 we must exclude those x and y that are both in some (proper) maximal
subgroup of S8. The results of this section about include describe the conjugacy
classes of maximal subgroups of S8. General results about arbitrary simple groups
such as those of [Sh01] do use some form of a listing for certain maximal subgroups.
Prof. Fried tells me that knowing how to use partial results in this direction is where
present group theory researchers show their expertise.

1. (2,3)-GENERATION

Every group that is generated by two elements, a, b, with a having order 3 and
b having order 2 is a quotient of a very famous group called PSL2(Z): The set
of functions z �→ mz+n

m′z+n′ with m, m′, n, n′ ∈ Z and mn′ − m′n = 1. Shalev calls
any such group a (2,3)-generated group [Sh01]. Such a group, together with (a, b),
corresponds to an algebraic equation coming from classical complex variables. The
tradition that a has order 3 and b has order 2 comes from complex variables. This
convention will be useful for us.

Finding which finite simple groups are (2,3)-generated occurs in much literature
since the late 1800s. The groups An have this property for n ≥ 9, a result of Miller
from 1901. For example, my advisor Prof. Fried had the group A9 appear as part
of his research with a = (2 1 4)(3 7 8)(5 6 9) and b = (4 5)(3 9)(1 2)(8 6) precisely
because he was investigating a certain algebraic equation from his study of the
Inverse Galois problem.

Also, A8, the group of our investigation is not (2,3)-generated. Let Ha,b be
the group generated by a, b. In the proof of Prop. 1.1 below, we use the idea
that if {a, b} generated a normal subgroup Ha,b of a group G, then the conjugates
{gag−1, gbg−1} by g ∈ G also generate Ha,b.

Proposition 1.1. The group A8 is not (2,3)-generated.
The next three subsections complete the proof of Lem. 1.1. §2 considers what

elements of respective orders 3 and 2 might be generators of A8. §3 brings up how

27
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the computer program GAP could show that the potential (2,3)-generators of A8

all generate proper subgroups of it. Then, §5.3 gives a mathematical proof that
shows exactly what is the group these (2,3)-generators give.

2. LIMITING (2,3)-GENERATORS OF A8

Suppose a, b are respectively of order 3 and 2 and they generate A8. Using
conjugation, assume with no loss that a = (1 2 3)(4 5 6). Now, we may conjugate b
by any element of S8 that centralizes a, and get new generators. Also, to be in A8,
b must be a product of either two or four disjoint 2-cycles. It is easy, however, to
see that if b is a product of just two disjoint 2-cycles, there would be no way to get
a transitive group from 〈a, b〉 on {1, 2, . . . , 8}. Using transitivity conclude with no
loss the following. Either:

(2.1a) b maps 8 to 4 and b = (7 1)(8 4)(2 5)(3 6) or b = (7 1)(8 4)(2 6)(3 5); or
(2.1b) b maps 8 to 2 or 3 and is one of (7 1)(8 2)(3 4)(5 6) or (7 1)(8 3)(2 4)(5 6).

For example, we use b = (7 1)(8 4)(2 5)(3 6).

3. PROOFS VERSUS GAP

Computer programs like GAP can take as input the generators a and b and
check if the resulting group Ha,b is A8. The code at the command line of GAP
would look like this. (Anything on a line following # denotes a comment.)
h:=Group((1,2,3)(4,5,6),(7,1)(8,4)(2,5)(3,6)); # Defining group h
h.name:="h"; # Declares the name property of the group.
Size( h ); # This computes the order of the group.
Print("The order of A8 is 2^7*3^2*5*7. The order of h is \n"); #
Collected(Factors(last)); # collects factors of last result.

GAP gave us following upon typing at the program command line:
gap> h:=Group((1,2,3)(4,5,6), (7,1)(8,4)(2,5)(3,6));
Group( (1,2,3)(4,5,6), (1,7)(2,5)(3,6)(4,8) )
gap> h.name:="h";
"h"
gap> Size( h );
24
gap> Print("A8 has order 2^7*3^2*5*7. The order of h is \n");
The order of A8 is 2^7*3^2*5*7. The order of h is
gap> Collected(Factors(last));
[ [ 2, 3 ], [ 3, 1 ] ]

The collected factors for A8 are 27 ·32 ·5 ·7, larger than for h (with order 23 ·3).
So GAP shows A8 is not (2,3)-generated. Since, however, this computation comes
from the 1800’s when there was no GAP, we can compare GAP with computations
using standard mathematical proof.

4. COMPLETING THAT A8 ISN’T (2,3)-GENERATED

If H is a subgroup of G (versus just a subset) we use the notation H ≤ G.
An extra notion is that of a primitive group. For any transitive subgroup H ≤ Sn,
suppose I is a proper subset of {1, 2, . . . , n} containing more than one element.
Then, I is a set of imprimitivity for H if either h(I) = I or h(I) ∩ I = ∅ for all
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h ∈ H. Call H primitive if there is no such I. Since the group H is transitive, with
no loss assume a set of imprimitivity contains 1. Let HI be the subgroup of h ∈ H
such that h(I) = I. Then, HI contains the subgroup H(1) of elements in H that
fix 1. The following is a well-known lemma from group theory.

Lemma 4.1. A transitive subgroup H of Sn is primitive if and only if there is
no proper subgroup between H and H(1).

Proof. If H∗ is a group properly between H and H(1), let I be the orbit
of 1 under H∗. Then, the cosets of H(1) in H∗ correspond to the elements of I.
Suppose t ∈ h(I) ∩ I, then t = h∗(1) and h = h∗m with m ∈ H(1) and so h ∈ H∗

and h(I) = I.
Conversely, if there is set of imprimitivity I, then the set of elements h∗ with

h∗(1) ∈ I is properly between H and H(1). �

Now return to considering the subgroup Ha,b ≤ A8. Suppose Ha,b is A8. then
there is no way to divide {1, 2, ..., 8} into disjoint collections of integers - each with
at least two elements – so that each of a and b move the sets around. When
a = (1, 2, 3)(4, 5, 6) and b = (7, 1)(8, 4)(2, 5)(3, 6), we can partition {1, 2, ..., 8} into
the subsets X1 = {1, 4}, X2 = {2, 5}, X3 = {3, 6}, X4 = {7, 8}. Then, both a and b
move these sets around through their actions. The effect of a is X1 �→ X2 �→ X3 �→
X1 and X4 �→ X4, while b has the effect X1 �→ X4, X2 �→ X2, and X3 �→ X3

For the second possibility in (2.1a), the result is also that the group is not
primitive with the sets above showing exactly that. For, however, any b in (2.1b),
the group Ha,b is primitive. GAP showed the existence of a group inside A8, that
is primitive of degree 8, that is (2,3)-generated and is not the alternating group.
It didn’t give any hint about what group that was, nor why when it would occur.
With our description of the primitive subgroups in S8 see what it is about.

Consider the set of 2×2 matrices with elements in the finite field F7 of order 7.
Then, the group PSL2(F7) of expressions az+b

cz+d with ad− bc = 1 acts on F7 ∪ {∞}.
The group with only the condition ad − bc �= 0 is sharply triply transitive. So it
has order 8 · 7 · 6. When, however, you add the condition that ad − bc = 1, you
exclude such actions as z �→ −z, and PSL2(F7) has order 8 · 7 · 3. Since this is a
quotient of PSL2(Z), a (2,3)-generated group, it is automatically (2,3)-generated.

The matrix
(

0 −1
1 0

)
represents an element of PSL2(F7) having order 2. It acts

on the 8 elements giving the permutation symbols by interchanging all elements
(including 0 and ∞) in pairs. Since any element of odd order is in the alternating
group, this means PSL2(F7) ⊂ A8. GAP returned 23 · 3 · 7 as the output for the
factors for the group of (2.1b) in agreement with our deduction.

5. OTHER DEGREE 8 PRIMITIVE GROUPS

In this subsection we list the other primitive groups of degree 8.

Definition 5.1. A group G ⊂ Sn is doubly transitive if for each pair of distinct
integers i, j there is g ∈ G such that g(i) = 1 and g(j) = 2.

Lemma 5.2. A doubly transitive group is automatically primitive. Further, a
transitive group G is doubly transitive if and only if G(1) is transitive on {2, . . . , n}.
Any transitive subgroup of Sn containing a (n − 1)-cycle is primitive.
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Proof. Suppose G is a doubly transitive group, and let G(1) be the elements
in it that stabilize 1. If there is a group H properly between G(1) and G, let
h ∈ H \ G(1). Then, h(1) = j �= 1. For any integer k �= 1, double transitivity
implies there is g′k ∈ G(1) taking j to k. So, g′kh ∈ H takes 1 to k. By Lagrange’s
lemma the cosets G(1) and g′khG(1), k = 2, . . . , n are distinct, and so the union of
these cosets is all of G. Since they are all in H, it must be that H = G, or G is
primitive.

Suppose G(1) is transitive on {2, . . . , n} (and G is transitive). Then, given
integers i �= j, use transitivity to find g ∈ G taking i to 1. Then, g(j) = k with
k �= 1. Choose g′ ∈ G(1) taking k to 2. Conclude g′g(i) = 1 and g′g(j) = 2, so G
is doubly transitive.

Now suppose G is transitive, and it contains a (n − 1)-cycle g(n − 1). By
conjugating g(n− 1) by an element of G, assume with no loss that g(n− 1) fixes 1.
So, g(n−1) generates a subgroup transitive on {2, . . . , n}. So the previous deduction
shows G is primitive; in particular, G(1) is transitive on {2, . . . , n}, hence doubly
transitive, hence primitive. �

The next proposition accounts for the cases in Table 4 with 〈x, y〉 �= S8.
Proposition 5.3. Instead of PSL2(F7) consider

PGL2(F7)
def= {az + b

cz + d
| ad − bc �= 0}.

It has the following properties.
(5.1a) It contains PSL2(F7) as a subgroup of index 2.
(5.1b) It has generators of order 7 and order 2 that act, respectively, like a

7-cycle and a product of three disjoint 2-cycles on {0, 1, . . . , 7,∞}.
(5.1c) Up to conjugation in PGL2(F7) there are just two such generating pairs.

Proof. If you change az+b
cz+d to u(az+b)

u(cz+d) , the expression ad−bc changes to u2(ad−
bc). The map PGL2(F7) → F

∗
7 ∪ {∞} by az+b

cz+d �→ ad − bc up to multiplication by
a square in F

∗
7 is a homomorphism with kernel those the elements of PSL2(F7).

Euler’s Theorem says F
∗
7 is a cyclic group of order 6. So, the elements in it that

are squares are exactly the elements of order 3. Conclude: The index of PSL2(F7)
in PGL2(F7) is therefore two.

The elements z �→ z + 1 and z �→ 1/z are easily shown to generate PGL2(F7).
The first gives a 7-cycle. The action of z �→ 1/z on {0, 1, . . . , 7,∞} is easy to figure:
it interchanges 0 and ∞, is of order 2 and fixes only 1 and −1 from 1, . . . , 7. So,
these two elements generate a transitive group containing a 7-cycle: the group is
doubly transitive by Lem. 5.2.

It is easy to show any 7-cycle in PGL2(F7) is conjugate to this, and any element
of order 2 is conjugate to z �→ 1/z. If a(z) has order 2 and it maps ∞ to j ∈
{0, 1, . . . , 7,∞}, conjugate by a power of z �→ z + 1 to guarantee that a(z) maps ∞
to 0. Since it has order two it switches ∞ and 0, and so it has the shape z �→ c/z.
Up to a square, c = ±1, and that gives the two conjugacy classes of pairs listed in
the statement of the proposition. �

We saw that PSL2(F7) and PSL2(F7) were two related primitive groups of
degree 8 (in their action on {0, 1, . . . , 7,∞}). There are three further primitive of
degree 8 groups (related, though not related to PGL2(F7)).
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Proposition 5.4. Let G = GL3(Z/2) be the group of invertible 3× 3 matrices
acting on (Z/2)3 = V = V8. Then, from V and G you can construct a group
V ×sG that has order 25 · 32 · 7. By associating the elements of V with the integers
{1, . . . , 8}, this gives V ×sG acting on {1, . . . , 8}. It has doubly transitive subgroups
of order 8 · 7 and 24 · 3 · 7. The group V ×sG (and all its subgroups) is a subgroup
of A8.

Proof. Write this group’s elements in the form (v, g) with g ∈ G and v ∈ V .
Multiplication appears in the following form:

(v, g) × (v′, g′) def= (v + g(v′), gg′)

where gg′ is ordinary matrix multiplication and g(v′) means the matrix g acts on the
vector v′ as in linear algebra. The full collection of matrices takes any v ∈ V \{0} to
any other. This says the group is doubly transitive and therefore primitive. Also, it
will take any element in V \ {v, 0} to any other. So, it is actually triply transitive.
An element of V ×sG that fixes {v, v′, 0} with v′ ∈ V \ {v, 0}. The order of G is
8 · (23 − 1) · (23 − 2) · (23 − 22).

Since the elements of V8 have order 2, and fix no element (by translation on
V ), they are all products of 4 disjoint 2-cycles, so they are in A8. Since V8 × I3

and (0, 0, 0)×GL3(Z/3) generate V ×sG, to see that V ×sG is in A8 only requires
showing G = GL3(Z/2) is in A8.

From linear algebra, the diagonalizable elements generate G. The eigenvalues of
a diagonalizable element are values in the nonzero elements of some finite extension
of the field Z/2. Let F be such a field extension, so |F| = 2t for some integer t.
The multiplicative elements of a finite field form a cyclic group. So, the orders
of the eigenvalues as elements of this group are odd. Therefore, the order of a
diagonalizable element is odd. Therefore G has generators of odd order. Since all
odd order elements in Sn lie in An, the image of G in any Sn is in An. �

Shalev [Sh01] also quotes papers of Liebeck-Shalev 1996, Lübeck-Malle 1999.
These say, excluding finitely many simple groups, there are three series of finite
simple groups

{PSp4(2
k),PSp4(3

k),Sz(2k)}∞k=1

that are not (2,3)-generated. This was an example of their general technique of tak-
ing a ζ-function approach and using some knowledge about the maximal subgroups
of simple groups.





CHAPTER 5

WHERE THERE ARE NO GROUPS

1. GROUP THEORY IN HIGH SCHOOL

Group theory is not standard in high school mathematics though there are hints
it could be. Combining a problem like the one in §2 with the treatment of proba-
bility (permutations and combinations) in Algebra II could introduce students to
permutations as group elements. Introducing group theory in high school would be
helpful in several ways. For example, I have witnessed in my work as a teaching
assistant for calculus classes, that ideas involving composition, especially change of
variables, composing fuctions, and using substition (as with the Chain Rule) are
frustrating for almost all students. Yet, composition is a core element of group
theory, and dealing with compositions with some group theoretical understanding
would give students more power in dealing with compositions of functions in cal-
culus, by giving them experience and more perspective of what a composition is.
Statements of theorems involving composition, like the Chain Rule, would perhaps
then be more readable, Generalizations to higher dimensions, as in vector calculus,
would come with more experience behind them.

Composition to take easy functions and from them produce all the complicated
functions. The above problem illustrates this, for in it a set of two elements gen-
erates a large group. Such group operations — especially inverse and conjugation
— cause teaching problems not only in math, but also in biology, chemistry, engi-
neering and physics. Many college courses would benefit if some elementary group
theory were introduced earlier. For example, the geometry of rigid motions is a
group theory topic, and is taught as such in many countries, though not in the US.

2. VISUALIZING 〈x, y〉 AND Cor(x, y)

Finally, we would like to get a BASIC program to put some flashes on the
screen to indicate something graphical about what elements you actually hit as we
run over words in x and y, and in A and B. Is it possible that pairs of x and y
that generate S8 will reveal patterns in 〈x, y〉 and in their correlations that will be
visible to someone in some graphic way?

All our programs and their outputs are in Chap. A. The pseudocode and a
sample output of the S8CLASS.BAS are in Chap. A §3. This program lets us input
any two permutations x and y from S8. Then it multiplies longer and longer words
in x and y, a la binary numbers, giving an ongoing tally and logarithmic bar graph
of the conjugacy classes of the products. We ran this program with several different
inputs and did not find anything surprising in the distribution of the classes as the
products were generated.

The programs S8CYCLE.BAS and S8ORDER.BAS, whose outputs are sampled
in Chap. A §4 and Chap. A §5, are similar to S8CLASS.BAS, but S8CYCLE.BAS

33
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tallies the numbers of cycles in the products, while S8ORDER.BAS tallies the
orders of the products. We ran both programs with several different x, y pairs. As
the programs ran, the distributions of the orders and numbers of cycles seemed to
roughly follow this classic result of Erdös and Turán [Sh01].

Theorem 2.1 (Statistics in Sn). Given any ε > 0, for n large enough, most
(at least (1 − ε)n!) permutations in Sn have roughly log n cycles. Further, for this
large fraction of permutations, their orders divided by n

1
2 log n are within ε of 1.

Further, consider the function fn : {1, . . . , n} → Z (resp. gn : {1, . . . , 2n} → Z)
that sends k to the number of permutations in Sn with precisely k cycles (resp. with
precisely order k). Then, for n large, the graphs of fn and gn (scaled appropri-
ately in their arguments and range) converge to Gaussian normal distributions with
known variances as n tends to infinity.

It was pleasant to see this theorem confirmed visually. I believe displays like
this could be valuable as a motivational and learning tool for algebra students.
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APPENDIX A

BASIC PROGRAMS AND SAMPLE OUTPUTS

Each subsection has pseudocode for a program written in Basic. We ran these
on a PC with a Pentium chip. While these Basic programs were nowhere so powerful
as using GAP, they gave me my first experience with program writing. To use
GAP required considerable knowledge of group theory. So, even for our little
GAP programs, there was a substantial learning curve.

1. PROGRAM 1: S8S8CAL2.BAS

inputc:
Input permutation, C, in S_8\times S_8,
to be generated as a word in A and B,
where x=(1 2), y=(1 2 3 4 5 6 7 8), A=(x,y) and B=(y,x).

initializestring:
p = 0 ’p is a string of 0’s and 1’s.
Goto calculate

increment:
Generate the next p in binary numbers (0, 1, 01, 10, 11, ...)

calculate:
With 0 and 1 representing A and B, multiply p out
If the product is C goto hit
Else goto increment

hit:
Print "The string p = ? generates C."

2. PROGRAM 2: TAIJOB1.BAS and output

initializestring:
p = 0 ’p is a string of 0’s and 1’s.
Goto calculate

increment:
Generate the next p in binary numbers (0, 1, 01, 10, 11, ...)

calculate:
With 0 and 1 representing (3 4)(5 6)(7 8) and (1 2 3 4 5 6 7),

37
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multiply p out.
If the product is a 2-cycle then goto hit
Else goto increment

hit:
Print trial number; "result"; string; product

Output excerpt:
string length 1
string length 2
... ...
string length 12
1911 result 111011101110 15342678
3003 result 110111011101 42315678
3549 result 101110111011 12745638
3822 result 011101110111 16345278

3. PROGRAM 3: S8CLASS.BAS and output

input:
Input permutations, x and y, as products of disjoint cycles.

initializestring:
p = 0 ’p is a string of 0’s and 1’s.
Goto calculate

increment:
Generate the next p in binary numbers (0, 1, 01, 10, 11, ...)

calculate:
With 0 and 1 representing x and y, multiply p out.

matchclass:
Match the product with one of the 22 conjugacy classes.
Add to tally of class on the display, and recalculate the bar
length in the logarithmic bar graph.
Goto increment

Sample output with input generators x=(1 2 3 4 5 6)(7 8), y=(2 7 3 5)(1 6 8):

DECIMAL TALLY OF CLASSES AND LOGARITHMIC BAR GRAPH
trial number: 32122
class number 1: 8 : ******** 4099
class number 2: 7 : ******** 4499
class number 3: 6 2 : ******** 2452
class number 4: 6 : ******** 2433
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class number 5: 5 3 : ******** 2116
class number 6: 5 2 : ******** 3358
class number 7: 5 : ******* 1014
class number 8: 4 4 : ******* 1074
class number 9: 4 3 : ******** 2833
class number 10: 4 2 2 : ******* 1044
class number 11: 4 2 : ******** 1905
class number 12: 4 : ****** 430
class number 13: 3 3 2 : ******* 765
class number 14: 3 3 : ******* 1019
class number 15: 3 2 2 : ******* 1547
class number 16: 3 2 : ******* 789
class number 17: 3 : **** 85
class number 18: 2 2 2 2 : ***** 150
class number 19: 2 2 2 : ****** 264
class number 20: 2 2 : ***** 197
class number 21: 2 : **** 46
class number 22: (identity) : * 3

4. PROGRAM 4: S8CYCLE.BAS output

The code for this program is very similar to that of S8CLASS.BAS

Sample output with generators x=(1 2 3 4 5 6)(7 8), y=(2 7 3 5)(1 6 8):

TALLY AND BAR GRAPH OF NUMBER OF CYCES
trial number: 32119
0 cycles: * 3
1 cycles: ********* 12605
2 cycles: ********** 15742
3 cycles: ******** 3619
4 cycles: ***** 150

5. PROGRAM 5: S8ORDER.BAS output

The code for this program is very similar to that of S8CLASS.BAS

Sample output with generators x=(1 2 3 4 5 6)(7 8), y=(2 7 3 5)(1 6 8):

TALLY AND BAR GRAPH OF ORDERS
trial number: 32164
order 0: * 3
order 2: ****** 657
order 3: ******* 1104
order 4: ******** 4452
order 5: ******* 1013
order 6: ********* 7985
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order 7: ******** 4498
order 8: ******** 4098
order 10: ******** 3357
order 12: ******** 2833
order 15: ******** 2116


