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Abstract. The Hurwitz space approach to the regular Inverse Galois Problem

was the only successful approach to Galois group realizations beyond nilpotent

groups. It gave regular realizations of many series of groups. More significantly,
the M(odular) T(ower) program identified obstructions to systematically find-

ing regular realizations. Finding a way around those obstructions generalize
renown results on modular curves.

We use the MT program to explicitly construct towers over a number

field whose components are upper half plane quotients. Our main example
was chosen close to topics that attracted those interested in Theta functions

(the Schottky problem). This produces families of `-adic representations. The

surprising ingredient is the appearance of a Heisenberg group that controls the
components that define the tower.

We model our results on properties Serre used in achieving his O(pen)

I(mage) T(heorem) on `-adic representations from projective systems of points
on modular curves. There are two types of systems of `-adic representations:

Frattini and Split. Each type generalizes aspects of modular curve systems.
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1. Outline of results with emphasis on spaces of upper half-plane
quotients

The framework for considering `-adic representations attached to specific (pro-
jective) sequences of (reduced) Hurwitz spaces is , for some purposes, in place.
There are two types of applications: those resembling results on modular curve
towers, and those in the service of the Inverse Galois Problem. Since Hurwitz spaces
are families of sphere covers, there is a key parameter: the number of branch points,
r, of the covers, giving the dimension of the spaces as r − 3, with r ≥ 4. To make
that modular curve comparison we concentrate on r = 4 for our 1st two major
examples, leaving for the 3rd a generalization where r must exceed 4 to produce
the `-adic representations.

When r = 4, all spaces are natural upper half plane quotients and j-line covers
ramified (only) over j = ∞, j = 0 (with ramification index 1 or 3) and over j = 1
(with ramification index 1 or 2). The concept of an `-Frattini cover is what produces
canonical sequences of spaces and the `-adic representation.

1.1. Data for the spaces of this paper. A M(odular) T(ower) of Hurwitz
spaces (Def. 1.1) starts with a finite group G0 and a prime ` dividing the order of G0.
In addition, we have a collection of r, `′ (elements of order prime to `) conjugacy
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classes in G0. We denote those (unordered) conjugacy classes {C1, . . . ,Cr} by C,
usually with some extra decoration. Attached to our tower types are extensions

ψk+1,0 : Gk+1 → G0, k ≥ 0.

Denote the kernel of ψk+1,0 by Kerk+1,0. Here are properties of these extensions.

(1.1a) ψk+1,0 is an `-Frattini cover.
(1.1b) Kerk+1,0 is a Z/`k+1[G0] module, and a free Z/`k+1 module.

Here is a list of our examples.

(1.2a) A Frattini Case: G0 is A5 and ` = 5, with C
def
= C34 , 4 repetitions of

the 3-cycle conjugacy class.
(1.2b) A Split Case: The G0 s running over a series of groups

{G`,0 = (Z/`)2 ×sA3|` 6= 3 a prime},with C
def
= C34 ,

4 repetitions of the class of order 3 elements in G`,0.
(1.2c) For each of the alternating groups An with n ≡ 5 mod 8, two tower

types attached to (n, `), Gn,`,0 = (Z/`)n−1 ×sAn and C(n+1
2 )4 , 4 repe-

titions of same order lifts of the class of n+1
2 -cycles.

We direct the paper to those interested in `-adic representations; and those
interested in the Inverse Galois Problem. The problems with which those two
groups identify will be different (see §1.4). Another paper has worked out the
properties of the base Hurwitz spaces, denoted here H̄(An,C(n+1

2 )4)in,rd.

§1.2 explains in detail what our results, and expectations. Each Hurwitz space
component corresponds to a braid orbit on a Nielsen class. §1.5 reviews this, with
new observations beyond those made in previous papers. §2.1 lists basics on these
particular MTs, which we call abelianized. They are natural quotients – suitable
for `-adic representations of the general MTs.

1.2. More about the cases in (1.2). §1.3 explains the finite group extensions
that produce the system of spaces to which are attached `-adic representations.

Each (G,C) defines a Nielsen class: a collection, Ni(G,C) of r-tuples (in this
paper, usually r = 4), characterized by properties listed in (1.4). Our examples
in (1.1) keep the group theory modest. When r = 4, all the (reduced) Hurwitz
spaces will be upper half-plane quotients and natural j-line covers. This allows side
comparisons with modular curves. §2.1 explains computing the rank of Kerk+1,0 in
the Frattini case, especially why it is 6 for (1.2a).

The main result, Prop. 3.13, produces a family over Q of 5-adic (` = 5) rep-
resentations. The sequence of groups seeding the MT tower levels are Frattini
5-group extensions of A5. None of these have ever been realized as Galois groups.
Finding K rational points on the tower levels is equivalent to their regular realiza-
tion over K; even their Qp-adic realization with 4 branch point covers would be
new. The heart of the result is that the braid group acts transitively on the Nielsen
classes defining each tower level.

It is our first test case for the possibility of an Open Image Theory beyond
modular curve towers. The formulation of that uses the monodromy over the j-line
of the tower levels. It is a perfect case for looking back at [Se68] and extending a
number of its fundamental lemmas (as in §2.1.2).

The Split case (1.2b) and (1.2c) use the natural n−1 dimensional represent Vn
of An. (Mod out by the 1-dimensional trivial representation in standard (degree n)



4 M. FRIED AND M.V HOEIJ

permutation representation for An.) Then, (Z/`k+1)n−1 is just Vn mod `k+1. The
case (1.2b) where n = 3, differs from (1.2a) in involving all primes ` (for technical
reasons, excluding ` = 3 at the moment). Here, for each ` there is more than one
braid orbit at each level.

That can be scary, but [Fr06, §A.2] formulated the modular curve case using
the (small) Heisenberg group (§4.2.1). That “Heisenberg Analysis of modular curve
Nielsen classes” was a limitation on what can serve as a modular curve. Here,
though – by luck, maybe – it generates a positive result. We take advantage of two
types Nielsen class 4-tuples ggg = (g1, . . . , g4).

(1.3a) Harbater-Mumford (see Def. 2.8): g1 = g−12 .
(1.3b) Double identity: gi = gj , for some i 6= j.

Braid orbits containing elements of either type in (1.3), are distinctly different
from those that don’t. No orbit contains both types (Prop. 4.11). Several orbits in
each case contain type (1.3b), and their corresponding Hurwitz space components
are conjugate over a cyclotomic field (Prop. 4.19).

Finally, it makes sense to consider MTs of a type combining both type (1.2a)
and (1.2b). For the alternating group part we use Frattini cases from (1.2c) (n ≡ 5
mod 8) for which give examples with r = 4. There is only one difficulty in adding
the n−1-dimensional module to it, for new split cases. In order to get nonempty
Hurwitz spaces we must increase r beyond 4. §2.2 tells about these cases and why
we chose that congruence.

1.3. Extensions produce MTs. Let ψ : H → G, be a cover (surjective ho-
momorphism) of (profinite) groups. When (Ker(ψ), |G|) = 1, the Schur-Zassenhaus
Theorem says it automatically splits; ψ maps some copy of G in H one-one. Fur-
ther, that splitting is unique up to conjugacy within H.

Exactly the opposite is a Frattini cover: No proper subgroup of H maps sur-
jectively by ψ to G. For many problems, consideration of extensions divides into
considering a Frattini cover followed by a split cover.

We will show how to figure properties of the two types of ` adic representation
families that arise from the Frattini and split cases of (1.11.2). In general, we need a

sequence of groups G def
= {Gk}∞k=0 with each Gk → Gk−1 an `-Frattini cover, k ≥ 1,

and some conjugacy classes C = {C1, . . . ,Cr} for which ` divides no element in
these classes. In this paper, Ker(Gk → G0) is free abelian of exponent `k+1. So, it
is a natural Z/`k+1[G0] module.

From the data (G,C) comes a projective sequence of reduced inner Hurwitz

spaces, HG,C
def
= {H(Gk,C)in,rd}∞k=0, with G0 = G. We often drop the extra nota-

tion, referring to the sequence just as {Hk}∞k=0. Such spaces are naturally normal
varieties. Since the varieties are normal, their geometric components don’t meet.
So, we can define their projective normalizations in the field of fractions of each
component separately. Each member of that collection, {H̄(Gk,C)in,rd}∞k=0, maps
to projective r-space, Pr, modulo a natural PGL2(C) action. We denote the quo-
tient, Pr/PGL2(C), by Jr. The natural map is then H̄k → Jr.

Definition 1.1. A M(odular)T(ower) (on HG,C) is a projective sequence of
(non-empty) geometric components of the varieties in HG,C.

Certain components, called H(arbater-M(umford) have played an inordinate
role in the theory (see Def. 2.8). App. C shows how we detect the existence of
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MTs. The easiest case is when there are H-M components because knowledge of
the Nielsen class alone provides at least one such tower (Lem. 2.9). We call such a
tower an H-M MT.

Many, but not all, MTs in this paper will be such. For trivial reasons there
are no such MTs if r = 3. That still leaves the possibility that there are several
distinct H-M towers defined by MT data: Ni(G,C) and the prime `.

The case r = 3 is familiar as talk about dessins d’enfant. Somewhat artificially,
these are λ-line covers with no meaning for cusps or elliptic ramfication (see §3.3.3).
Sometimes this must be included for a complete analysis. We use the notation for
general r only to put our special case, r = 4, in a context. Here is the first major
problem with which we deal: The U(niform) D(efinition) P(roblem).

Problem 1.2 (UDP). Decide when HG,C contains a MT, H′ def
= {H′k}∞k=0,

where all the spaces – including the maps between them – in H′ have a fixed
number field K as definition field. We say K is a definition field for for H′.

Even going back to modular curve towers, we have reason to generalize this
definition by considering towers where each H′k has an attached cyclotomic field
CYCk so that there is a number field K for which K ·CYCk gives a compatible set
of definition fields K · CYCH′ for the spaces and maps between them analogous to
the outcome in Prob. 1.2. Assuming we are able to label the fields CYCk explicitly,
we say that K is a cyclotomic definition field for H′.

Problem 1.3 (CDP). Decide when HG,C contains a MT, H′ def= {H′k}∞k=0, with
a cyclotomic definition field.

Lemma 1.4. If there is a k-independent bound on the number of components
on Hk, then any MT on HG,C has a definition field. If there is a uniform bound
on the number of H-M components, then any H-M MT has a definition field.

[Fr95, Thm. 3.21] is the forerunner of such results, providing a testable criterion
for C that produces the conclusion of Lem. 1.4 for H-M MTs, but it never applies
when r = 4. Prop. 3.13 includes showing an affirmative solution to Prob. 1.2
for example (1.2a). This is the first example, outside modular curves, where the
conclusion of Lem. 1.4 has been shown for r = 4. §3 uses (1.2a) to show the
properties we are after when r = 4. This includes an example giving a positive
conclusion to Prob. 1.3, that is not an example of Prob. 1.2.

Then, §4 – with its consideration of all but the prime 3 – does the same thing
for the split case (1.2b). It’s called the split case, but it is still `-Frattini properties
that dominate. The results we need for this are analogous to those appearing in
the consideration of the role of the Spin cover of An, n ≥ 4, and ` = 2, and we play
on that. Yet, here we’ve gone far out of the territory of spin covers, for the prime
2 appears as ` in just one case. Finally, §7.3 explains why (1.2c) doesn’t work for
r = 4, and gives values of r where it does. Then, we compare with the previous
results to see what it would take to show similar outcomes.

1.4. Types of applications. We have occasionally used the computer pro-
gram [GAP00], though our choices have allowed us to revert to ‘standard ’ proof.
Traditional journals limit publication in this area. Some type of literature change
as suggested by [Da12] may be necessary to make such publications useful.

A refined generalization of the Torsion Conjecture on abelian varieties suggests
that there are few cyclotomic torsion points on the general collection of abelian
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varieties defined over number fields of a bound degree. Then, a refined version
of the The Regular Inverse Galois Problem generalizes that. That generalization
starts with this result.

For each finite group G, and any prime ` dividing |G| for which G is `-perfect.
As in §2.1, consider the sequence of groups {Gab,`k+1}∞k=0 which form `-Frattini
covers of G so that Ker(MG,ab,`k+1 →MG,ab,`k), k ≥ 0, is MG,`, the characteristic
exponent `-Frattini module for G. The following is [FrK97, Thm. 4.4].

Proposition 1.5. Suppose for some number field K and integer r0, each
Gab,`k+1 , k ≥ 0, has a regular realization over K with ≤ r0 branch points.

Then, there is a MT of inner space components {Hk}∞k=0 with the common
dimension of the spaces bounded by r0−3 and with Hk(K) nonempty for each k.

Then, we conjecture that no system of MT components as in the last paragraph
can have K points at every level. Assuming well-accepted Diophantine conjectures,
this fits within expectations (and is true for r ≤ 4) if, as conjectured in [FrK97,
Conj. 0.5],the compactified normalization of Hk has general type. (Some power of
its line bundle of holomorphic 1-forms embeds the space in projective space.) For
r = 4, where general type means the genus of a high tower level exceeds 1, [Fr06,
Thm. 5.1] shows this follows from the eventual existence of `-cusps on the tower
levels, and it describes a limited set of possibilities where this might not happen.

Therefore, computing the cusps as in §3.3.3 for the n = 5 `-Frattini case and
the n = 3, ` 6= 3 cases, is an explicit realization of why there are no rational points
at high levels on those MT s.

Prop. 6.8 says the components with non-zero lift invariant are a cyclotomic orbit
of spaces. They therefore they have no fixed (number) field of definition. Being
normal varieties, they can’t have K points up the tower. Still, they are appropriate
for asking about a Serre OIT as in §2.2.3 as are the other examples: n = 3 and the
MTs over the H-M components (with 0 lift invariant), and the n = 5 `-Frattini case
where all components have definition field Q. Even, for the higher n ≡ 5 mod 8,
we can approach an OIT result without waiting on some still unknown conjectures
referenced above.

1.5. Nielsen classes, covers and cusps. This is a brief review of [BFr02,
§3,1 and §3.7] or [Fr12a, §6.1].

1.5.1. Nielsen classes: absolute and inner. Given (G,C), Nielsen classes Ni(G,C),
list precisely degree n covers of the z-sphere, ϕ : X → P1

z, branched at r distinct

points zzz
def
= {z1, . . . , zr} ⊂ P1

z that have the r conjugacy classes of C as local
monodromy (in some order).

Such covers correspond to ggg
def
= (g1, . . . , gr) ∈ Gr, where these conditions hold:

(1.4a) Generation: 〈gi|i = 1, . . . , r〉 = G; and
(1.4b) Product-one: g1 · · · gr = 1.

When necessary for clarity, we write ggg ∈ C to mean that for some π ∈ Sr, gi ∈ C(i)π,
i = 1, . . . , r. From (1.4b), any r−1 of the gi s in (1.4a) generate G. Those who use
the monodromy method call such gi s satisfying (1.4a) and (1.4b) branch cycles.
The collection of all such, in the respective conjugacy classes C, is the Nielsen class
Ni(G,C) of the cover.

Covers corresponding to two choices of r-tuples satisfying (1.4) will be isomor-
phic covers (of P1

z) if and only if some h ∈ Sn conjugates the one r-tuple to the
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other. That is, degree n covers, with zzz as branch points, monodromy G and local

monodromy C, correspond to the elements of Ni(G,C)/NSn(G)
def
= Ni(G,C)abs.

These are the absolute Nielsen classes.
There is a similar notion called inner Nielsen classes, replacing Ni(G,C)/NSn(G)

by Ni(G,C)/G = Ni(G,C)in. Suppose two covers are both Galois, with their cover-
ing groups identified with G by some isomorphism. Then, the covers are equivalent
if there is an isomorphism commuting with their projects to P1

z that induces an
inner automorphism on G.

1.5.2. The groups Br and Hr. Denote the space of r distinct, but unordered,
points on P1

z by Ur. Start with one cover ϕ : X → P1
z branched over zzz′. Then,

deform the punctures zzz′, keeping them distinct, to another set of r points zzz′′. That
is, give a path (continuous and piecewise differentiable) L: t ∈ [0, 1] 7→ zzz′(t), in Ur,
with zzz′(0) = zzz′ and zzz′(1) = zzz′′.

If zzz′′ = zzz′, then the cover at the end of the path corresponds to an element
ggg′ whose entries are words – independent of ggg – in the entries of ggg. The collection
of words forms the Hurwitz monodromy group Hr, a quotient of the Artin Braid
group Br. The following two words generate Hr.

(1.5a) q1 : ggg 7→ (g1g2g
−1
1 , g1, g3, . . . , gr) the 1st (coordinate) twist, and

(1.5b) sh : ggg 7→ (g2, g3, . . . , gr, g1), the left shift.

They both preserve generation, product-one and the conjugacy class collection con-
ditions of (1.4), Conjugating q1 by sh, gives q2, the twist moved to the right.
Repeating gives q3, . . . , qr−1. Three relations generate all relations for Hr:

(1.6a) Sphere: q1q2 · · · qr−1qr−1 · · · q1;
(1.6b) Commuting: qiqj = qjqi, for |i− j| ≥ 2 (read subscripts mod r−1); and
(1.6c) (Braid) Twisting: qiqi+1qi = qi+1qiqi+1.

The group Hr inherits (1.6b) and (1.6c) from Br.
1.5.3. The cusp group and reduced Nielsen classes. In general the spaces are

defined by a quotient of the braid group Br acting on Nielsen classes, Ni(G,C). §3.1
discusses precisely our main cases , where r = 4, and the spaces are natural upper
half-plane quotients and j-line covers. We keep the general case mainly for context
because some older results were only possible for r > 4 (possibly very large).

The moduli group, Q′′, generated by sh2, and q1q
−1
3 acts through a Klein 4-

group on Nielsen classes. It is a normal subgroup of H4. The cusp group Cu4 ≤ H4

is generated by Q′′ and q2.
Define the reduced inner Nielsen classes to be Niin/Q′′ = Niin,rd. That is, mod

out by G and also be equivalencing elements by the action of Q′′.

2. The universal `-Frattini cover

Our opening remarks are in either edition of [FrJ86], or – right to the point for
this paper – in [BFr02, §3.3]. For any finite group G and `||G|, there is a maximal
sequence of groups G0 = G, G1, . . . , such that the projective limit of these defines
the universal `-Frattini cover, ψG,` : G̃` → G, of G.

For any `-Frattini cover ψ : H → G. ψG,` factors through ψ. The key 1st

observation is that the whole `-Sylow of G̃` is a pro-free pro-` group. Therefore, so
is ker(ψG,`). The rank – minimal number of generators – of the latter is of equals

the rank of MG,`
def
= Ker(G1 → G0) as a Z/` module. We call this the characteristic

module of (G, `) and denote its rank by rkG,`.
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2.1. Abelianization of the Frattini part of G`. We can abelianize the

kernel of G` → G: MG,ab,`∞
def
= ker(ψG,`)/(ker(ψG,`, ker(ψG,`), is a free abelian Z`

module of rank rkG,`. Denote the maximal exponent `k quotient of MG,ab,`∞ by
MG,ab,`k . Then, the Ker(MG,ab,`k+1 → MG,ab,`k), k ≥ 0, is also MG,` in a natural

way, essentially given by multiplying by `k−1.
2.1.1. Quotients of the abelianization. Just as the sequence G0, G1, . . . defines

G`, by modding out MG,ab,`∞ by powers of ` we get the corresponding series,
G = G0, Gab,1, Gab,2, . . . , of covers of G for which Gab,k → G is the maximal `-
Frattini cover of G with abelian kernel of exponent `k. This is the characteristic
abelianized `-Frattini series of G.

Definition 2.1. We say MG,ab,∞ has a Z` quotient if it has a proper Z`[G]
module quotient M ′ that is a free Z` module (of rank, say, m′ ≥ 1).

By modding out by the kernel of MG,ab,∞ → M ′ we produce another series,
G = {GM ′,k}∞k=0 with G0,M ′ = G0 = G, of `-Frattini covers of G with the kth cover

kernel isomorphic to (Z/`k)m
′
.

Definition 2.2. Refer to a sequence of groups arising from a Z` Frattini quo-
tient as an abelian `-Frattini sequence.

The `-adic representations of that arise in this paper arise from abelian `-
Frattini sequences.

[Fr95, Part II] gives each of MA5,` explicitly (see Rem. B.1). [BFr02, Prop. 5.6
and Cor. 5.7] makes MA5,2 explicit, especially the Loewy display of its simple
module constitutions. Since [BFr02] for ` = 2 is our model (the toughest case), we
use that to compare to ` = 5 (see Prop. 2.1.3). As ` = 3 is excluded by our choice
of conjugacy classes, we put that case totally aside.

All examples in this paper are formed around alternating groups. Our main
examples use a quotient of the abelianized 5-Frattini over A5 and all the abelianized
`-Frattini covers of the natural semidirect product (Z/`)2×sZ/3 (excluding ` = 3).

2.1.2. Notes on PSL2. This subsection covers what we need of two roles of the
group PSL2(Z/`k) (§A.1). When ` 6= 2 (resp. ` = 2), Ker((Z`)∗ → (Z/`)∗) is cyclic,
generated by 1 + ` (resp. has – multiplicative – generators 1+4 and −1).

Lemma 2.3. For ` ≥ 3, Ker((Z`)∗ → (Z/`)∗) (resp. Ker((Z2)∗ → (Z/23)∗)) is
a rank 1 pro-free pro-` (resp. pro-2) group.

Proof. In each case the designated kernel is cyclically generated as a profinite
group. For example, for ` = 2 the kernel is 〈1 + 4〉. Example: The kernel of

Ker((Z/2k+1)∗ → (Z/2k)∗) is {1, 1+2k = (1+4)2
k−2} mod 2k+1. �

Our main Frattini example (as in (1.1)) uses the classical identification of A5

with PSL2(Z/5), 2× 2 matrices over Z/5 of determinant 1, mod
( −1 0

0 −1

)
. This

acts as conjugation on Ad`k , the 2 × 2 matrices of trace 0 over Z/`k. This is the
adjoint action for conjugation by G1.

An element g of order 3 acts on it as if it is a sum of the identity represen-
tation and a 2-dimensional irreducible representation. You can canonically define
the 2-dimensional space as the image of Ad` (in this additive notation) by the
homomorphism A 7→ Ag −A. The kernel of this map is the centralizer Ceng.
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Proposition 2.4. If ` 6= 2, the additive group of 2 × 2 matrices over Z/`k of
trace 0 identifies with the Z/`k+1[PSL2(Z/`)] module

Ad`k = Ker(PSL2(Z/`k+1)→ PSL2(Z/`)), k ≥ 0.

The analogue for ` = 2 replaces Ad`k by Ker(PSL2(Z/2k+3)→ PSL2(Z/23)).

Proof. For the statement for ` 6= 2, do an induction on k, assuming its truth
for k, compute Ker(PSL2(Z/`k+2)→ PSL2(Z/`k+1)) as{(

1+`k+1a `k+1b
`k+1c 1+`k+1d

)
| of Det equal to 1

}
mod `k+2.

The determinant condition then requires d = −a. Finally, Lem. 2.3 equates the
units {1+`a mod `k+1 | a ∈ Z`} with the additive group Z/`k. The adjustment
for the case ` = 2 is from the same lemma, which restricts that identification to
units of form 1+23a mod 2k+3. �

2.1.3. Characteristic A5 modules. We handle some technicalities in using char-
acteristic Frattini modules while bordering territory recognizable from, say, [Se68].

From Schur-Zassenhaus, for n = 5, the only ` for which we can expect `-
Frattini covers of A5 are ` = 2, 3 or 5. This subsection tells enough about `-Frattini
examples to show their significance, without – we hope – inundation. Much of the
basic material is in either edition of [FrJ86] (Chap. 20, 1st edition, Chap. 22 in
2nd). Especially we add comments to [FrJ86, §22.13] and [Se68, IV, §3.4].

Proposition 2.5. The Z/`[G] module MG,` is always indecomposable (contains
no direct summand). If the order of g ∈ Gk0 is u · `v, with gcd(u, `) = 1 and v > 0,
then any g′ ∈ Gk, k ≥ k0 over g has order u · `v+k−k0+1.

The Z/5[A5] module MA5,5 has rank 6. it is an extension of Ad5 by Ad5. In
particular, MA5,ab,5∞ has Ad5∞ as a Z5 quotient (of rank 3).

Proof. The 1st sentence is [FrK97, Indecomposability Lem. 2.4 ]. The 2nd
sentence is [FrK97, Lift Lem. 4.1].

Here is one description of G`,1 → G0 [Fr02, Prop. 2.8]. Let ψ̃P P̃` → P` be
the minimal pro-free pro-` cover of P`. The kernel, Ker` is also pro-free pro-`.
Mod out by its Frattini subgroup (generated by `th powers and commutators).
That induces ψP`,1 : G1(P`) → P` with kernel M(P`, `) in our previous notation.
Take the normalizer, NG(P`), of P` in G. Then, Ker(ψP`,1) is a NG(P`) module.
The Frattini module M(G, `) is a quotient of the natural Z/`[G] module induced
from inducing Ker(ψP`,1) from NG(P`) to G. App. B.1 says more on two different
approaches to this construction that give it precisely.

[Fr02, Ex. 2.11] applies the above argument by noting that the normalizer of
a 5-Sylow in A5 is a copy of D5. Note that the 6-dimensional module can’t be the
decomposable direct sum of two copies of Ad5. So, this is an extreme case where
the induced module gives the whole characteristic 5-Frattini module. �

Proposition 2.6. By contrast with MA5,ab,5∞ , for the prime ` = 2, MA5,ab,2∞

has no Z2 quotient.

Proof. When ` = 2 where MA5,2 identifies with the Z/2[A5] module of di-
mension 5 consisting of the sum of the six D5 ≤ A5 cosets, T1, . . . , T6, in A5 modulo
the sum of them all [BFr02, Prop. 5.6] (or [Fr95, Part III]). Write a nonzero rep-

resentative of MA5,2 as
∑6
i=1 aiTi, with 1, 2, or 3 of the ai s nonzero. Restricting to
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A4 identifies MA5,2 with the analogous sum of Z/2 ≤ A4 cosets. [BFr02, Cor. 5.7]
describes MA5,2 as being an extension of Z/2[A5] modules

V →MA5,2
Aug−→ 111

with these two properties.

(2.1a) Aug:
∑6
i=1 aiTi 7→

∑6
i=1 ai; and

(2.1b) elements in V \ {000} are represented by sums with two ai s nonzero.

Clearly, V is irreducible since A5 is transitive on its nonzero elements.
Now suppose MA5,ab,2∞ has a proper Z2 quotient M ′∞. Then, there is a proper

quotient M ′ of MA5,2 so that the natural Z/22[A5] quotient of M ′∞ is an extension
of M ′ by M ′. From the irreducibility of V , M ′ = 111 and therefore A5 has a central
2-Frattini extension with kernel Z/22. This contradicts that the universal central
extension of A5 has kernel Z/2 (the Schur multiplier of A5. �

Remark 2.7 (Existence of Z` quotients). It is suspicious, but easy to guess
that the only time MG`,ab,`∞ has a Z` quotient is when G is naturally related to
a classical arithmetic groups over Z`. Maybe, if G is simple, it might be true only
if G is also a Chevalley group with characteristic prime ` where the Z` quotient is
given by the adjoint representation.

2.2. More about n ≡ 5 mod 8 (n ≥ 5). We discuss the general case for
which n = 5 is one of our main examples.

2.2.1. More Frattini Principles. The main stays of this paper are the use of
Frattini Principles and Nielsen class elements given by Def. 2.8.

Definition 2.8. Suppose r is even. Then, a H(arbater-M(umford) repre-
sentative of Ni(G,C) is an element of form (g1, g

−1
1 , . . . , gr, g

−1
r ). A braid orbit

containing an H-M rep. is called an H-M orbit.

Lem. 2.9 is an easy clue as to why Frattini covers are so essential in using
Hurwitz spaces for `-adic representations. We apply a far-reaching generalization
of it in the last part of the proof of Prop. 3.3.3.

Lemma 2.9. If ψ : H → G is a Frattini cover, with gcd(|Ker(ψ)|, NC) = 1,
Then an H-M orbit of Ni(G,C) has at least one H-M orbit over it in Ni(H,C).

Proof. Assume gggH-M = (g1, g
−1
1 , . . . , gr, g

−1
r ) ∈ Ni(G,C). Let h1, . . . , hr be

same order lifts to H lying, respectively, over g1, . . . , gr. Since H is a Frattini cover,
〈h1, . . . , hr〉 = H is automatic, and hhh = (h1, h

−1
1 , . . . , hr, h

−1
r ) ∈ Ni(H,C). �

The following is a special case of [BFr02, Prop. 2.17] (with clarification in
[Fr06, Frat. Princ. 1, Princ. 3.5]). Recall that Cen(G) denotes the center of G.

Proposition 2.10. Assume G is centerless. Then, the q22 orbit on ggg ∈ Ni(G,C)in

has length o(g2, g3)
def
= oggg = ord(g2 · g3)/|〈g2 · g3〉 ∪ Cen(g2, g3)|.

Then, one of the following holds for the length o′ of the q2 orbit on the class of ggg.
(2.2) Either: g2 = g3 and o′ = 1, or; if o = oggg is odd and g3(g2 · g3)o−1

has order 2, then o = o′; or else o′ = 2 · o.

We need two more Frattini Principles: (2.3a) is [Fr06, Frat. Princ. 1, Princ. 3.5]
(2.3b) is [Fr06, Frat. Princ. 2, Princ. 3.6]. Assume {Gi}∞i=0 is an abelianized `-
Frattini sequence (Def. 2.2), and C are `′ conjugacy classes of G0. Then, a Cu4
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orbit, cO = cOggg, on Ni(Gk0 ,C)in,rd defines a cusp. It is an `-cusp if `|oggg. Almost
the opposite of this is the following.

Definition 2.11. Assume for ggg ∈ Ni(G,C) that 〈g2, g3〉 and 〈g1, g4〉 are `′

groups. Then, we call cOggg a g(roup)-`′-cusp.

(2.3a) Suppose cO is an `-cusp. Then, for all k ≥ k0, the width of any level k
cusp orbit above cO is `k−k0 times the width of cO.

(2.3b) : For ggg ∈ Ni(G,C), r = 4 if cOggg is a g(roup)-`′-cusp. Then, for
H → G an `-Frattini cover, there is a g-`′-cusp in Ni(H,C) over cOggg
(generalizing the conclusion of Lem. 2.9).

2.2.2. Alternating group Hurwitz spaces. Suppose α is an automorphism of G
that permutes the conjugacy classes (retaining their multiplicities) in C.

Definition 2.12. Suppose Oggg is a braid orbit of ggg ∈ Ni(G,C). We say α is
braidable, if α(ggg) ∈ Oggg.

[Fr12a, §B.2.2] is an exposition on braidable outer automorphisms. This is a
big issue in Hurwitz space components, but we give just one example.

[Fr12b, Prop. D.2] gives the monodromy groups for all the Nielsen classes given
by G = An, n ≡ 1 mod 4, and the conjugacy classes C(n+1

3 )4 . The cases n ≡ 5

mod 8, and n ≡ 1 mod 8 have important differences.
There is one braid orbit in the former case. There are two braid orbits, each

orbit taken to the other by the outer automorphism of An in the latter. In this case,
the outer automorphism of An (which preserves the Nielsen class) is not braidable.
Further, the two components are conjugate over a quadratic extension of Q.

For n ≡ 5 mod 8 the absolute reduced Hurwitz space has geometric mon-
odromy AN , N = n+1

2 , as a P1
j cover. In the inner case the geometric monodromy

is the wreath product of AN with Z/2. The arithmetic monodromy (inner case) is
the wreath product of SN with Z/2.

2.2.3. Framework for `-adic representations. There are families of `-adic rep-
resentations attached to each of the Frattini and Split cases of (1.2). There are
just two primes, ` = 2 and 5 (resp. ` ≤ n, not dividing n+1

2 ) in (the) Frattini case
(1.2a) (resp. (1.2c). So, we start by explaining that case. Then, in the split cases
like (1.2b), we see a further set of the attributes like that for modular curves.

The essential ingredient that gets us started is an affirmative answer to Prob. 1.2.
Prop. 3.13 provides this. There is one braid orbit on on each of the Nielsen classes
Ni(Gk+1) = PSL2(Z/5k+1),C34). Then, the family of reduced Hurwitz spaces
{Hk+1}∞k=0 supports a family of 5-adic representations in the following sense.

For each ppp′ ∈ H0 (an open subset of the projective line, but not the j-line),
consider any projective sequence of points on {Hk+1}∞k=0 lying over ppp′. This cor-
responds to a copy of (Z5)3 = Vppp′ where Z5 is the 5-adic integers. To simplify
notation, assume ppp′ has coordinates in the rational numbers Q.

Then, the absolute Galois group, GQ, of Q maps Vppp′ to another projective
system of points over ppp′ (and copy of (Z5)3). If these were spaces were modular
curves – one case of reduced Hurwitz spaces – then Serre’s O(pen)I(mage)T(heorem)
qualititatively describes when GQ is transitive on these projective systems over ppp′.

This, and our other examples, are test cases. For example, for the OIT to
be possible (or serious) in this context, we need that some conclusion like that of
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Lem. 1.4 holds. That would be the case if all the spaces {Hk+1}∞k=0 were irre-
ducible. Also, Def. 7.1 states precisely the “eventually `-Frattini” condition on the
monodromy of Hk+1 → Jr that must hold.

3. Frattini properties of spaces in (1.2a)

For n = 5 there are two values of ` (2 and 5) that satisfy condition (1.2c): `
divides n!/2; but it does not divide n+1

2 . As in §3.3, the former condition guarantees
a non-trivial natural `-adic Frattini extension of An. The latter that the conjugacy
class Cn+1

2
lifts uniquely to same order conjugacy class in any such an extension.

§3.3.1 and §3.3.2 do the example Frattini case where n = 5, and ` = 5 where

the group series is H5,k
def
= PSL2(Z/5k+1) → PSL2(Z/5) = H5,0, k ≥ 0. [BFr02]

has our model for the case ` = 2 and n = 5. That may be the most exciting Frattini
case, but ` = 5 will help us flesh out what happens in the general Frattini case.

3.1. Producing the spaces. Braid elements acting on Nielsen classes will

produce the cusps and genuses of compactifications of H(H5,k,C34)in,rd
def
= H′k.

Problem 3.1 (Uniform Definition). Afirming (3.1) strongly affirms Prob. 1.3
(Lem. 1.4). When is there a uniform bound (as a function of k) in these cases:

(3.1a) On the number of components of H̄′k?
(3.1b) Failing that, on the number of H-M components on these spaces?

Our major result in this Frattini example is Prop. 3.13 showing {H′k}∞k=0 sat-
isfies the very strong (3.1a). By definition a reduced Hurwitz space is a Hurwitz
space modulo a natural action that equivalences covers ϕi : Xi → P 1

z , i = 1, 2,
when there is α ∈ PGL2(C), so that α ◦ ϕ1 = ϕ2.

Recall the cusp group in (1.5.3). The following elements all act on Niin,rd.

(3.2) γ0 = sh, γ1 = q1q2, and γ∞ = q2.

The index of a permutation g ∈ Sn is n minus the number of orbits of g. We denote
it ind(g).

Take the actions of γ0, γ1 and γ∞ on a (reduced) braid orbit O in Niin,rd.
Compute their corresponding indices, as ind(γ′0), ind(γ′1) and ind(γ′∞). Also, let
tO(q) be the number of fixed points of a braid on O.

Definition 3.2. Given a (nonsingular curve) cover H̄ → P1
j ramified only over

0, 1,∞, the cusps are the points over j = ∞. The respective widths of the cusps
are the ramification indices of those corresponding points.

The γ∞ orbits are the (combinatorial) cusps, which correspond to the geometric
(physical?) cusps on the Hurwitz space component H̄O corresponding to O. We
often denote γ∞ orbits on O by notation like O(u, v; a), where u and v are integers
and a is extra notation distinguishing orbits that have the same values u and
v. Here is what u and v signify. If ggg = (g1, g2, g3, g4) ∈ O(u, v; a), then u =

mp(g)
def
= ord(g2g3) is the middle product of ggg. Also, v = wd(ggg) is the actual

length of the orbit under γ∞. Given ggg ∈ O(u, v; a), refer to its orbit type as
(u, v) = (mp(g),wd(g)). It can (though not always) be easy to compute v, as in
our examples. We say more on that below.

Then the genus of the component corresponding to O is gO in the following
formula [BFr02, (8.1)]:
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(3.3)
2(|O|+ gO − 1) = ind(γ′0) + ind(γ′1) + ind(γ′∞)

= 2(|O|−tO(γ0))
3 + 2(|O|−tO(γ1))

2 +
∑
O(u,v;a)⊂O v−1.

This is Riemann-Hurwitz applied to the (compactified) Hurwitz space component
as a j-line cover.

In a standard normalization the only possible points of ramification are where
j = 0, 1 or ∞. The points over 0 correspond to the orbits of the order 3 element
γ′0, and the points over 1 correspond to the orbits of the order 2 element γ′1. The
fixed points of these elements are the elliptic fixed points.

3.2. PSL2 Frattini properties. This subsection considers Frattini properties
of the PSL2(Z/`k+1) groups.

Definition 3.3. Let · · · → Hk+1 → Hk → · · · → H0 be any sequence of (finite
group) covers. We say it is eventually Frattini if there is a k0 with Hk+1 → Hk a
Frattini cover for k ≥ k0. A composition of homomorphisms is Frattini if and only
if each is. So, that is equivalent to Hk → Hk0 is Frattini for k ≥ k0.

Lemma 3.4. The natural cover PSL2(Z/`k+1)→ PSL2(Z/`) is a Frattini cover
for all k if ` > 3. For ` = 3 (resp. 2), PSL2(Z/`k+1) → PSL2(Z/`k0+1), k ≥ k0
where k0 = 1 (resp. 2), is the minimal value for which these are Frattini covers.
That is, for all ` the sequence {PSL2(Z/`k+1)}∞k=0 is eventually Frattini.

Proof. The first sentence is [FrJ86, Cor. 22.13.4] which is a detailed repeat
of the [Se68, Lem. 3, IV-23] proof. The latter also has as an exercise that the same
statement and proof applies to PSLd(Z/`). We now add to those exercises for the
cases ` = 2 and 3. It is often here easier to work in SL2(R) rather than PSL2(R)
but the outcome is essentially the same, with ` = 2 slightly trickier.

For ` = 3, [Se68, IV-28, Exer. 3] asks to show that SL2(Z/32) → SL2(Z/3)
is not Frattini. We say it purely cohomomologically. Let µ ∈ H2(SL2(Z/3),Ad3)
define the cohomology class of this extension. ([Nor62, p. 241] gives a comfortable
treatment of H2.) For any cohomology group, H∗(G,M), with M a Z/`[G] module,
restriction to an `-Sylow P` ≤ G is an isomorphism onto the G invariant elements
of H∗(P`,M) [Br82, Prop. 10.4]. So, the extension µ splits if µ` splits.

There is an element, g3, of order 3 in SL2(Z) – PSL2(Z) is well-known to be
freely generated by an element of order 3 and an element of order 2 – and so in

SL2(Z/32). This element of order 3 – given, say, by A =
(

1 −3
1 −2

)
(as in [Fr95,

Ex. 3.9]) – generates a 3-Sylow. (Later we have reason to use a different element –

see §4.2.1 – A∗ =
(

0 −1
1 −1

)
.) So µ3 splits. Denote the conjugacy class of A by C3,

and note that its characteristic polynomial is x2 + x+ 1.
Any lift of any non-trivial element in Ker(SL2(Z/32) → SL2(Z/3)) = (Z/3)3

lifts to an element of order 32 in

Ker(SL2(Z/33)→ SL2(Z/3)) = (Z/32)3,

as in Prop. 2.4. That is, Z/3k+1 → Z/3k, k ≥ 1, is a Frattini extension. So, the
extension SL2(Z/33)→ SL2(Z/32) certainly does not split.

[Se68, IV-28, Exer. 1.b] states that SL2(Z/3k+2)→ SL2(Z/32), k ≥ 0, is Frat-
tini. Take v ∈ Ker(SL2(Z/32) → SL2(Z/3)). Then, for any ṽ ∈ Ker(SL2(Z/33) →
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SL2(Z/3)) lifting v, ṽ3 identifies with v, but in Ker(SL2(Z/33)→ SL2(Z/32)). So,
from that stage on, any subgroup mapping onto SL2(Z/3) has the kernel in it.

The case ` = 2 is similar. Go up a modulus higher (as in Prop. 2.4) to exploit the
free-abelianness of Ker(SL2(Z/2k)→ SL2(Z/23)). [Se68, IV-28, Exer. 2] produces
a D3 in SL2(Z2) showing that SL2(Z2)→ SL2(Z/2) splits. �

Remark 3.5. Let {Gk}∞k=0 by the Characteristic `-Frattini series for G0 = G.
[FrK97, Lem. 4.1] shows that any lift of an order ` in G = G0 to G1 has order `2.
Therefore all lifts to Gab,k+1 have order `k+1. This lifting property, however, does
not characterize the characteristic `-Frattini module MG,`. Even ‘small’ `-Frattini
covers could have this property. Witness PSL2(Z/`k+1)→ PSL2(Z/`).

3.3. The Nielsen classes Ni(H5,k,C34). Now we discuss the data that pro-
duces the spaces in the Frattini case when ` = 5 and G = A5.

3.3.1. Q′′ invariant orbits. The technique we refer to as H(arbater)M(umford)
originated in [Fr95, Part III]. Recall the dihedral group Dd of order 2d (App. A.1).

Definition 3.6. Suppose G∗ is generated by three involutions {α1, α2, α3}.
We say they form a 2-dihedral group if G∗ = 〈α1α2, α1α3〉.

The essential ingredient is that pairwise products generate a group including
α1. Two dihedral subgroups come together at α1 to generate G∗. There is another
group generated by three involutions that properly contains a 2-dihedral.

Definition 3.7. Suppose G† is generated by three involutions {α′1, α′2, α′3}
where 〈α′1, α′3〉 is a Klein 4-group and 〈α′1, α′2, α′3α′2α′3〉 is a 2-dihedral. We call G∗

a Klein-dihedral group if in addition G∗ = 〈α1α2, α1α3α2α3〉.

When Q′′ fixes elements in a braid orbit, Nielsen classes and reduced Nielsen
classes in that orbit are the same. Thm. 3.8 characterizes such H-M braid orbits.

For ggg ∈ Ni(G,C), we denote its (inner) braid orbit by Oggg. Lem. 2.9 applies to
any ` Frattini cover, ψ : H → G, with `′ conjugacy classes, C, in G. It says that
over any H-M rep. gggH-M ∈ Ni(G,C), there exists another H-M rep. hhh ∈ Ni(H,C).

Write gggH-M as (g1, g
−1
1 , g2, g

−1
2 ). It is automatic that if gggH-M is Q′′ invariant,

then the collection {g1, g−11 , g2, g
−1
2 } consists of conjugate elements. Denote their

common orders by d. We always assume G is not cyclic.

Theorem 3.8. If q′ ∈Q′′ \{1} fixes σσσ ∈Ni(G,C)in, then q−1q′q is in Q′′ \{1},
and it fixes (σσσ)q. Therefore, invariance by Q′′ is a braid invariant. Condition (3.4)
characterizes invariance of σσσH-M under two particular elements of Q′′.

(3.4a) sh2 invariance: For some involution σ′, σ2 = σ′σ1(σ′)−1.
(3.4b) q1q

−1
3 invariance: For some involution σ′′ ∈ G, 〈σ′′, σi〉, i = 1, 2, are

dihedral groups; or (degenerate case) σi = σ−1i , i = 1, 2.

Then, Q′′ invariance of OσσσH-M is equivalent to both (3.4a) and (3.4b) holding.
In turn, that is equivalent to the following:

(3.5) 〈σ′′, σ′, β〉 is a Klein-dihedral with σ1 = σ′β and σ2 = σ′σ′′βσ′′; or
(degenerate case) σ1 and σ2 are conjugate involutions.

If ` 6= 2, then Q′′ fixes an H-M rep. in Ni(H,C)in over gggH-M.

Proof. Consider (ggg)q ∈ Oggg, and q′ ∈ Q′′. Suppose ggg is invariant under Q′′.
Since Q′′ is a normal subgroup of H4 [BFr02, (2.11b)], then qq′q−1 ∈ Q′′. So,

((ggg)q)q′ = ((((ggg)q)q′)q−1)q = (ggg)q.
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That is, invariance under Q′′ is a braid invariant.
By assumption sh2 and q1q

−1
3 respectively take gggH-M to ggg′ = (g2, g

−1
2 , g1, g

−1
1 )

and ggg′′ = (g1
1, g1, g

−1
2 , g2) respectively. That Q′′ is trivial on gggH-M means there are

respective g′, g′′ ∈ G with these properties.

(3.6a) g′ conjugates g1 to g2 and g2 to g1.
(3.6b) g′′ conjugates g1 to g−11 and g2 to g−12 .

That is, Q′′ induces a regular Klein 4-group action on the following 4 pairs
{(g1, g2), (g−11 , g−12 ), (g2, g1), (g−12 , g−11 )} through a homomorphism into G. Then,
g′ and g′′ play the roles of the elements in (3.4). Denote the image of Q′′ by K.

Since ψ is an 2′-cover, we can lift K isomorphically to K ′ ≤ ψ−1(K). All such
lifts are conjugate in ψ−1(K). Denote the respective lifts of g′ and g′′ by h′ and
h′′. The group 〈g′, g1〉 is the dihedral group Dd of order 2d. Since ` 6= 2, by Schur-
Zassenhaus we can lift this group to D′d = 〈h∗, h1〉 ≤ H. where h∗ is conjugate to
h′ by an element of Ker(ψ). Therefore we can conjugate D∗d to assume h∗ = h′.

Now pick h2 to be h′h1(h′)−1. To see that h2 is appropriate, we only have to
check that that h′′h2(h′′)−1 = h−12 . This follows since h′′ commutes with h′.

For our special case, when G = A5, take g1 = (1 2 3), and g2 = (1 4 5). Then,
we can take g′ = (2 4)(3 5) and g′′ = (2 3)(4 5). That completes the proof. �

Recall, G`,ab,k(G) is the kth abelianized characteristic `-Frattini cover of G.

Corollary 3.9. All elements in H-M braid orbits in Ni(G5,ab,k(A5),C34)in

(and so in Ni(PSL2(Z/5k+1),C34)), k ≥ 0, are Q′′ invariant.
Above an H-M rep. in Ni(PSL2(Z/5k+1,C34) there are 5 inner classes of H-M

reps. in Ni(PSL2(Z/5k+2,C34).

Proof. Use the characterization (and notation) of Q′′ invariance on H-M
reps. from Thm. 3.8. Consider the Q′′ invariant H-M rep. hhhH-M = (h1, h

−1
1 , h2, h

−1
2 )

with h2 = h′h1h
′. A list of all the H-M reps. lying over gggH-M is given by replac-

ing the given h2 by mh2m
−1 with m ∈ MA5,ab,5k . There is, however, a precise

characterization of the conclusion.
Consider the subgroup Kh′ ≤ MA5,ab,5k consisting of those k′ that centralize

h′. Similarly, consider the subgroup Kh1 ≤ MA5,ab,5k of those k1 that centralize

h1. Notice that kh1
h′k−1h1

conjugates kh1
kh′h

′′h1h
′′k−1h′ k

−1
h1

to its inverse.
So, we conclude if and only if Kh′ and Kh1

generate MA5,ab,5k , which we now
establish. As in the Thm. 3.8 proof, this easily reverts to an induction on k, which
comes to the case k = 1. It is therefore a statement about Z/`[A5] modules.

Prop. 2.4 notes that MA5,ab,5 is an Ad5 by Ad5 extension. Since ` 6= 2, the
actions of h1 and h′ (the same as the respective actions of g1 and g′) on MA5,ab,5

are completely reducible. This reduces the conclusion to considering the respective
analog groups K∗g′ and K∗g1 on Ad5. Check that there is no common centralizer

to g1 = (1 2 3) and g′ = (2 3)(4 5). Also, the centralizer, Ceng1 , of the former has
dimension 1, and the latter dimension 2, as prior to Prop. 2.4.

You get the 5 H-M reps. of distinct classes above gggH-M from conjugating h′′

by elements of Ceng1 . As with the other parts of the argument this works for all
values of k, concluding the proof. �

Remark 3.10. For ` = 2, and G2,k(A5) the characteristic kth 2-Frattini cover
of A5, then Q′′ orbits on Ni(G2,k(A5),C34), k ≥ 1, all have length 4 [BFr02,
Lem. 7.5]. For k = 0, of course, it is the same space as for ` = 5, length 1.
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3.3.2. H-M reps. in Ni(PSL2(Z/5k+1),C34)in,rd. Our goal is Prop. 3.13: there
is one braid orbit on Ni(PSL2(Z/5k+1),C34)in,rd. The following, from [BFr02,
Lem. 7.1], succinctly states what we need from this holding for k = 0.

Proposition 3.11. The degree 18 cover H̄(A5,C34)in,rd → P1
j has monodromy

(Z/2)9×sA9, the wreath product of Z/2 and A9. There were no elliptic fixed points:
γ0 and γ1 have no fixed points. The genus g0 of H̄(A5,C34)in,rd is 0.

Comments. The map

H̄(PSL2(Z/5k+1),C34)in,rd → P1
j

factors through H̄(A5,C34)in,rd. On the latter there are 2 cusps of each of the widths
5 and 3, and one of width 2. The width 5 cusps are H-M, and the 2 elements in the
width 2 cusp are the shifts of the two inner H-M representatives. So, computing
the genus of the space is a good exercise in using (3.3).

Here the inner Hurwitz space covers the absolute space by a degree 2 map,
a special case of the main Theorem in [FrV91, §2.1]. The natural outer auto-
morphism of An comes from Sn conjugating on it [BFr02, Exmp. 3.4]. The only
extra ingredient is that you can braid that outer automorphism (§2.2.2). [BFr02,
Exmp. 3.6] shows how we can effectively identify the real points on these Hurwitz
spaces, also in terms of branch cycles. �

We use notation like that of §3.3.1. Start with an H-M rep.

hhhH-M = (h1, (h1)−1, h2, (h2)−1) ∈ Ni(PSL2(Z/5k+1),C34) = Nik+1,

lying over H-M rep. gggH-M = (g1, (g1)−1, g2, (g2)−1) ∈ Nik at level k. With no loss
all elements lying above gggH-M have h1 in the 1st slot. From Cor. 3.9, the full set of
H-M elements have the Klein-dihedral situation with h2 = h′′h1h

′′, with h′′ one of
5 involutions that commute with an involution h′ that conjugates h1 to h−11 .

Lem. 3.12 includes a simpler, but less precise way to say the paragraph above.

Lemma 3.12. Suppose gggH-M is an H-M rep. at level k, and (h1, h2) are fixed
lifts of g1, g2. Then, the H-M reps. above it at level k+1 are

AhhhH-M
def
= (h1, h

−1
1 , Ah2A

−1, Ah−12 A−1),

with A running over the 5 elements of Ad5/Cenh1Cenh2 . That gives at least 25

elements over gggH-M at level k+1: 5 for each AhhhH-M under the orbit of q5
k+1

2 .

Proof. Prop. 2.10 tells us how to compute the width of the cusp orbit of an
element ggg = (g1, g2, g3, g4) ∈ Ni(G,C) in terms of the q22 orbit length

oggg
def
= ord(g2 · g3)/|〈g2 · g3〉 ∪ Cen(g2, g3)|.

The q2 orbit has length 2oggg unless oggg is odd, and (g2g1)(oggg−1)/2g2 has order 2. Since
our groups have odd order, the second condition doesn’t hold.

The middle product of the level 0 element below gggH-M is 5. From Prop. 2.5,
the order of any lift of any element of order 5 goes up by a multiple of 5 for each
rise in level. So, mp(gggH-M) = 5k+1. Apply (2.3a) for the result. �

For inner reps. of anything over gggH-M, conjugate each of (h1)−1, h2, (h2)−1,
respectively, by A2, A3, A4 in Ad5. Denote the result by hhhH-M,A. Prop. 3.13 finishes
the description of all hhhH-M,A by interpreting the product-one condition (1.4b).
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Again, take gggH-M at level k an H-M rep. Then, at level k+1, From that, with

BA = (h−11 Ah2A
−1)5

k+1

, we have these 52 inner representatives over gggH-M:

(3.7) A,BjA
hhhH-M

def
= (h1, B

j
Ah
−1
1 B−jA , BjAh2B

−j
A , Ah−12 A−1), j = 0, . . . , 4.

Prop. 3.13 is one case where the induction on k is not reducible to `′ statements
that become independent of k.

Proposition 3.13. The list of (3.7) consists of representatives of all the dis-
tinct elements of Ni(PSL2(Z/5k+1,C34) lying above gggH-M. Therefore, there is a one
braid orbit on this Nielsen class.

Proof. Lem. 3.12 shows A is anything in Ker(PSL2(Z/5k+1)→ PSL2(Z/5k)).
So, with no loss for the 1st sentence, replace Ah2A

−1 by h2. Simplify by desig-
nating the 2nd and 3rd entries of A,BjA

hhhH-M by u2 and u3, order 3 generators of

PSL2(Z/5k+1) lying, respectively, over g2, g3 ∈ PSL2(Z/5k). We must prove this:
(3.8) the only possible such (u2, u3) with product equal to h−11 h2 = h∗

are the conjugates of the pair (h−11 , h2) by the powers of (h∗)5
k

.
For our notation it simplifies to refer to (h−11 , h2) as (u′1, u

′
2). Since we are in

PSL2(Z/5k+1), we know there is just one conjugacy class of elements of order 5k+1

represented by
(

1 1
0 1

)
, we can take this to be h∗. So, the conclusion follows from

this computation.
For (C1, C2), a pair in Ad5 (identify with Ker(PSL2(Z/5k+1)→ PSL2(Z/5k+1)),

assume (C1u
′
1C
−1
1 , C2u

′
1C
−1
2 ) is an allowable (u1, u2). Then, with no loss (adjust

by the centralizers of C1, C2), we may assume C1 = C2. Therefore C1 centralizes
h∗. But, the only centralizer of h∗ is a power of h∗, and the result follows.

We induct on k to show there is just one braid orbit on Ni(PSL2(Z/5k+1,C34).
Assume there is one braid orbit at level k. It suffices to show that one braid orbit
contains all the inner classes above any fixed level k element. Our choice of level k
element is gggH-M. We are done if the elements of (3.7) are contained in one orbit.

Application of q21 to the 5 H-M reps over gggH-M leaves each of them invariant.
We, however, get four 5-cycles applied to the remaining 20 elements in (3.7). For
each fixed j 6= 0 mod 5k+1 the following happens. The product of the 1st two
entries h1, B

j
Ah
−1
1 B−jA has order 5. Then, as with the above general application of

q22 , q21 conjugates the 1st two elements by that order 5 element in Ad5.
So, the application of powers of q21 to gggH-M,BjA

for j 6= 0 is an inner orbit of length

five, joining each fixed cusp orbit with A fixed. That concludes the proposition. �

3.3.3. Genus computation. The genus of H̄(PSL2(Z/5),C34)in,rd is 0 (Prop. 3.11).
We can calculate the genus, gk, of H̄(PSL2(Z/5k),C34)in,rd from Riemann-Hurwitz
for all k. Prop. 3.14 does that explicitly for k = 1.

Proposition 3.14. For the degree 18 ·25 cover H̄(PSL2(Z/52),C34)→ P1
j here

is the count of the cycles in of γ0, γ1, γ∞ in (3.3).

(3.9)
γ0 has 225 2-cycles, and γ1 has 150 3-cycles .
γ∞ has five 2-cycles and four 10-cycles,

ten 3-cycles and eight 15-cycles, and ten 25-cycles.
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From this the indices are respectively:

(3.10)
ind(γ0) : 225 · (2−1) ind(γ1) : 150 · (3−1)

ind(γ∞) : 5 · (2−1)+4 · (10−1)+10 · (3−1)+8 · (15−1)+10 · (25−1)

The genus of the compactified level 1 space H̄(PSL2(Z/52),C34) is then g1 in

2(450 + g1 − 1) = 225 + 2 · 150 + 413 or g1 = 20.

Proof. Since γ0 and γ1 have no fixed points on the level 0 Nielsen class, they
will have none at any higher level, so the degree of the cover determines the number
of cycles in the order 2 (resp. order 3) element γ0 (resp. γ1). Once we have computed
the index of γ∞, everything follows from (3.3), and we do that by computing the
relative orders of ramification of points at level 1 over their images at level 0.

There is one point at level 0 with ramification index 2 over j = ∞, two each
with index 3 and index 5. Points above each have relative ramification either 1
(relatively unramified) or 5. So we have only to count respective points at level 1
with no new ramification or index 5 relative ramification over each x0 over j =∞
of respective ramification index 2, 3 and 5.

If x0 has index 5 over j =∞, since ` = 5 Prop. 2.5 (as in the proof of Lem. 3.12)
shows the relative index of each point above it is 5. That gives five points over x0
at level 1 with ramification index 25 over j =∞.

We review why we’ve already handled x0 ramified over ∞ of index e = 2. The
level 0 cusp is the γ∞ orbit of the shift of an H-M rep. It is, according to Lem. 2.9,
the image of the shift, hhh = (h−11 , h2, h

−1
2 , h1), of an H-M rep. at level 1. There are

five total such shifts of H-M reps. at level 1 lying over x0. Cor. 3.9 says we can
take for their Nielsen class representatives hhhA = (h−11 , Ah2A

−1, Ah−12 A−1, h1) with
A running over the 5 elements of Ad5/Cenh1

Cenh2
.

As in Prop. 3.13 we get four q2 orbits giving cusps of width 10 corresponding to
BA s in (3.7) that are nontrivial. Now we adjust this to do the case e = 3. It isn’t
hard to write out the level 0 Nielsen class, but to be explicit, we quote from [Fr99,
§7.4 Fig. 1] (resp. [Fr99, §7.9 Fig. 2]) for the absolute (resp. inner) case. One γ∞
orbit on Ni(A5,C34)in is represented by X7 = ((2 1 4), (2 4 5), (5 3 2), (1 2 3)), the
other by conjugation by (3 5).

So, as in the previous case, we want to lift X7 to a hhh at level 1. We do so using
that 〈(2 4 5), (5 3 2)〉 and 〈(1 2 3), (2 1 4)〉 are 5′ groups (order prime to 5), actually
isomorphic to A4. That is, the cusp defined by X7 is a g-5’ cusp, so named in
[Fr06, (3.4a)]. Thus, as a special case of [Fr06, Princ. 3.6] (called there Frattini
Principle 2) there is a corresponding g-5’ lift over it extending to the whole universal
5-Frattini cover, but here we just go to level 1 of our example. Frattini Principle 2
is a far-reaching generalization of Lem. 2.9.

Now we can generalize the work of e = 2 by taking as A a generator of the
submodule of Ad5 fixed by the product of (1 2 3) and (2 1 4) and for BA the same
expression used in (3.7). That completes the proof. �

4. Properties of split case spaces in (1.2b)

We use the name “split” on situation (1.2b). Still, it is `-Frattini principles
that dominate. Unless otherwise said, we exclude ` = 3.

Further notation: V`k+1
def
= (Z/`k+1)2. We use an element, α, of order 3 to act

on a number of groups. On V`k+1 its action is through the matrix A∗ =
(

0 1
−1 −1

)
.
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That action extends to the free group F2 = 〈u∗1, u∗2〉 on two generators by

(4.1) α∗ : (u∗1, u
∗
2) 7→ ((u∗2)−1, u∗1(u∗2)−1) [Fr95, end of Rem. 2.10].

That induces an action on the profinite completion of F2, which we denote by F̂2.
Define the semidirect product of F2×sZ/3, and F̂2×sZ/3 by taking Z/3 = 〈α∗〉.

Use the 2 × 2 matrix notation of §A.1. For any α∗-invariant quotient, H, of F̂2,

with α induced from α∗, write elements of H ×sZ/3 as
(
αj 0
h 1

)
, h ∈ H, j ∈ Z/3.

With the induced action from α∗, denote V`k+1 ×sZ/3 by G`k+1 .
§4.1 has preliminaries on the Nielsen classes, Ni(G`k+1 ,C+32−32), of the rest of

this paper. §4.2 introduces the (small) Heisenberg group and the lift invariant that
allows us to label braid orbits on these Nielsen classes.
§4.3 gives the 1st of our main theorems (Prop. 4.19). With it we compute the

value of the lift invariant and its relation to the respective Nielsen class represen-
tatives we call double identity and H-M(as in (1.3)). These correspond to braid
orbits with the following lift invariant values:

(4.2) either `′ (prime to `) or trivial lift invariant.
Braid orbits for these cases, ` > 3 and all k, exhibit disparate and interesting

phenomena. The types of cusps in these two cases are similar to the cusps of main
concentration on modular curves, though modular curves have trivial lift invariant.
§7.1 comments on the remaining – intermediary – cases of `-divisible lift invariant
(Def. 4.16) for each fixed ` 6= 3, and for each value of k ≥ 0. The case ` = 2 has
some special properties. We use it to show how the lift invariant works in §4.3.2
for k = 0, and then finish it for k > 0 in §7.2.

4.1. Preliminaries on Ni(G`k+1 ,C+32−32). Define α0 =
(
α 0
000 1

)
to be the

natural lift of of α to G`k+1 . The conjugacy class of α0 is

(4.3) {
(

1 0
vvv 1

)
α0

(
1 0
−vvv 1

)
=
(

α 0
vvvα−vvv 1

) def
= vvvα0 | vvv ∈ V`k+1}.

Replacing α by α−1 in this expression gives the inverse, vvvα
−1
0 , of vvvα0.

For ggg ∈ Ni(G`k+1 ,C+32−32) we indicate a configuration type by whether – in
order – it is α or α−1 that lies in its (upper left) matrix entry. Example: For gggH-M

in the proof of Prop. 4.19, the configuration type is ±±. Write this as ggg ∈ T`k+1,±±,
or just T±± if k is understood, or is 0.

Our main concern is braid orbits, So, we often assume a Nielsen class rep. is of
a particular type as a consequence of the following statement.

(4.4) You can braid an inner Nielsen class rep. of one type to any other type
and take any fixed entry (often the 1st, g1) to be either α0 or α−10 .

Given an entry of ggg as α0, normalize further by conjugating all entries by α0.
Consider H-M reps. in T`k+1,±±: www,3,4ggg = (α0, α

−1
0 ,wwwα0,wwwα

−1
0 ). Note: www,3.4ggg

and −www,3,4ggg are reduced equivalent.

Lemma 4.1. Since G`k+1 → G` is a Frattini cover, vvv ∈ V`k+1 generates G`k+1

as an α module if and only if vvv mod ` generates G` as an α module.
To count the reduced classes of H-M reps, count the vvv mod ` that generate G` as

an α module, multiply by `2k, and divide by 6. For ` ≡ 2 mod 3, α acts irreducibly
on V`. Otherwise V` is a sum of two 1-dimensional α-eigenspaces, with distinct
eigenvalues, both different from 1.
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For vvv ∈ V`k+1 , vvv and vvvα−vvv mod ` are both α eigenvectors or neither is.

(4.5) In the 2nd case
(
α 0
000 1

)
and

(
α 0

vvvα−vvv 1

)
generate G`.

All elements in G`k+1 of form
(
α±1 0
www 1

)
have order 3.

Given g1 = α0, g2 =
( α−1 0

vvvα
−1

2 −vvv2 1

)
and g3 =

(
α 0

vvvα3−vvv3 1

)
, there is

(4.6) ggg = (α0, g2, g3, g4) ∈ T±± ∩Ni(G`k+1 ,C+32−32)

for (a unique) g4 =
(

α 0
vvvα4−vvv4 1

)
if and only if 〈vvv2 mod `,vvv3 mod `, α0〉 = G`. That

is, vvv2 mod ` and vvv3 mod ` are not in the same α0 eigenspace.

Proof. Take OK to be the ring of integers of the number field generated by a
zero of x2 + x + 1, and ζ3 to be a primitive 3rd root of 1. The group (Z)2 ×sZ/3
is isomorphic to OK ×s〈ζ3〉 where multiplication by ζ3 takes the role of α. The 1st
sentence of the 2nd paragraph follows from the 1st paragraph.

The 2nd sentence comes to checking primes ` for which x2 + x+ 1 ≡ 0 mod `,
or x3 − 1 ≡ 0 mod `, has a solution (not equal to 1). The cyclic group (Z/`)∗
contains a nontrivial root of 1 if and only if 3 divides `− 1.

For ` ≡ 2 mod 3, any vvv 6= 000 gives vvvα − vvv generating (Z/`)2 as an 〈α〉 module.
So, V` is a cyclic module for this action: some vector generates this Z/3 module.

Now assume ` ≡ 1 mod 3 and suppose vvvi, i = 1, 2, are respective generators
of α-eigenspaces, with respective eigenvalues k1, k2. With vvv = a1vvv1 + a2vvv2,

www = vvvα − vvv = a1(k1 − 1)vvv1 + a2(k2 − 1)vvv2.

Since k1 6= k2 (and not 1), either of vvv and www are α-eigenvectors if and only if
one ai is 0 (and the other is not). Then, they are simultaneously eigenvectors in
the same subspace. Conclude: 〈vvvα − vvv, α〉 = 〈vvv, α〉 = G` if both ai s are nonzero.
This is clearly equivalent to the statement centered on (4.5).

Finally, consider
(
α 0
vvv 1

)
. It has order 3 if and only if vvv + vvvα + vvvα

2

= 000. This

says that every nontrivial vector is killed by the characteristic polynomial of α.
The remainder of the lemma follows because the condition on g2 and g3 is just
generation for ggg. Now, determine g4 from the product-one condition for all k.

For ` ≡ 1 mod 3, as zeros of x2 + x+ 1 mod ` are distinct, they lift to zeros
of x2 + x + 1 in Z`. So, the corresponding eigen-modules generate OK ⊗ Z`. The
characteristic polynomial for α is now x2 + x+ 1. �

Definition 4.2. Refer to vvv ∈ V`k+1 as an α-generator if it satisfies 1st para-
graph condition of Lem. 4.1.

4.2. Appearance of a Heisenberg group. We still exclude ` = 3. Here
we identify the Universal central `-extension, R`k+1 , of G`k+1 . There is a startling
difference between ` = 2 and ` > 3, though ` = 2 braid orbits resemble those for the
other cases. For ` = 2, and k = 0, R2 is the pullback of A4 ≤ A5 in SL2(Z/5), via
the identification of PSL2(Z/5) and A5. In this pullback the lift of any nontrivial
element in V2 to SL2(Z/5) has order 4.

For ` ≥ 3 and each k, the lift of any element of order `k+1 in V`k+1 to R`k+1

has order `k+1. §4.2.1 shows both cases come from a Heisenberg extension.
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4.2.1. Heisenberg central extension. In the proof of Lem. 3.4 we have the matrix

A =
(

1 −3
1 −2

)
, giving an element of order 3 in PSL2(Z). That gives a copy of the

Klein 4-group in A5 generated by vvv1 =
(

2 0
0 3

)
and vvv2 =

(
0 2
2 0

)
.

Reduce A mod 5. Then, 〈A,vvv1, vvv2〉 gives a natural copy of A4 inside PSL2(Z/5)
as V2 ×sZ/3 with (Z/2)2 = V2 = {vvv1, vvv2} and A generates Z/3 acting on V2 by
matrix conjugation: it takes vvv1 to vvv2 and vvv2 to the sum of vvv1 and vvv2. The matrix

A is useful, but we use its conjugate, A∗ =
(

0 1
−1 −1

)
, induced from (4.1).

Consider the matrix

M(x, y, z)
def
=

1 x z
0 1 y
0 0 1

 , with inverse

1 −x xy−z
0 1 −y
0 0 1

 .

For R a commutative ring, we use the 3× 3 Heisenberg group with entries in R:

HR = {M(x, y, z)}x,y,z∈R.
When R = Z/`k+1, denote HR by H`k+1 , and its 3 × 3 identity matrix by I3.

We now relate H`k+1 to G`k+1 after pointing to a potential notation confusion.
§2.1 denotes the 1st characteristic `-Frattini cover of a group designated G0 by

G1. Since we will be dealing with infinitely values `, it simplies notation to refer
the groups corresponding to k = 0 as G` = V` ×sZ/3, without a decoration – like
G0,` – including a 0 subscript. See the comments in the proof of Prop. 2.5.

Cor. B.3 describes the universal central `-extension of Gk+1
` . For each prime `,

V` has just two non-abelian central `-Frattini extensions (say, [Fr02, §4.2]):

(4.7a) for ` = 2: the order 8 quaternion, Q8, and dihedral, D4, groups; and
(4.7b) for ` odd: H` and Z/`2×sZ/` (a generator of the right copy of Z/` acts

as multiplication by 1+`).

As in §B.1, each group in (4.7) is an `-representation cover of V`. More than
one is possible because V` is not `-perfect. For the `-perfect G`, however, we figure
its universal `-central – Frattini – extension by identifying the restriction of the
unique ` representation cover, ψ : R→ G`, to an `-Sylow.

For that we identify, for H in (4.7), when α extends from V` to ψH : H → V`.
Consider the homomorphism ψ`k+1 : H`k+1 → V`k+1 , by M(x, y, z) 7→ (x, y), k ≥ 0.

Lemma 4.3. Any lift to H`k+1 of an order `k+1 element of V`k+1 has order `k+1,
except for ` = 2 and k = 0 the order is 4. The groups H2 and D4 are isomorphic.

Each element of ker(ψZ) (or ker(ψ`k+1) is a commutator (see 4.9). Conclude:

(4.8a) ψ`k+1 is a central `-Frattini extension.
(4.8b) HZ is a quotient of F2, and the action of α∗ induces α`k+1 on H`k+1 ,

with α`k+1 trivial on ker(ψ`k+1).
(4.8c) The same notation gives a cover ψ`k+1 : H`k+1 → G`k+1 presenting the

maximal central extension of G`k+1 with exponent `k+1 kernel.
(4.8d) The (4.1) action of α on V` doesn’t extend to Z/`2×sZ/` unless 3|`−1.
(4.8e) In case (4.8d), the extending action of α on the kernel of Z/`2 ×sZ/`

is nontrivial; so it does not give a central extension of V` ×sZ/3.

Proof. Write an element of H`k+1 as I3 +U(x, y, z). Putting it to the `k+1-th
power gives I3 if `k+1 ≥ 3. To the 2nd power gives I3 +U(x, y, z)2 if `k+1 = 2, and
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that has xy in the (1, 3) position. To see that H2 is D4, use the D4 characterization:
it has two noncommuting involutions, M(1, 0, 0) and M(0, 1, 0), for generators.

Now consider the statements in (4.8). Let M(x1, y1, z1) and M(x2, y2, z2) be
(any) lifts of any generators vvv1, vvv2 of V`. Consider their commutator:

(4.9)
M(x1, y1, z1)M(x2, y2, z2)M(x1, y1, z1)−1M(x2, y2, z2)−1

= M(0, 0, x1y2 − x2y1).

That ker(ψ) (in each case) consists of commutators follows easily.
See §2.1 for this and our next two paragraphs for producing the `-Frattini

properties. The kernel of HR → VR is in the center of HR, for R any quotient of
Z. So, the commutator in (4.9) depends only on vvv1, vvv2. Thus,

〈M(x1, y1, z1),M(x2, y2, z2)〉 = HZ.

This is a characterization of ψZ (and therefore of ψ`k+1) being a Frattini cover.
Therefore HZ is generated by 2 elements; so it is a quotient of F2.

For notational simplicity we do just the case k = 0, but, the ingredients are the
same for general k, given the result of §B.2 (which does the reduction to k = 0).
The universal `-Frattini cover of V` is the profinite completion, F2,`, of F2 with
respect to subgroups of index a power of `.

Consider the kernel, K†` , of ψ` : F2,` → V`. The following Frattini statements
are proved in [FrJ86, Chap. 21]. The Frattini subgroup of the kernel of ψ` –

K†1,` = 〈(K†` )`, (K†` ,K
†
` )〉 – is generated by `th powers and commutators in K†` .

The universal exponent `-Frattini cover of V` is F2,`/K
†
1,`

def
= V1,` → V`.

The α action on F2 preserves the map to V`. So, α also acts on K†` , on its

characteristic subgroup K†1,`, and on the quotient V1,` preserving its map to V`.

Therefore, α acts on M` = ker(V1,` → V`). The maximal central extension of
V` ×sZ/3 = G` has its kernel to V` identified with the maximal quotient of M` on
which α acts trivially. According to §B.2, this quotient has dimension 1. That gives
the maximal central `-Frattini extension of G`, with exponent ` kernel, as H`.

Now consider (4.8e). An actual element, say c, affecting α then has order 3
in (Z/`)∗. We can write an extension of it to Z/`2 as c(1 + u`) mod `2 for some
value of u. The result of multiplying by this on the kernel has the same affect as
multiplication by c on Z/`, so it is not trivial. That concludes the proof. �

Corollary 4.4. For all odd primes ` > 3 (resp. ` = 2), the unique central
`-Frattini extension of G`) is H` (resp. Q8 ×sZ/3). Indeed, Q8 identifies with the
2-Sylow in the spin cover of A4.

Proof. The 1st sentence is in Lem. 4.3. The product of the involutions in D4

gives a subgroup of order 4, that is normal, and so D4 = (Z/4) ×sZ/2 (with the
generator of Z/2 acting as multiplication by −1). In particular, (4.8d) applies to
say the action of α in G2 does not extend to H2.

That leaves the extension of Z/3 to Q8 as the only possible 2-Frattini central
extension of G2. See this is right by looking at Spin4 → A4. For any n ≥ 4, if
g ∈ An is an involution, then if it is product of 2s 2-cycles. [BFr02, Prop. 5.10] says
any lift of it to Spinn has order 4 if and only if s is odd. That is a characterization
of Q8 by its cover to V2: each order 2 element lifts to only order 4 elements. �
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4.2.2. Heisenberg lift invariant. Regard H`k+1 ×sZ/3 def
= H`k+1 as a cover of

G`k+1 = V`k+1 ×sZ/3. The kernel of ψ`k+1 : H`k+1 → G`k+1 has order prime to 3,
so (a trivial case of) Schur-Zassenhaus gives a unique conjugacy class of order 3
elements over such elements in G`k+1 .

As the kernel of ψ`k+1 is in center, there is a unique order 3 lift of any order 3
element of G`k+1 . For ggg = (g1, g2, g3, g4) ∈ Ni(G`k+1 ,C+32−32), denote the order 3
lift of gi by ĝi ∈ H`k+1 . Then, form

(4.10) s`k+1(ggg) = ĝ1ĝ2ĝ3ĝ4 ∈ ker(H`k+1 → G`k+1) = Z/`k+1.

Sometimes we use this in multiplicative notation, identifying the right side of (4.10)
with 〈ζ`k+1〉, as in (5.16), with ζn = e2πi/n. As a special case of a general situation,
we call s`k+1(ggg) the (Heisenberg) lift invariant.

Proposition 4.5 (Braid invariance). Braids always preserve the lift invariant
[Fr95, Part III, Lem. 3.12].

We use both additive (0 is the identity; value in an abelian group) and multi-
plicative (1 is the identity; inside a nonabelian group) notation for it. We clarify

which when we use it. The inverse of A∗ is (A∗)−1 =
( −1 −1

1 0

)
.

(4.11) Denote the order 3 element over
(
α 0
www 1

)
by
(

α 0
M(www,zwww) 1

)
, or with

www = (x, y), use M(x, y, z(x,y)) for M(www, zwww).
Conjugation by α0 preserves order 3 elements. Conclude:

(4.12) α−10

(
α 0

M(x,y,z(x,y)) 1

)
α0 =

(
α 0

M(x,y,z(x,y))
α 1

)
=
(

α 0
M(−y,x−y,z(−y,x−y)) 1

)
,

since the element on the right side is the unique order 3 lift of
(

α 0
(−y,x−y) 1

)
.

Define z∗(x,y) analogously as the unique z for which
(

α−1 0
M(x,y,z) 1

)
has order 3.

4.2.3. Relating z(x,y) and z∗(x,y). Prop. 4.6 lets us compute the lift invariant.

Using z(x,y), (4.13) lists – with no repetition – all order 3 elements of H`k+1 .

Imitating the notation of (4.3), the conjugacy class of α±10 in H`k+1 is

(4.13)

{M(x,y,0)α
±1
0

def
=

(
1 0

M(x,y,0) 1

)
α±10

(
1 0

M(−x,−y,xy) 1

)
=( α±1 0

M(x,y,0)α
±1
M(x,y,0)−1 1

)
}(x,y)∈V

`k+1
.

Proposition 4.6. Both {M(x, y, z(x,y))}(x,y)∈V
`k+1

and {M(x, y, z∗(x,y))}(x,y)∈V`k+1

are invariant under α±1. For (x, y) ∈ V`k+1 , two formulas relate z(x,y) and z∗(x,y):

(4.14a) z∗(x,y) = xy − z(−x,−y); and

(4.14b) z(x,y)−z∗(x,y) = (x2 − xy + y2)/3.

Proof. The 1st sentence says that conjugation by α±1 maps order 3 ele-
ments to order 3 elements. From (4.12), the substitution of M(x, y, z(x,y))

α for
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M(x, y, z(x,y)) gives the effect of conjugation by α0 on
(

α 0
M(x,y,z(x,y)) 1

)
. Sim-

ilarly, substitute M(x, y, z∗(x,y))
α = M(−y, x−y, z∗(−y,x−y)) for M(x, y, z∗(x,y)) for

conjugation by α0 on
(

α−1 0
M(x,y,z∗(x,y)) 1

)
.

Consider Bx,y
def
=
(

α−1 0
M(−x+y,−x,z∗(−x+y,−x)) 1

)
. It and its inverse have order 3.

Multiplying on the right by B−1x,y shows B−1x,y lies over
(

α 0
(−x,−y) 1

)
∈ G`k+1 . It

must therefore be
(

α 0
M(−x,−y,z(−x,−y)) 1

)
.

Multiply Bx,yB
−1
x,y out to get the identity if and only if

M(−x+y,−x, z∗(−x+y,−x))
αM(−x,−y, z(−x,−y)) = I3.

The left term is M(x, y, z∗(x,y)). So, its inverse, is M(−x,−y, xy − z∗(x,y)) from

(4.2.1). Equate the z-values of the two expressions for the inverse for (4.14a).
Now consider (4.14b). For each (x, y), write

M(x, y, z(x,y)) = M(x, y, z∗(x,y))M(0, 0, c(x,y)).

Temporarily refer to the effect of α±1 on (x, y) as (x, y)α±1
def
= (xα±1 , yα±1). As α

acts trivially on the center ofH`k+1 , the 1st sentence says c(x,y) = z(x,y)α±1
−z∗(x,y)α±1

.

Use this to determine c(x,y) from
(

α 0
M(x,y,z(x,y)) 1

)
3 =

(
1 0
I3 1

)
and the corre-

sponding formula with the substitution
(4.15) α 7→ α−1, z(x,y) 7→ z∗(x,y).

The result, given that xα−1+xα+x = yα−1+yα+y = 0 is

(4.16)
M(xα−1 , yα−1 , z(x,y)α−1

)M(xα, yα, z(x,y)α)M((x, y, z(x,y)) =

M(0, 0, z(x,y)α−1
+z(x,y)α+z(x,y)+xα−1yα+(xα−1+xα)y).

Apply the substitution (4.15) to conclude that not only is the z value 0, but so is

z∗(x,y)α−1
+z∗(x,y)α+z∗(x,y)+xαyα−1+(xα−1+xα)y.

Subtract those two z values to conclude

(4.17) 3c(x,y) = xαyα−1−xα−1yα = yx+ (x− y)2.

That gives (4.14b).
The conjugacy classes of α±10 are the orbits from conjugating by the kernel

of the map to H`k+1 → Z/3. Since conjugation by M(x, y, z) is independent of z
(Rem. 4.7), those conjugacy classes give the elements of order 3. �

Remark 4.7 (Homogeneous action). As M(x, y, z+z′) = M(x, y, z)M(0, 0, z′),
since α acts trivially onM(0, 0, z′), we haveM(x, y, z+z′)α = M(x, y, z)αM(0, 0, z′).
Still, that doesn’t yet pin down z(x,y) as a function of (x, y).

Remark 4.8. Lem. 4.3 also showed that for ` odd and ≡ 1 mod 3 there is an
`-Frattini extension of G` to (Z/`2×sZ/`)×sZ/3. But, this isn’t a central extension.
Replacing Z/`2×sZ/` by Z/`2×Z/` (an abelian group: ×s 7→ ×) gives another with
the same properties (same ` s; same argument). This covers all `-Frattini extensions
of G` with 1-dimensional kernel, where the restriction to the `-Sylow is abelian.
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Remark 4.9. Often, applying Prop. 4.5 shows the lift invariant – defined on
any Nielsen class for any central Frattini extension – precisely finds braid orbits.
[Fr10, Thms. A and B] is a series of examples. The case G = A4 and r = 4 meets
the case of Prop. 4.19 (appearing as ` = 2, k = 0; see Rem. 4.13).

4.3. The lift invariant separates many braid orbits. For m ∈ Z/`k+1,
denote the braid orbit union of ggg ∈ Ni(G`k+1 ,C+32−32) with s`k+1(ggg) = m by Om.

Also, denote the union of reduced (inner and compactified) Hurwitz space com-
ponents with lift invariant m by H̄`k+1,m. Prop. 4.19 shows, for ` 6= 3 and each

m ∈ Z/`k+1 satisfying (4.2), that Om is nonempty. We explicitly find that the
braid orbits with lift invariant satisfying (4.2) contain, respectively, double identity
(as in (1.3b))) or H-M reps.

Prop. 6.3 and Prop.6.8 produce the version of this result for ` > 3. §4.3.2 redoes
a previously known result for ` = 2. A nontrivial lift invariant distinguished that
braid orbit from all others. There are several braid orbits with trivial lift invariant,
but we do know how many there are and key data on what they contain.

4.3.1. Counting: H-M and double identity reps. The notation T±± is from §4.1.
We use the moduli group, Q′′, of §3.1. [Fr06, Prop. 6.1.2] did the computation of
braid orbits where G0 = A4 – our case here, where ` = 2 and k = 0 – on the Nielsen
class Ni(A4,C+32−32)in. Here is a compendium of those results.

(4.18a) The two braid orbits on this Nielsen class correspond to Hurwitz space
components Hin

± . Both inner spaces have genus 0 [Fr06, (6.9)].
(4.18b) H+, corresponding to an H-M orbit, is the space of covers with branch

cycles of lift invariant +1. Its compactification has degree 9 over P1
j .

(4.18c) H−, corresponding to a double identity rep. orbit., is of covers with lift
invariant -1. Its compactification has degree 6 over P1

j .
(4.18d) Orbits of Q′′, restricted to each of the two braid orbits, have length 2.

Lemma 4.10. A ggg ∈ T±± cannot simultaneously be a double identity rep. and
either an H-M or shift of an H-M rep.

Proof. Assume ggg is double identity and H-M, or it is double identity and the
shift of an H-M. Applying sh, we may assume g1 = g3. By assumption, in either
case, g2 = g−11 (= g−13 ). But then 〈ggg〉 = G` would be cyclic. A contradiction: �

Lem. 4.11 gives many critical cusp widths.

(4.19a) vvv,3,4ggg
def
= (α0, α

−1, vvvα0, vvvα
−1
0 ) (resp. ) for an H-M rep. and

vvv,2,3ggg
def
= (α0, vvvα

−1
0 , vvvα0, α

−1
0 ) for the shift of an H-M rep.

(4.19b) vvv,1,3ggg
def
= (α0, vvvα

−1
0 , α0,−vvvα

−1
0 ) and vvv,2,4ggg

def
= (α0, vvvα

−1
0 , 2vvvα0, vvvα

−1
0 ) for

the two types of double identity reps.

Lemma 4.11. Assume ` > 3. The element sh2 maps vvv,3,4ggg to the inner class
of −vvv,3,4ggg, and the two inner classes are distinct. Also,

(4.20) The inner class of ((vvv,3,4ggg)sh)q1q
−1
3 = −vvvα,2,3ggg (inner equivalent

to −vvv,2,3ggg) is reduced inequivalent to vvv,3,4ggg.
Also, with L−2vvv conjugation by −2vvv:

(4.21a) ((vvv,1,3ggg)sh)q−11 q3 = (vvv,1,3ggg)q−22 ; and

(4.21b) (((vvv,2,4ggg)sh)L−2vvv)q
−1
1 q3) = (vvv,2,4ggg)q−22 .

So, Q′′ has length 4 orbits on H-M or double identity braid orbits.
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For ` ≡ 2 mod 3 (resp. ` ≡ 1 mod 3) there are d`k+1

= (1−`−2)`2(k+1)(resp. (1−`−2)`2(k+1) − 2(1−`−1)`k+1+`k)

α-generators (Def. 4.2) in vvv ∈ V`k+1 . Then, there are
d
`k+1

6 reduced inequivalent
H-M, shift of H-M, or double identity reps. of either type in (4.21).

Proof. The only element of Q′′ that might fix the inner class of vvv,3,4ggg is sh2.

Compute easily that (vvv,3,4ggg)sh2 = −vvv,3,4ggg. To show this is not in the same inner
class as vvv,3,4ggg comes to showing that (−vvv)αj 6= vvv. This follows from ` is odd and
Lem. 4.1: ±1 are not eigenvalues of α. Showing (4.20) is similar, with −vvv,2,3ggg
conjugate by α0 to −vvvα,2,3ggg.

Now consider (4.21) applied to vvv,1,3ggg. Then,

((vvv,1,3ggg)sh)q−11 q3 = (vvvα
−1, α0,−vvvα

−1
0 , α0) = (α0, vvvαα

−1, vvvα−vvvα0,−vvvα0).

The middle product of vvv,1,3ggg is vvv−vvvα. Take its negative to see that q−22 applied to

vvv,1,3ggg is conjugation of the 2nd and 3rd terms by the middle product, vvvα−vvv. That
gives (4.21a). Similarly,

(((vvv,2,4ggg)sh)L−2vvv)q
−1
1 q3 = (α0,−vvvα

−1
0 ,−vvvα−vvvα0,−vvvα

−1
0 ).

Since the middle product of vvv,2,4ggg is v−vα, conjugating by its inverse gives (4.21b).
As already noted, the only element that could possibly fix any H-M or double

identity inner rep. is sh2, but according to (4.21) that would imply q−42 fixes that
inner class. Since q2`2 , does also, the Chinese remainder theorem implies that so
does q2. But that is clearly false.

A simple if and only if condition gives (1.4a) (generation) for any of an H-M,
shift of H-M, or double identity rep. Using the notation of (4.19), In each case,

α0 and vvv (=
(

1 0
vvv 1

)
) generate G`k+1 . Select vvv according to Lem. 4.1, There is no

other constraint to forming the Nielsen class rep.
We have the further equivalence of conjugating by powers of α0, and for the

elements we are discussing, there is the sh2 keeping them of the same type, but not
fixing them. That accounts for the division by 6 of d`k+1 . �

Respective to ` ≡ 1 and 2 mod 3, Lem. 4.1 and Lem. 4.12 count the elements
in our Nielsen classes. Lem. 4.12 uses that G`k+1 → G` is an `-Frattini cover to
guarantee generation for a 4-tuple at level k lying over a Nielsen class at level 0.

Lemma 4.12. For ` ≡ 2 mod 3 there are c`
def
= `4−1 inner Nielsen classes

Ni(G`,C+32−32)in. If each of these is in an H-M or double identity braid orbit,
then the reduced classes, Ni(G`,C+32−32)in,rd, contain c`

2 elements.

For ` ≡ 1 mod 3 they contain c′`
def
= `4 − 2`2 + 1 inner classes, and if each is

in an H-M or double identity braid orbit, then there are
c′`
2 reduced classes.

There are `k H-M (resp. double identity) reps. in Ni(G`k+1 ,C+32−32)in,rd lying
over a given H-M (resp. double identity) rep. in Ni(G`,C+32−32)in,rd, k ≥ 0.

Proof. For ` ≡ 2 mod 3, according to Lem. 4.1 we can form an element in
T±± by choosing vvv2 and vvv3 in gggvvv2,vvv3 = (α0, vvv2α

−1
0 , vvv3α0, •) subject to not both being

000 mod `. The count of those gggvvv2,vvv3 is c`
def
= `4−1.

Among all these we can conjugate by α0, and move the + among the 2nd
through 4th positions by braids. Thus, c` also counts inner equivalence classes.
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For reduced classes, under the assumption that the braid orbits are of either
H-M or double identity reps., Lem. 4.11 says an element of Q′′ that doesn’t change
the type equivalences distinct pairs of inner classes. Example: Pairs of elements of
T±± are reduced equivalent by sh2. So, there are c`

2 reduced classes.
Now consider ` ≡ 1 mod 3. Here we must adjust gggvvv2,vvv3 so both of vvv2 and

vvv3 are not in a particular eigenspace for the action of α0. There are two distinct
eigenspaces, so there are `4−2`2 + 1 such allowable pairs, and the rest of the calcu-
lation proceeds as previously.

To find all H-M (resp. double identity) reps. in Ni(G`k+1 ,C+32−32)in,rd over

vvv,3,4ggg, or vvv,1,3ggg, etc. requires only listing the distinct elements ṽvv,3,4ggg, or ṽvv,1,3ggg, etc.
with ṽvv ∈ V`k+1 over vvv. Given one such this is equivalent to listing the `2k distinct
values of wwwα−www as www runs over ker(V`k+1 → V`). �

Remark 4.13 (Overlapping case). One case, ` = 2 = n, overlaps between
[Fr10, Thm. B] (giving the braid orbits for Ni(An,C+32−32)in, n ≥ 4, r ≥ n−1) and
Prop. 4.19. That inspired a formula for the lift invariant for the central extension
being the spin cover of An. Rem. 4.7 and Lem. 5.10 give an algorithm for the lift
invariant for G`k+1 Nielsen classes. It is an analog of the explicit [Fr10, Thms. 1
and 2] proof for the lift invariant for branch cycles in Ni(An,C3r ).

Remark 4.14. For k = 0, dl in Lem. 4.11 is K`(`−1) with K` defined in (5.1).

4.3.2. Identifying the lift invariant when ` = 2. The Nielsen class Ni(G`k+1 ,C+33),
in Lem. 4.15 has r = 3; the classes are three repetitions of C3. This subsection has
a key argument that finds the braid orbits on Ni(G`,C+32−32), just for ` = 2.

Lemma 4.15. An H-M rep. (in Ni(G`k+1 ,C+32−32)) has trivial lift invariant.
There is a lift invariant preserving correspondence between

ggg′ = (g′1, g
′
2, g
′
3) ∈ Ni(G`k+1 ,C33) and double identity reps.

1,4ggg = ((g′1)−1, g′2, g
′
3, (g

′
1)−1) ∈ Ni(G`k+1 ,C+32−32).

In place of 1,4ggg we could also use

2,1ggg = ((g′2)−1, (g′2)−1, g′3, g
′
1) or (2,1ggg)q−12 = ((g′2)−1, (g′2)−1g′3g

′
2, (g

′
2)−1, q′1),

or other variants placing the doubled pair where ever we want.

Proof. Assume generation holds for gggH-M = (g1, g
−1
1 , g3, g

−1
3 ) ∈ C+32−32 :

〈g1, g3〉 = G`k+1 . Take g1 = α0 and ĝ3 = v̂vvα0 (as in (4.19b)) with vvv outside
any eigenspace for α0. Then, the lift invariant is the product of the entries in
(ĝ1, (ĝ1)−1, ĝ3, (ĝ2)−1). In multiplicative notation, the lift invariant is trivial.

Now consider ggg′ = (g′1, g
′
2, g
′
3) ∈ Ni(G`,C33). In (4.11) notation, compute the

lift invariant, s`k+1(ggg′), using element lifts where

ĝ′1 = α0 and ĝ′i =
(

α 0
M(xi,yi,z(xi,yi)) 1

)
, i = 2, 3.

Since ĝ1 has order 3, ĝ−11 ĝ−11 = ĝ1, a computation in an order 3 group subgroup
of H`k+1 . So, whatever is s`k+1(ĝgg′) = ĝ′1ĝ

′
2ĝ
′
3 ∈ Z/`k+1, it is the same as

(ĝ′1)−1ĝ′2ĝ
′
3(ĝ′1)−1 = s`k+1(ggg).

This association between ggg′ and ggg is clearly reversible, as are the variants. �
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According to Cor. 4.4, Q8 ×sZ/3 is the 2-Frattini central extenson of G2. We
can’t use the same notation as in the Heisenberg group. Still, the arguments of
Prop. 4.6 apply. There is a unique element Q(x, y) ∈ Q8 that lies over (x, y) such

that
(

α 0
Q(x,y) 1

)
has order 3, and α acts on these Q(x, y) s.

Consider the Nielsen class element (α0,
(

α 0
Q(x,y) 1

)
,
(

α 0
Q(x′,y′) 1

)
). Then, use

the product one condition to compute the lift invariant as Q(x, y)αQ(x′, y′). But,
product-one implies the original Nielsen element we must have (x, y)α = −(x′, y′).
Since ` = 2, that means Q(x, y)α = Q(x′, y′). The necessary condition for genera-
tion is just that (x, y) 6= (0, 0).

Definition 4.16. Refer to u ∈ Z/`k+1 as `-divisible if u ≡ 0 mod `. In our
cases, with lift invariants in Z/`k+1, we also apply this name (and `′) to a Nielsen
classes rep. or braid orbit having such a lift invariant.

Corollary 4.17. All elements of Ni(G`k+1 ,C+33)in have representatives of
form wwwggg = (α0,www2

α0,www3
α0), where www3 = −wwwα2 . Assume for ` 6= 3, that

(4.22) all elements of Ni(G`k+1 ,C+33) have `′ lift invariant.
Then, so do all double identity reps. of Ni(G`k+1 ,C+32−32). Elements with

`-divisible lift invariant and double identity reps. have distinct braid orbits.
When ` = 2, k = 0, (4.22) applies.

Proof. From product-one for the entries of wwwggg, easily compute that

(4.23) wwwα2−www2+www3−wwwα
−1

3 = 000 in additive notation.

As α is invertible, the unique expression for www3 in www2 is given in the statement.
The first sentence of the 2nd paragraph follows immediately from Lem. 4.15.

Since lift invariants are braid invariants (Prop. 4.5), the hypothesis of nontrivial lift
invariant for double identity reps. means they are in distinct orbits from H-M reps.

That leaves proving that double identity reps. have nontrivial lift invariants
when when ` = 2. From the above we have computed the lift of any Nielsen class
element is Q(x, y)2, for some (x, y) ∈ V2 \{000}. But the lift of any nontrivial element
in V2 to Q8 has order 4, so its square is nontrivial. �

Remark 4.18. The case ` = 2 is the meeting point for the general result
(on the lifting invariant in [Fr10, Invariance Cor. 2.3]) about the braid orbits of
Ni(An,C3r ) (3-cycle Nielsen classes in An) and the Nielsen classes of this paper.
That result applies because the genus, g′, of degree 4 covers with 3 branch points,
each with a 3-cycle as its branch cycle is 0:

2(4 + g′ − 1) = 3(3− 1) =⇒ g′ = 0.

That proof, however, where the central extension is the spin cover, won’t generalize
to our Heisenberg extension. We see, however, the argument we gave above does.

4.3.3. Lift invariants; all `. For hhh = (α0, (x′,y′)α0, (x,y)α0) ∈ Ni(G`k+1 ,C+33),

the element in (H`k+1)4 ∩C33 whose entries give its lift invariant is

αααx,y
def
= (α0,

(
α 0

M(x′,y′,z(x′,y′)) 1

)
,
(

α 0
M(x,y,z(x,y)) 1

)
).
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Here, (x, y) is not in an α-eigenspace on V`. As in Cor. 4.17, (x′, y′)α = −(x, y).
Then, the lift invariant is the z value in

(4.24) M(−x,−y, z(−x,−y))M(x, y, z(x,y)) = M(0, 0, z(−x,−y)+z(x,y)−xy).

Proposition 4.19. The lift invariant of αααx,y is

(4.25) f(x, y) = (x2 − xy + y2)/3.

All elements of Ni(G`k+1 ,C+33) have `′ lift invariant. We achieve all such lift
invariants by running over them. Therefore, these statements also hold for all
double identity reps. in Ni(G`k+1 ,C+32−32).

Conclude, a double identity rep. and ggg ∈ Ni(G`k+1 ,C+32−32) with `-divisible
lift invariant have distinct braid orbits.

Proof. Add (4.14a) to (4.14b) to get the z value in (4.24) and conclude (4.25).
If the first sentence holds for elements of Ni(G`,C+33), then Cor. 4.17 shows the
second sentence for elements of Ni(G`k+1 ,C+32−32).

Suppose the two statements about lift invariants in Ni(G`k+1 ,C+33) are correct.
Then, Lem. 4.15 shows these are equivalent to the statement about double identity
lift invariants in Ni(G`k+1 ,C+32−32).

We now restrict attention to the lift invariant for elements of Ni(G`,C+33). Fix
a particular (x0, y0) 6= (0, 0) that gives an element of the Nielsen class. Suppose
it has lift invariant a′ ∈ (Z/`)∗. Then, the line in V` of multiples, (ax0, ay0),
a ∈ (Z/`)∗, runs over lift invariants in the coset of a′ in the squares of (Z/`)∗.

Now we show we get only nontrivial values of the lift invariant; then that we
get both the trivial and nontrivial cosets of the squares. There are no solutions
with y = 0. Without loss, along a given line in V`, take y0 = 1, to see 0 lift
invariant comes from x0 satisfying x20−x0+1 = 0. Changing x to −x changes
nothing. Therefore, from Lem. 4.1, there is no solution if ` ≡ 2 mod 3. Also,
if ` ≡ 1 mod 3, any solution gives an α-eigenspace, and so is excluded by the
generation condition for entries of αααx,y.

We are done if we show x2+x+1 achieves both squares and nonsquares. For the
former take x0 = 0. Since ` 6= 2, we can make the substitution x 7→ x− 1

2 whereby

the invariant values run over the range of x2 + 3
4 . Then, multiplying by the square

4, we are reduced to showing that x2 + 3 has nonsquare values. If 3 is a nonsquare,
then take x = 0. If not, 3 = m2, in which case substitute x 7→ mx. This reverts
us to showing x2 + 1 takes on values in nonsquares. Rem. 4.20 is probably overkill,
but it concludes the proposition.

Now consider higher levels (k > 0). The case ` = 2 is different, so we reserve
that for Rem. 7.2. Suppose (x1, y1) ∈ V`k+1 lies over (x0, y0) ∈ V` and that αααx0,y0

has lift invariant m0. Given αααx1,y1 at level k lying over (x0, y0), form αααx1,y1 (formula
(??)). It will lie in the Nielsen class Ni(G`k+1 ,C+33), over αααx0,y0 , and its lift
invariant m1 is also over m0. Now, suppose, m′ ∈ Z/`k+1 lies over m0.

To achieve every `′ lift invariant at level k only requires finding (x′, y′) over
(x0, y0) so the lift invariant of αααx′,y′ is m′. The general case is a standard induction
on k. So we take just the case k = 1. Again, apply the lift invariant value in (4.25).
So, this amounts to finding (x′1, y

′
1) with x′ = x1 + `x′1 and y′ = y1 + `y′1, with

2x1x
′
1 + (x1y

′
1 + y1x

′
1) + 2y1y

′
1 = m′ −m1.
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Given (x1, y1,m
′−m1), there is no soluton (x′1, y

′
1) mod ` only if 2y1+x1 = 0

and 2x1+y1 = 0. Since the determinant of the matrix of coefficients is −3, the only
solution is (x1, y1) ≡ 000 mod `, contrary to (x1, y1) not being an α eigenvector.

Finally, let ggg`−div, gggD-E ∈ Ni(G`k+1 ,C+32−32), respectively, be `-divisible and
double identity reps. at level k. From above, they have distinct lift invariants.
Prop. 4.5 says they are in distinct braid orbits. This concludes the proposition. �

Remark 4.20. [Mont91, p. 149, Exer. 18] defines N++(`) to be the number of
squares n mod ` for which n+1 is also a square, with 1 ≤ n ≤ `−2. The (H) at the
end of the exercise means there is a hint. Use the quadratic residue symbol (n` ) (+1

if n 6= 0 is a square mod `, -1 otherwise). Then, N++(`) = (`−(−1` )−4)/4. We

add to the hints using u(`) =
∑`−1

0 (n` ) (= 0) and s(`, a) =
∑`−2
n=1(n(n+a)` ) = −1.

(4.26a) Substitute n 7→ na; multiplicativeness of the Jacobi symbol shows
s(`, a) is independent of a for a 6≡ 0 mod `.

(4.26b) Rewrite u(`)2 as
∑`−1
a=0 s(`, a); conclude s(`, a) = −1 for (a, `) = 1.

(4.26c) Show that N++(`) =
∑`−2
n=1(1 + (n` )(1+(n+1

` ))/4 [Mont91, p. 506].

5. Braid orbits on Ni(G`k+1 ,C+32−32)rd

Assume (4.2): component lift invariants are 0 or `′. The two cases account for
all components of H(G`,C+32−32)rd, for ` 6= 3. For the latter case, we will identify
all components of H(G`k+1 ,C+32−32)rd with `′ lift invariant, for each ` 6= 3, k ≥ 0.

From this comes the `-adic representations in the paper title. The main device
is special Nielsen class representatives called 1-degenerate (5.7).

Definition 5.1. We slightly extend §4.1 notation to refer to T`k+1,±±,1−deg:

The set of 1-degenerates in T±± ∩Ni(G`k+1 ,C+3−3)rd.

§5.1 shows how these give us precise orbit statements. §5.2 gives tools for
dealing directly with orbits of 1-degenerate elements; §5.3 explicitly gives the lift
invariants of 1-degenerate elements; and §5.4 produces all level k = 0 orbits.

5.1. 1-degenerate Nielsen reps. and orbit statements. We will show
that orbits with trivial lift invariant differ substantially from those with nontrivial
lift invariant. We state this, for k = 0, using this quantity:

(5.1) K` = `±1
6 for ` ≡ ∓1 mod 3.

(5.2a) Classes with trivial lift invariant fall in H-M braid orbits. There are K`

of these: each contains 2(`−1) elements of T`k+1,±±,1−deg.
(5.2b) Orbits with nontrivial lift invariant are double identity, distinguished

by that invariant. Each contains K`(`−1) elements of T`k+1,±±,1−deg.

Further clarifying points showing the value of concentrating on T`k+1,±±,1−deg.

(5.3a) Elements of (5.2a) in T`k+1,±±,1−deg consist precisely of H-M and shift
of H-M reps.

(5.3b) There are K` of each type – vvv,1,3ggg and vvv,2,4ggg – of double identity ele-
ments in (5.2b).

See (6.16) for analogous statements for higher k.
Contrast the two pieces of (5.2) with the result if we replace Ni(G`,C+32−32)rd

by Ni(G`,C+3d−3d)rd
def
= Nid with d >> 2: Conway-Fried-Parker-Völklein result

[FrV91, Appendix] or improvements from [Fr10, Main. Thm.].
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(5.4a) (5.2b) is what we get for Nid, d >> 2 , but for Ni2 it is harder.
(5.4b) Instead of (5.2a), there is just one H-M orbit for d >> 2.

H-M orbits – especially because the absolute Galois group recognizes their geometry
– have been a continual mainstay since their introduction in [Fr95, Thm. 3.21] and
continuation in [DE06] to produce systems of Modular Tower components defined
over Q. Rem. 6.9, however, lists examples of them where they produce components
not distinguished by the pair (Nielsen class, lift invariant).

5.1.1. 1-degenerate Definition. Use the notation vvvα0 as in (4.3), so we can
express a representative of any inner Nielsen class in T±± in a standard form:

(5.5) gggvvv2,vvv3 = (α0, vvv2α
−1
0 , vvv3α0, vvv4α

−1
0 ).

Express the product-one condition as

(5.6) (vvv2 − vvvα2 ) + (vvvα3 − vvv3) + (vvv4 − vvvα4 ) = 000.

Using the operator 1− α, this is equivalent to vvv2 − vvv3 + vvv4 = 000.
Generation (1.4a) is equivalent (Def. 4.2) to 〈vvv2, vvv3, vvv4〉 contains an α-gen. of

V`k+1 ; nontrivial from Lem. 4.1 only when ` ≡ 1 mod 3. A significant special case:
(5.7) 1-degeneracy: 〈vvv2, vvv3, vvv4〉 ≤ V`k+1 is a 1-dimensional Z`k+1 module.

By writing the vvv s as multiples (0,m2,m3,m4) of a given vvv ∈ V`k+1 . Both H-M
and shift of H-M (either m2 or m4 is 0) and double identity reps. (either m3 = 0 or
m2 = m4) are cases of (5.7). The following conditions are necessary and sufficient
for elements to be in the Nielsen class.

(5.8a) vvv is an α-gen. (If ` ≡ 2 mod 3, then vvv mod ` is not 000.)
(5.8b) m2 −m3 +m4 = 0.

By writing vvv as (x, y), expression (4.25) explicitly computes the lift invariant.
We will find the lift invariant is the unique separator of the `′ braid orbits.

5.1.2. Locating 1-degenerates in braid orbits. The last line of Lem. 5.2 gives a
symmetry between the operators q2i , i = 1, 2, 3, that explains why we use T±± as
our target configuration. The basic idea is in the proof of Lem. 5.2 where ` ≡ 2
mod 3. Lem. 5.5 adjusts this for when α mod ` has eigenvectors.

With gggvvv2,vvv3 in T±± in (5.5), write vvv3α0 vvv4α
−1
0 =

(
1 0
www 1

)
, where www is

(5.9) vvv3−vvvα
−1

3 + vvvα
−1

4 −vvv4 = (vvv3−vvv4)1−α
−1

= vvv1−α
−1

2 .

Then, www = 000 (= vvv2) if and only if gggvvv2,vvv3 = ggg is an H-M rep. Consider the line

Lvvv3,www = {vvv3 + uwww}u∈Z/`.

Lemma 5.2 (Case ` ≡ 2 mod 3). If ggg is an H-M rep., then (ggg)q2u3
3 = ggg for all

u3. Now assume ggg is not an H-M rep.
Then, there is a unique u3 mod `k+1 for which (ggg)q2u3

3 is 1-degenerate. It
corresponds to the unique intersection of Lvvv3,www and the subspace generated by vvv2.
That 1-degenerate is a double identity rep. if and only if Lvvv3,www goes through the
origin.

You can substitute q22 in the above, except, substitute the shift of an H-M rep.
for an H-M rep. for the excluded cases of ggg.

Proof. The first paragraph is easy. Assume ggg is not an H-M rep. Compute:

(5.10) (ggg)q2u3 = (α0, vvv2α
−1
0 , vvv3+uwwwα

−1
0 , vvv4+uwwwα

−1
0 ).
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Then, 1-degeneracy holds for the value u if and only if either vvv3 + uwww = 000, or vvv2
and vvv3 +uwww generate the same 1-dimensional subspace. We show there is a unique
value of u for which one or the other of these holds.

First: Lvvv3,www has a unique intersection – giving the unique value of u – with
the subspace generated by vvv2 unless they are parallel: www is a multiple of vvv2. That,
however, would make www an eigenvector of 1−α−1, contrary – here – to Lem. 4.1.

If Lvvv3.www contains 000, say, for u = u0, then (ggg)2u0 is a double identity rep., a
special case of 1-degeneracy. The argument for q22 replacing q23 is identical. �

Lem. 5.3 generalizes Lem. 5.2 to all levels k. The notation of (5.6) for gggvvv2,vvv3
still works, but the exceptional case of H-M rep. must be rethought. Refer to a
copy of Z/`k+1 in V`k+1 as a line, as in the proof of Lem. 5.2.

Lemma 5.3. Make the following assumptions:

(5.11a) www in (5.9) is not ≡ 000 mod `.
(5.11b) No point of Lvvv3,www is ≡ 000 mod `.

Then, there is a unique (invertible) u mod `k+1 for which (ggg)q2u3 is 1-degenerate.

Proof. Induct on k. Such a u exists when k = 0, so assume the result holds –
there is a u′ – for k′. We show there is a corresponding u for k = k′+1 by reducing
vvv2, vvv3,www modulo `k

′
. Select any u∗ ∈ Z/`k+1 over u′ ∈ Z/`k′+1. This u∗ will be

invertible, because it lies over an invertible value mod `. From u′, we want a value
u satisfying the conclusion following (5.10). We have r∗vvv2 = vvv3 + u∗www mod `k.
Let www′ = (u∗)−1(r∗vvv2−vvv3).

Now consider the equation

(r∗+r′`k)vvv2 = vvv3 + (u∗ +m`k)www with www = www′+`kwww′′.

Thus, r′vvv2 = u∗www′′ +mwww′ mod `. Since vvv2 and www′ are independent mod `, given
u∗www′′, we can find r′ and m solving this equation. That concludes the proof. �

Remark 5.4 (1-degenerate circuits). Denote the full orbit of reduced elements
of the operator q2i – the q2i circuit – on a Nielsen rep. ggg by Oq2i (ggg). Lem. 5.2 says:

If ggg is a 1-degenerate Nielsen rep., then the only 1-degenerate in Oq2i (ggg) is ggg. The

q22 and q23 circuits of ggg won’t, however, be the same.

Lemma 5.5. If ` ≡ 1 mod 3 adjust the statement of Lem. 5.5 to this. The
q23 (resp. q22) circuit contains a (unique) 1-degenerate element if and only if vvv2
(resp. vvv4) is not an α eigenvector. If two of (vvv2, vvv3, vvv4) are both α eigenvectors,then
they are for distinct eigenvalues. So, the 3rd is not an α eigenvector.

Proof. The proof of Lem. 5.2 applies to the q23 circuit so long as vvv2 is not an
α eigenvector. A 1-degenerate element can’t have any of vvv2, vvv3, vvv4 an α eigenvector,
because then all of them will be as they will all be multiplies of that one. This is
contrary to generation holding for gggvvv2,vvv3 .

Since any of the q2i circuits leaves one of the vvvj s fixed, that circuit can’t con-
tain a 1-degenerate if that vvvj is an α eigenvector. Further, if two of the vvvj s are
eigenvectors for the same eigenvalue, then, so the 3rd, from (5.6) will be also, again
contradicting generation. If all three are eigenvectors for α, then two are eigenvec-
tors with the same eigenvalue, contrary to the above. So at least one of the vvvi s will
not be an α eigenvector. �
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For elements ggg ∈ T±± we have two natural operators that preserve T±± defined
as follows using the notation of (5.6).

(5.12)
I1(ggg)

def
= (α0, vvv4α

−1
0 , vvv3α0, vvv2α

−1
0 ); and

I2(ggg)
def
= (vvv4α0, vvv3α

−1
0 , vvv2α0, α

−1
0 ).

Note: I2(ggg) = (g−14 , g−13 , g−12 , g−11 ) is inner equivalent (the line below (4.3)) to

(5.13) (α0, vvv3−vvv4α
−1
0 , vvv2−vvv4α0,−vvv4α

−1
0 ).

(5.14) Unless otherwise said, until §6.4 we assume k = 0.

5.2. Orbits of 1-degenerate elements. We know two elements, γ0 = q1q2
mod Q′′ (order 3) γ1 = q1q2q3 mod Q′′ (order 2) generate the mapping class group
M̄4 = H4/Q′′ acting on reduced Nielsen classes. There is the natural map ψ4 :
H4 → S4. Denote the subgroup 〈(1 3), (2 4)〉 ≤ S4 by K. Then, ψ−14 (K) ≤ H4 is
the subgroup of elements that maps T±± onto itself.

We can regard K∗ = ψ−14 (K)/〈q1q−13 〉 as an index 3 subgroup of M̄4. Since M̄4

has two generators, a famous result of Schreier says that a subgroup of index 4 in the
free group on two generators requires at most 1 + 3(2-1) =4 elements to generate
it. Also, we can compute these from coset representatives and the generators (say,
[FrJ86, Lem. 15.22]). Note the careful rules on coset representatives, easy to apply
in our case, where γ0 and its powers work as coset reps. for K∗ in M̄4.

Therefore that same computation gives generators, and a bound on their num-
ber, for any subgroup of index 4 in a group given by two generators.

Proposition 5.6. The following elements generate K∗: γ1 (represented by
q1q2q1); γ0γ1γ0 (represented by q−12 q1q2) and γ−10 γ1γ

−1
0 (represented by q1q

−1
2 q−11 ).

The possible fourth generator turns out trivial.
Therefore, K∗ = 〈sh, q21 , q22〉 mod Q′′, and it contains 〈q22 , q23〉 mod Q′′ as an

index 2 subgroup: K∗ is the union of the 〈q22 , q23〉 mod Q′′ cosets of 1 and sh.

Proof. The Schreier construction finds the generators of the finite index sub-
group F † of the free group F using the symbols x (with decoration) for the gen-
erators of the free group and s for the selected coset reps. Then, running over the
s s and x s, you form all expressions sxs′ where you select s′ (uniquely) so that the
result is in the F †. Finally, you toss all those that tautalogically come out trivial.
That’s what we did to get the generators above.

To see that 〈sh, q21 , q22〉 is the same group just note that q21sh is represented by
q21(q−11 q−12 q−11 ) = q1q

−1
2 q−11 . Find the other generator of K∗ similarly.

Finally, the identity (q1q2q3)qi(q1q2q3)−1 = qi+1, with the subscript i written
mod 3, holds on Nielsen class representatives in general. Therefore, sh normalizes
〈q22 , q23〉 mod Q′′. That concludes the proof. �

Suppose S is a subset of a Nielsen class Ni, and G ≤ M̄4. We apply Princ. 5.7
to find braid orbits in the Nielsen classes under study when S = T`,±±,1−deg.

Principle 5.7 (1-degenerate). With notation as above, assume there is a braid
from any element in Ni to some element of S. Also, assume every element of M̄4

that braids between elements of S is in G. Then, the orbits of M̄4 on Ni are in
one-one correspondence with the orbits of S under G.

There is a one-one correspondence between braid orbits of T`,±±,1−deg under
K∗ and braid orbits on Ni(G`,C+32−32).
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Proof. Let Oggg (resp. Oggg,G be the braid orbit (resp. G orbit) of ggg ∈ S. If two
elements ggg1, ggg2 ∈ S have Oggg1 = Oggg2 , then there is a braid that connects ggg1 and ggg2.
So, this braid is in G: Oggg1,G = Oggg2,G. This finishes the first paragraph.

Lem. 5.2 and Lem. 5.5 gives a braid of any element of Ni(G`,C+32−32) to
T`,±±,1−deg. Prop. 5.6 shows K∗ consists of the elements that map any one element
of T±± into the same set. So, the orbits of T`,±±,1−deg under K∗ correspond to the
braid orbits on Ni(G`,C+32−32). �

We seek braid orbits on Ni(G`,C+32−32)rd by producing braids between el-
ements – with the same lift invariant – of T`,±±,1−deg. We can start with a 1-
degenerate with a particular lift invariant in T±± using Prop. 4.19. Then, apply
Prop. 5.6 to get new elements in T±±. Finally, for each of these apply Lem. 5.2 or
5.5 as appropriate to get new 1-degenerates. Eventually this process of forming K∗

chains on T`,±±,1−deg ends.

Remark 5.8. For ggg ∈ Ni(G`k+1 ,C+32−32) as in (5.5), a more general condition
than g1 = α0 in 1-degeneracy assumes g1 = vvv1α0, and vvv1, . . . , vvv4 are translates by
a fixed vvv′ of generators of a line (copy of Z/`k+1) in V`k+1 .

5.3. Characterizing H-M and double identity rep. orbits. Braid orbits
on Ni(G`,C+3−3)rd correspond to K∗ chains on T`,±±,1−deg (Rem. ??). Cor. 5.9

reveals much of that. As in (5.1), K` is `±1
6 for ` ≡ ∓1 mod 3. We use the

multiplicative notation for the lift invariant as in (4.10) with ζn = e2πi/n.

Corollary 5.9. The following table breaks T`,±±,1−deg into two types.

(5.15a) K`(`−1)
2 elements of T`,±±,1−deg are H-M (resp. shifts of H-M) reps.

(5.15b) Excluding (5.15a) there are K`(`− 1)2 elements in T`,+−+−,1−deg.

Suppose we know the following.
(5.16) The braid orbit containing a particular double identity rep. in-
tersects T`,±±,1−deg in K`(`−1) elements.

Then, we also know the following.

(5.17a) The elements of T`,±±,1−deg with trivial lift invariant are either H-M
or shift of H-Mreps.

(5.17b) The elements with a particular lift invariant fall in one braid orbit given
by a double identify rep. (with that lift invar. value).

Now take k ≥ 0 and ggg ∈ T±±. If s`k+1(ggg) = ζj
`k+1 , then, s`k+1(I2(ggg)) = ζ−j

`k+1 .

Proof. We make the count in (5.17a). For ` ≡ 2 mod 3, if for ggg, g2 is α−10 .

Then, g3 = vvv3α0, vvv3 ∈ V` \ {000} and g4 = g−13 . As in Lem. 4.11, there are `2−1
6

reduced classes from modding out by the action of α and sh2. These are all H-M
reps. and so have trivial lift invariant. Similarly, if g4 = α−10 , for which the resulting
Nielsen rep. is the shift of an H-M rep.

Now count the elements where g2 = vvv2α
−1
0 with vvv2 ∈ V` \ {000} and g4 = vvv4α

−1
0 ,

with vvv4 ∈ 〈vvv2〉 \ {000}. Our conditions exclude H-M and shift of H-M reps. Given
a particular vvv2 6= 000, there are `−1 choices for vvv4 6= 000 that are non-zero multiplies

of vvv2, for a total of (`2−1)(`−1)
6 (dividing out by the action of α0 and sh2). These

numbers agree with (5.15).
Now consider ` ≡ 1 mod 3. For the H-M case, avoid choosing vvv3 as one of

the 2`−1 elements that might be in eigenspaces for α, so there are (`−1)2 choices.
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Similarly for the complementary set, avoid taking vvv2 among those 2`−1 eigenvectors
of α, but then multiply those choices by the `−1 possible values in 〈vvv2〉 \ {000}.

Now assume (5.16) holds. Then, multiplying by the `−1 values of the lift
invariant, there are a total of K`(`−1)2 distinct elements in the braid orbits of
double identity elements, so they must include the complete set of elements in
(5.15b), which we now know would have nontrivial lift invariant. The only elements
left are the H-M and shift of H-M reps. listed in (5.15b), which we now know give
all classes with trivial lift invariant in T`,±±,1−deg.

Now we conclude the lemma. From (4.10),

s`k+1(I2(ggg)) = (ĝ4)−1(ĝ3)−1(ĝ1)−1(ĝ1)−1 = (s`k+1(ggg))−1.

This is equivalent to the last sentence of the lemma. �

We can use Prop. 4.19 to compute – from its entries – the lift invariant of any
element in the Nielsen class. An effective result follows by applying Lems. 5.2 and
5.5 by restricting how that works on 1-degenerate Nielsen reps. Use the notation
f(www) for the lift invariant of www = (x, y) as in (4.25). This is the z-value in the
Heisenberg group, so the additive form in Lem. 5.10 is correct.

To the notation simple, we restrict in Lem. 5.10 to calculating the lift invariant
of a 1-degenerate element. The same idea effectively calculates the lift invariant of
any element of the Nielsen class. We use I2(www) as in (5.8b).

Lemma 5.10. Assume vvv ∈ V` is not an α eigenvector. The lift invariant of

(5.18) αααvvv,m
def
= (α0, vvvα

−1
0 ,mvvvα0, (m−1)vvvα

−1
0 ) is f(−mvvvα)− f(−mvvvα−vvvα

−1

).

In particular, for each lift invariant value ζ ∈ (Z/`)∗ and each vvv ∈ V`, there is
a unique m for which αααvvv,m is in Nielsen class and has ζ as lift invariant. So, these
give all the 1-degenerate elements with that lift invariant.

Proof. Braids preserves the lift invariant. So, the lift invariant of

(5.19) (vvvα−1α−10 , α0,mvvvα0, (m−1)vvvα
−1
0 )

is the same. Between the 3rd and 4th terms of (5.19) juxtapose (−mvvvαα0,−mvvvαα
−1
0 ),

an element with its inverse. Conclude: this 6-tuple Nielsen class element has the
same lift invariant as does (5.18). Now, apply the shift to see the lift invariant as
the product of the lift invariants of two 3-tuples satisfying product 1:

(5.20) (α0,mvvvα0,−mvvvαα0) and, as in (5.12), I(vvvα−1α0, (m−1)vvvα0,−mvvvαα0).

Use that vvvα
−1

is −vvv−vvvα after conjugating the 2nd 3-tuple by −vvvα−1

. The result is

I2(α0,mvvv+vvvαα0,−mvvvα−vvvα−1α0).

Now apply formula (4.25) to establish the lemma.
For each given vvv as above, the expression

F (vvv,m)
def
= f(−mvvvα)− f(−mvvvα−vvvα

−1

)

is at most quadratic in m. By inspection, the degree 2 terms in m vanish. Therefore,
F (vvv,m) has degree 1 in m. Setting it equal to ζ therefore gives a unique solution
for m. The corresponding (vvv,m) gives a 1-degenerate Nielsen class element. We
already know all of them have the form αααvvv,m. �
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5.4. Braid orbits for Ni(G`,C+32−32)in, ` 6= 2, 3. Prop. 6.3 and Prop. 6.8
computes the braid orbits. These explicit results contend with all issues that have
to-date occurred in computing braid orbits.

5.4.1. Setup for finding braid orbits. The following is immediate. Suppose O is
a braid orbit on a Nielsen class, and β is a C preserving outer automorphism of G.
Then, applying β to O gives another braid orbit O′ in the same Nielsen class.

If ggg ∈ O has gj = gui , for some integer u and some i 6= j, then, applying β to ggg
gives ggg′ where g′j = (g′i)

u.

Definition 5.11. With the above notation, call β braidable on O if O = O′.

Lemma 5.12. The outer automorphism from S3, acting by conjugation on A3,
extends to an automorphism of H`k+1 . Its extension, though, sends commutators
in H`k+1 to their inverses.

Proof. With no loss take the automorphism β from S3 to be conjugation
by (1 2). Then, β maps α = (1 2 3) to its inverse. When we extend β to S3

(the special case n = 3 in §A.1) if, as in §4.2.1, we use A∗ =
(

0 1
−1 −1

)
for the

action of α = (1 2 3), then we can use
(

0 1
1 0

)
for the action of β. Extend β to

H`k+1 by sending M(x, y, z) to M(y, x,−z). Apply this formula to the commutator
expression in (4.9) to see the final statement. �

If ggg ∈ T±± (resp. T++−−) then sh2 (resp. q1q
−1
3 ) fixes its type. Otherwise, no

element of Q′′ fixes the type of ggg. In dealing with reduced classes, we may mod out
by the action of Q′′. Any configuration type is reduced equivalent to one with +
in the 1st position. We make that assumption.

Denote by OH-M,`k+1 (resp. OD-E,`k+1) those braid orbits in Ni(G`k+1 ,C+32−32)
containing H-M (resp. double identity) reps. From Prop. 4.19 there is no overlap
between OH-M,`k+1 and OD-E,`k+1 . For any ggg ∈ Ni(G`k+1C+32−32)in, even if it is
not the shift of an H-M rep., its reduction mod `t, 1 ≤ t ≤ k, may be.

Definition 5.13. Let iH-M,ggg be the maximal integer – its H-M index – such
that ggg mod `iH-M,ggg is the shift of an H-M rep. Set this to 0 if there is no such value.

When r = 4 we must consider the difference between the orbit widths of q2
(resp. γ∞; cusp widths) on inner (resp. reduced) Nielsen classes. This topic is
called q2 orbit shortening in [BFr02, §7.2.3]. The widths are the same on a given
q2 orbit if and only if Q′′ equivalences no two elements the orbit. In our case,
Prop. 5.14 shows there is no q2 orbit shortening. That puts less of a burden on
computing braid orbits, since it makes the easier to compute q2 orbits longer.

Proposition 5.14. For ggg ∈ (T±± ∪ T++−−) ∩Ni(G`k+1C+32−32)in, its middle
product order, ord(mp(ggg)), is `k+1−tH-M,ggg ; and its q2 orbit width is twice that.

For ggg ∈ T+−−+ ∩ Ni(G`k+1C+32−32)in, its q2 orbit width is 1 (resp. 6) if ggg is
(resp. is not) a double identity rep. with repeating elements at positions 2 and 3.

For all elements in H-M or double identity braid orbits, their q2 orbit widths
are also their cusp widths.

Proof. The calculation for T++−− is similar to that for T±±. We do just the
latter. Write a typical element in T±± as

ggg
def
= gggvvv2,vvv3 = (α0, vvv2α

−1
0 , vvv3α0, ·).
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Then, mp(ggg mod `t) is

vvv2 − vvvα2 + vvvα3 − vvv3, which has order `u for some u.

So, mp(ggg mod `t) has order 1 if and only if ggg mod `t is the shift of an H-M rep.,
or u ≥ t. For t ≤ u, mp(ggg) mod `t has order 1. That makes u = k+1−iH-M,ggg.

Prop. 2.10 gives the precise width, oggg, of the q22 orbit on ggg. It also tells when

oggg is also the q2 orbit width: when oggg is odd and (g2g3)
o−1
2 g2 has order 2. Since

|G`k+1 | is odd, the second condition fails. Otherwise, the q2 orbit width is 2oggg.
Now consider ggg ∈ T±∓. Here (Lem. 4.1) the order of the middle product is 3.

Then, the q2 orbit width is 6, from the above, unless 〈g2〉 = 〈g3〉 which implies we
have a double element rep. (as in (1.3)). Conclude by noting we have recorded the
middle product in each case.

Rem. 5.15 – which has notation we will use later – shows why there is no q2
orbit shortening (by Q′′). In the cases noted there, the contradictions are to the
assumptions under the conditions that the parameter k is even (since v/2 is odd)
or odd (since v/4 is not an integer). That concludes the proposition. �

Remark 5.15. [BFr02, §7.2.3] introduces notation for a γ∞ orbit of ggg in an
inner, reduced Nielsen class: cOu,v/m,∗. Here u is oggg, the q22 orbit width (as in
the proof of Prop. 5.14), v is the q2 orbit width, m is a factor indicating any orbit
shortening from Q′′ and * indicates a slot for extra decoration if necessary.

If the length of the Q′′ orbits is 4 (maximal), then the orbit shortening amounts
to finding if there is a 0 < k < v for which the inner classes of (ggg)qk2 is inner
equivalent to (ggg)q′ for some nontrivial q′ ∈ Q′′. [BFr02, Lem. 7.7] says if k is even,
then k = v/2. This is based on the action of Q′′ commuting with qk2 if k is even. If
k is odd, the lemma uses that Q′′ is a normal subgroup of H4, and conjugation by
q2 has a nontrivial action. So, for example, if q′ = q1q

−1
3 we find k = v/4.

5.4.2. Process for finding braid orbits. As in Cor. 5.9, T`,±±,1−deg is the 1-

degenerate elements in T±±. As in (5.1), K` is `±1
6 for ` ≡ ∓1 mod 3.

Prop. 6.3 shows the intersection of the orbits of H-M reps. with T`,±±,1−deg
consists of H-M and shift of H-M reps. The result depends on putting together the
following ingredients. Use the notation of (4.19) for H-M, shift of H-M and double
identity reps. For example, denote the H-M rep. (α0, α

−1
0 , vvvα0, vvvα

−1
0 ) by vvv,3,4ggg.

Denote the image of 〈q22 , q23〉 in M̄4 by K∗q2 . Cor. 5.9 says that to capture the

braid orbits in Ni(G`,C+32−32)rd we have only to show the items of (5.21) hold.

(5.21a) K∗ orbits of H-M reps. intersect T`,±±,1−deg entirely in H-M and shift

of H-M reps. and shq1q
−1
3 joins pairs of K∗q2 orbits (see (5.15a)).

(5.21b) In (5.21a) there are a total of K` braid orbits each of length 2(`−1).
(5.21c) As in (5.16), a double identity K∗ orbit – according to (4.21), the same

as a K∗q2 orbit – intersection with T`,±±,1−deg has length K`(`−1).

(5.21d) K∗ joins nothing in T`,±±,1−deg beyond (5.21b) and (5.21c).

For ` ≡ 2 mod 3, ggg′ ∈ T±± has a unique mi
def
= mi,ggg′ mod ` with

(5.22) (ggg′)q2mii ∈ T`,±±,1−deg, i = 2, 3 (Lem. 5.2).

For ` ≡ 1 mod 3, Lem. 5.5 gives (5.22) only for i = 3 (resp. i = 2) for
ggg′ = (α0, vvv2α

−1, vvv3α
−1, vvv4α

−1) if both vvv2 and vvv3 (resp. vvv3 and vvv4) are α eigenvectors.
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Definition 5.16. When ggg′ = (ggg)q2u2
2 , refer to 2u3

def
= 2u3,ggg′ as the exponent

complement to (ggg, q2u2
2 ); and ((ggg)q2u2

2 )q2u3
3 merely its complement, when 0 < u2 < `.

Use the same names with 2 and 3 switched in the various sub and super scripts.

In strings of computations we often use (ggg, q2u2
2 , q2u3

3 ), and variants, as clearer

notation for the complement ((ggg)q2u2
2 )q2u3

3 . Prop. 6.8 completes the description of
the level 0 braid orbits by showing (5.21c) and (5.21d).

6. Separating H-M and Double Identity orbits by lift invariants

This section has our main technical results on braid orbits for the Nielsen classes
Ni(G`k+1 ,C+32−32) Rem. 4.9 tells how the lift invariant in many alternating group
Nielsen classes gives us a precise listing of braid orbits. [, ] takes those alternating
group examples and corroborates the abstract results of [], in a way so explicit, that
it really makes you think that there might be a compelling statement RETURN

The hardest point in establishing the braid orbits on the level k = 0 Nielsen
classes is concluding that the elements with a given nontrivial lift invariant fall in
one braid orbit. There is a simplifying statement about 1-degenerate elements – of

form αααvvv,m
def
= (α0, vvvα

−1
0 ,mvvvα0, (m−1)vvvα

−1
0 ) as in (5.18), with m−1 not 0. Here is

the heart of Prop. 6.8, holding for a given braid orbit O restricted to T+−+−.

(6.1a) In the Nielsen class with no equivalence, each vvv ∈ V`, not an α eigen-
vector, appears in O as an element αααvvv,m exactly once.

(6.1b) There are exactly K` reduced Nielsen classes corresponding to a given
value of m−1 ∈ (Z/`)∗.

Prop. 6.3 describes the orbits of H-M reps. Then, Prop. 6.5 shows (6.1) holds,
and computes the complements of the elements.

6.1. 1-degenerate elements with trivial lift invariant. First we consider
the H-M and shift of H-M elements. Recall Def. 5.1 for K`.

Lemma 6.1. The argument just before Lem. 4.1 shows there are K`(`−1)`2k

reduced inner H-M reps. Applying sh2 maps gggvvv2,vvv3 to ggg−vvv2,−vvv3 . It preserves
T`k+1,±±,1−deg.

If ggg ∈ T`k+1,±±,1−deg is (resp. is not) an H-M rep., then its q23 orbit has length 1

(resp. `k+1). Further, there is at most one 1-degenerate Nielsen rep. in this orbit.

According to, there are `4−1
2 reduced Nielsen reps. in the union of all double

identity and H-M braid orbits. We can count these by taking the reduced elements
in T±± and multiplying by 3.

Therefore the totality of reduced classes, N1, represented by applying (iterates

of) q23 to 1-degenerate Nielsen reps. is (`2−1)(1+`2)
6 . Multiply by 3 to count the

distinct reduced Nielsen classes, N2, from adding to N1 the classes from applying
q2 and q3 to N1. The result is c`

2 , as in Lem. 4.12.

Proof. The set of reduced elements of T±± are mapped to reduced elements,
respectively, in T++−− (resp. T+−−+) by q3 (resp. q2). That gives the second
sentence of the first paragraph.

If ggg ∈ T+−+−, then the effect of q23 on it is by conjugating (g3, g4) by powers
of g3g4. Calculate:

g3g4 = vvv3−vvvα
−1

3 +vvvα
−1

4 −vvv4 = (vvv3−vvv4)1−α
−1

.
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So long as vvv3 6= vvv4 (that is ggg is not an H-M rep.), then no nontrivial iteration of
1−α−1 maps vvv3−vvv4 into 〈vvv3−vvv4〉. Further, since all these elements have the same
first two entries, they are reduced inequivalent to each other.

There are (`2−1) nonzero choices for vvv2. For any one of these there are ` choices
for vvv3 that give 1-degenerate elements in T±±. If vvv2 = 000, then there are (`2−1)
choices for vvv3 that give 1-degenerate Nielsen reps. in T±±. In each case divide these
numbers by 6 to get the corresponding count of the reduced Nielsen classes, but
then consider this set and the application of q2 and q3 to get a total count of assured
reduced Nielsen classes equal to c`

2 . �

RETURN

Lemma 6.2. If you apply q1q
−1
3 to an H-M rep. wwwggg, and then apply sh, you get

the shift of an H-M rep., also in T`k+1,±±,1−deg. That gives `2−1
3 1-degenerate reps.

Similarly, for ` ≡ 1 mod 3, you get (`−1)2−1
3 1-degenerate reps. in H-M orbits this

way.
Also, sh q1q

−1
3 sends an H-M rep. shift to an H-M rep. (in T`k+1,±±,1−deg).

These give the precise ways sh q1q
−1
3 or q1q

−1
3 sh map elements of T`k+1,±±,1−deg

into T`k+1,±±,1−deg.

Proof. The effect of sh2 on gggvvv2,vvv3 is to send it to

(α0, vvv4−vvv3α
−1
0 ,−vvv3α0, vvv2−vvv3α

−1
0 ).

Use that vvv2 − vvv3 + vvv4 = 000 to conclude the first statement. The next statement
is also a simple direction calculation except the last sentence. That will follow if
q1q
−1
3 applied to a 1-degenerate

(6.2) vvvggg = (α0, vvvα
−1
0 ,m3vvvα0,m4vvvα

−1
0 ), neither H-M nor the shift of an H-M rep.,

is not 1-degenerate. The conditions are m4 6= 0, vvv is not an eigenvector for α and
1−m3 +m4 = 0. It suffices to show that this applies to

(q1q2q3)−1q1q
−1
3 = (q3q2q3)−1

or its inverse, q3q2q3, equal to Q2,3 = q2q3q2 as a braid. Apply Q2,3 to vvvggg to get

(α0, •, vvvα−1−(1−m3)vvv
α0, vvvα

−1
0 ).

As vvvα
−1

and vvv span different subspaces, the result can’t be 1-degenerate. �

RETURN 02/03/14

Proposition 6.3 (Precise H-M orbits). From (4.20), sh q1q
−1
3 toggles H-M

and shift of H-M reps. The complement of (vvv,3,4ggg, q
2u2
2 ) (resp. (vvv,2,3ggg, q

2u′3
3 )) is

(6.3) (vvv,3,4ggg, q
2u2
2 , q2u3

3 ) (resp. (vvv,2,3ggg, q
2u′3
3 , q

2u′2
2 ), u3 ≡ (3u2)−1 mod `

(resp. u′2 ≡ (3u′3)−1 mod `) a shift of an H-M (resp. H-M) rep.
That establishes (5.21a).

For 1 < u2 < `, the complement of (vvv,3,4ggg, q
2u2
2 ) is the same as for (vvv,3,4ggg, q

2`−2u2
2 ).

For any vvv ∈ V`, not an α eigenvalue, 1-degenerates in the braid orbit of vvv,3,4ggg
are the 2(`−1) elements tvvv,3,4ggg, t ∈ (Z/`)∗ and their shifts. That establishes (5.21b).
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Proof. To show (6.3) we produce the complement of (vvv,3,4ggg, q
2u2
2 ):

(α0, u2(vvvα−vvv)α
−1
0 , vvv+u2(vvvα−vvv)α0, vvvα

−1
0 ).

The product of the 3rd and 4th entries is u2(vvvα−vvv)−u2(vvv−vvvα−1

). Since vvv+vvvα+vvvα
−1

is 000, this gives −3u2vvv. The effect, therefore of applying q2u3 is to change the 4th
entry to vvv−3u2uvvvα

−1
0 . Choose u3 so that

1− 3u2u3 ≡ 0 mod `, or u3 ≡ (3u2)−1 mod `.

The other case of (6.3) is similar.
The complement (vvv,3,4ggg, q

2u2
2 , q2u3

3 ) is

(6.4) (α0, u2(vvvα−vvv)α
−1
0 , u2(vvvα−vvv)α0, α

−1) :

the same as (vvv,3,4ggg, q
2`−2u2
2 , q2u3

3 ), precisely because u22 ≡ (`−u2)2 mod `.
Prop. ?? says that any chain from vvv,3,4ggg to another element ggg2 ∈ T`,±±,1−deg is

1-degenerate. So, to understand what in T`,±±,1−deg is in the braid orbit of vvv,3,4ggg,
from the above we have only to iterate twice what (6.3) gives.

The first iterate gives (6.4), which is www,2,3ggg with www = u2(vvvα−vvv). The second

iterate (www,2,3ggg, q
2u′3
3 , q

2u′2
2 ) is

(α0, α
−1
0 , u′3(www−wα

−1 )α0, u′3(www−wα
−1 )α

−1
0 ).

The subscripts on the 3rd and 4th entries are

u′3u2(vvvα−vvv−(vvvα−vvv)α
−1

) = 3u′3u2vvv.

The result is that 1-degenerate chains of length 2 applied to starting at vvv,3,4 end
up back at tvvv,3,4ggg running over all t ∈ (Z/`)∗, passing length 1, 1-degenerate chains
of elements of form www,2,3ggg. By their form, any even length 1-degenerate chains will
contribute nothing beyond the length 2 chains. This establishes (5.21b) by applying
the same division by 6 to k+1 elements that are in V` \ {000}/(Z/`)∗ that appears in
our previous equivalences from modding out by the action of sh2 and 〈α〉. �

6.2. vvv,1,3ggg orbits. For vvv,1,3ggg to be a Nielsen class element requires vvv is not an
α eigenvector. Still, the formulas below apply to ` ≡ 2 mod 3, except, in lieu of
Prop. 5.6, there won’t be a complement for i = 2 (resp. i = 3) precisely when

(6.5) in the 2nd (resp. 4th) entry, wwwg, of (vvv,1,3ggg)qu2
2 (resp. (vvv,1,3ggg)q

u′3
3 ), www is

an α eigenvector.

Lem. 6.4 computes how q2u2
2 q2u3

3 and q
2u′3
3 q

2u′2
2 act on vvv,1,3ggg. It also shows

precisely when (6.5) holds.

Lemma 6.4. The action of q2u2
2 (resp. q

2u′3
3 ) on vvv,1,3ggg gives:

(6.6)
(α0, u2(vvv−vvvα)+vvvα

−1
0 , u2(vvv−vvvα)α0,−vvvα

−1
0 )

(resp. (α0, vvvα
−1
0 , u′3(vvv−vvvα

−1 )α0, u′3(vvv−vvvα
−1 )−vvvα

−1
0 )).

There is a (q2, u2) (resp. (q3, u
′
3)) where (6.5) holds if and only if

(6.7) ` = 1 mod 3 and u2(resp. u′3) satisfies 3u2+3u+1(resp. 3u2−3u+1).

Note: (6.7) is independent of vvv. The effect of q2u3
3 (resp. q

2u′2
2 ) on the respective

terms of (6.6) appears in (6.8) and (6.9).

(6.8)
(α0, (2u2+1)vvv+u2vvvα

−1α−10 ,

(u3(3u2+1)+2u2)vvv+(u2−u3)vvvα
−1α0, (u3(3u2+1)−1)vvv−u3vvvα

−1α−1).
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(6.9)
(α0, (1+2u′2−3u′2u′3)vvv+u′2vvvα

−1α−10 ,

(2u′2+u
′
3−3u′2u′3)vvv+(u′2−u′3)vvvα

−1α0, (u′3−1)vvv−u′3vvvα
−1α−10 ).

Proof. Easily check (6.6). If u2(vvv−vvvα)+vvv = www is an α eigenvector, then

u2(2vvvα+vvv)+vvvα = m(u2(vvv−vvvα)+vvv), using vvv+vvvα+vvvα
−1

= 000.

Independence of vvv and vvvα implies mu2+2u2+1 = 0 and mu2+m − u2 = 0. Add
u2m to both sides to conclude 2u2+1 = m−u2, or m = 3u2+1 and 3u22+3u2+1 = 0.

There can be no complement if www is an α eigenvector since applying q2u3
3 to

(vvv,1,3ggg)qu2
2 wouldn’t change that the result could not be 1-degenerate.

Rewrite 3u2+3u+1 ≡ 0 mod ` as 3(u+ 1
2 )2+ 1

4 ≡ 0. This has a solution u

mod `, if and only if −3 is a quadratic residue mod `. As (−1)(
3−1
2 )( `−1

2 ) = (−1)
`−1
2 ,

quadratic reciprocity shows having a solution is equivalent to

(−1)
`−1
2 (−1)

`−1
2

( `
3

)
=
( `

3

)
= 1.

Clearly, ` is a square mod 3 if and only if ` ≡ 1 mod 3.
Conversely, suppose u2 = u is a solution of 3u2+3u+1. Then, the computation

above inverts giving www as an α eigenvector with eigenvalue m = 3u+1 (can’t be 0).
Similarly, consider the other case of (6.5) with the critical possibility that

www = u′3(vvv−vvvα−1

)−vvv is an α eigenvector. Analogously, the eigenvalue would satisfy
2mu′3 = m−u′3 = 2(u′3 − 1) or m = 3u′3−2 and 3(u′3)2−3u′3+1 = 0.

With www = u2(vvv−vvvα) = 2u2vvv + u2vvv
α−1

, apply q2u3
3 to (6.6):

(6.10) 7→ (α0,www+vvvα
−1
0 , u3((www−wwwα−1 )+(vvv−vvvα−1 ))+wwwα0, u3((www−wwwα−1 )+(vvv−vvvα−1 ))−vvvα

−1
0 ).

Also, www−wwwα−1

is u2(vvv−vvvα−vvvα−1

+vvv) = 3u2vvv. Rewrite (6.10) so that every

subscript is a linear combination of vvv and vvvα
−1

. This gives (6.8).
Start again with vvv,1,3ggg, but this time find the action of

q
2u′3
3 7→ (α0, vvvα

−1
0 , u′3(vvv−vvvα

−1 )α0, u′3(vvv−vvvα
−1 )−vvvα

−1
0 ).

With www′ = u′3(vvv−vvvα−1

), apply q
2u′2
2 to (α0, vvvα

−1
0 ,www′α0,www′−vvvα

−1
0 ):

(6.11) 7→ (α0, u′2((vvv−vvvα)+((www′)α−www′))+vvvα
−1
0 , u′2((vvv−vvvα)+((www′)α−www′))+www′α0,www′−vvvα

−1
0 ).

Also, (www′)α−www′ is −3u′3vvv. Rewrite (6.11) with every subscript a linear combination

of vvv and vvvα
−1

to get (6.9). �

We now show (6.1) holds. That will end with showing each nontrivial lift
invariant value in (Z/`)∗ distinguishes a unique braid orbit on Ni(G`,C+32−32).

Proposition 6.5. Excluding (6.7) – so a complement exists – the complement
in each case of (6.6) is independent of vvv.

Given vvv′ ∈ V`, that is not an α eigenvector, Lem. 5.10 uniquely determines
m = mvvv′ so that αvvv′,mvvv′ (equation (5.18) ) with the same lift invariant as vvv,1,3ggg.
Thus, there is exactly one braid orbit on Ni(G`,C+32−32) with a given nontrivial
braid invariant. This completes are identification of all level k = 0 braid orbits.

Proof. In the first case of (6.6), the goal given u2, is to find what value of u3
makes (vvv,1,3ggg, q

2u2
2 , q2u3

3 ) 1-degenerate.
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Then, (6.8) being 1-degenerate is equivalent to there is an s for which:

s((2u2+1)vvv+u2vvv
α−1

) = (u3(3u2+1)−1)vvv−u3vvvα
−1

.

Given u2 6≡ 0 mod `, find (s, u3) by equating the coefficients ( mod `) of vvv and vvvα
−1

on both sides. From the coefficients of vvvα
−1

: s = −u3

u2
. From the coefficient of vvv:

(6.12) −u3(2u2+1) ≡ u2(u3(3u2+1)−1) or u3 ≡
u2

3u22+3u2+1
mod `.

Given u′3, we find u′2 for which (6.9) is 1-degenerate: Find an s′ with

s′((1+2u′2−3u′2u
′
3)vvv+u′2vvv

α−1

) = (u′3−1)vvv−u′3vvvα
−1

.

Given u′3 6≡ 000 mod `, find (s′2, u
′
2) by equating the coefficients ( mod `) of vvv and

vvvα
−1

on both sides. From the coefficients of vvvα
−1

(resp. vvv): s′ =
−u′3
u′2

(6.13) (resp. u′2(u′3−1) ≡ −u′3(1+2u′2−3u′2u
′
3) or u′2 ≡

u′3
3u′23 −3u′3+1

mod `.)

For clarity: Translating the notation (vvv′,mvvv′) to that of our first go around

above would have vvv′ = (2u2+1)vvv+u2vvv
α−1

and mvvv′ = s+1.
Now we show, one braid orbit contains all elements with a given prime to `

lift invariant. Prop. 4.19 produces vvv,1,3ggg achieving any such lift invariant: we can
apply braids to that vvv,1,3ggg.

To find the complete braid orbit of vvv,1,3, Princ. 5.7 says we need only all elements
of T`,±,±,1−deg braid equivalent to it. Suppose we braid to the (5.5) standard form:

(6.14) gggvvv2,vvv3 = (α0, vvv2α
−1
0 , vvv3α0, vvv4α

−1
0 ) : vvv2 or vvv4 any vvv′, not an α eigenvector.

As in Proposition’s statement, if we can do this were gggvvv2,vvv3 is 1-degenerate
and vvv′ is otherwise arbitrary, then we have the complete braid orbit. If vvv′ = vvv2,
construct the 1-degenerate target by applying a power of q3, as in Lem. 5.2 or
Lem. 5.5. In the latter case, apply q−13 q−12 first to put vvv′α

−1
0 in the 2nd position,

reverting to the 1st case.
Then, we have filled out all possibilities by showing: we can braid vvv,1,3ggg to an

element of form (6.8) or of form (6.9) where vvv′α
−1
0 appears in some entry.

This is done if vvv′ appears as

(6.15a) (2u2+1)vvv+u2vvv
α−1

or (u3(3u2+1)−1)vvv−u3vvvα
−1

for some (u2, u3); or as

(6.15b) (1+2u′2−3u′2u
′
3)vvv+u′2vvv

α−1

or (u′3−1)vvv−u′3vvvα
−1

for some (u′3, u
′
2).

Check with (6.15a). For any b = u3 6≡ 0 mod ` and a, find u2 in a = u3(3u2+1)−1,

to achieve vvv′ = avvv+ bvvvα
−1

. All that we are missing are those vvv′ where b ≡ 0 mod `.
But if we apply apply conjugation by α to our Nielsen class representatives, we get
representatives for vvv′ of the form avvvα + bvvv, and with a = 0 we have the nontrivial
multiples of vvv. This concludes the proof. �

In Lem. 6.6, the expression (3u2+3u+1)−1 mod ` really denotes (3u2+3u+1)`−2,
which will be 0 when evaluated at a zero of 3u2+3u+1 (rather than∞). RETURN

Lemma 6.6. There is a solution of 3u2+3u+1 ≡ 0 mod ` (` > 3) if and only
if ` ≡ 1 mod 3.
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Principle 6.7 (Coalescing). We accept that the number of reduced inequivalent
double identity elements with a given lift invariant is K` based on these being the
natural covers from coalescings on the boundary that are in Ni(G`,C3

3
) and have

the same lift invariant as prior to coalescing.

6.3. Counting the 1-degenerate reps.

Proposition 6.8. There are K`(`−1) 1-degenerate elements in a double iden-
tity K∗q2 orbit. That establishes (5.21c) and (according to Cor. 5.9) (5.21d), finishing

the list of properties (5.21) that describe level 0 of the braid orbits of Ni(G`,C+32−32)rd.
So, all elements of a given nontrivial lift invariant fall in one braid orbit.

Proof. Now consider a double identity element of form vvv,1,3ggg (as in (4.19b)).
As above we consider 1-degenerate chains, starting with one of length 1. For this
we compute the complement of

(vvv,1,3ggg, q
2u2
2 ) = (α0, vvvα

−1, α0,−vvvα
−1).

�

Remark 6.9. Explain other cases where the Nielsen class and lift invariant
didn’t distinguish braid orbits.

6.4. Setup for `k+1, k ≥ 1. Here we deal with the lift invariant for level
k ≥ 1. Instead of saying ‘nontrivial lift invariant’ (or orbit), we now refer to an `u`′

lift invariant, and `u`′ orbits, where the integer u – leave it out if it is 0 – indicates
the exact power of ` dividing the value of the lift invariant.

6.4.1. Extending to k > 0. Lem. 5.2 and Lem. 5.5 allowed us to apply the
1-degenerate Princ. 5.7. We need to extend that to higher values of k.

6.4.2. Finding the orbits. The last line of Lem. 4.12 counts the H-M and double
identity reps. at level k above such reps. at level 0. Inductively, `2 of each type at
level k + 1 ≥ 1 are above the corresponding type at level k ≥ 0. To structure the
braid orbits at level k, we will inductively adjust (5.2) to list the level k+1 braid
orbits.

(6.16a) Lift invariant 0 orbits are H-M. Above each k level H-M are ` level k+1
H-M orbits. Each contains ` H-M reps. above any level k H-M rep.

(6.16b) Nontrivial lift invariant orbits are distinguished by that invariant. They
are double identity if and only if they are `′; then they are K∗q2 orbits.

Parallel to (5.3) we have these clarifying points. Recall the two types – vvv,1,3ggg
and vvv,2,4ggg – of double identity elements.

(6.17a) Elements of (6.16a) in T`k+1,±±,1−deg consist precisely of H-M and shift
of H-M reps.

(6.17b) In (6.16b), above any double identity element (either type) at level k,
each of the ` distinct `′ orbits contains ` double identity elements.

(6.17c) In each `u+1`′ orbit, u ≥ 0, above any level k element in T`k,±±,1−deg
(in an `u`′ orbit), there are `2 elements in T`k+1,±±,1−deg.

§6.4.3 explains the orbits for ` = 5 and k = 1. It emphasizes the four 5 · 5′
(` = 5, u = 1) orbits to clarify the transition between u = 0 and u = 1 in (6.17c).
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6.4.3. ` = 5 and k = 1 example. Since K5 = 1, the reduced braid orbits for
` = 5, k = 0 fit the statements of (5.2a) and (5.2b): one H-M orbit with 4 each of
H-M and shift of H-M reps.

Also, each (of four) double identity orbits intersects T5,±±,1−deg in (5−1) = 4
elements, but it has just 1 (= K5) double identity of each type.

There are then three types of level k = 1 orbits whose intersections with
T52,±±,1−deg consist of these elements.

(6.18a) A la (6.17a): 5 H-M orbits, each with5 ·4 H-M (resp. shift ofH-M) reps.
(6.18b) A la (6.17b): Twenty (= ϕ(52)) 5′ orbits, each with 5 ·42 = 80 elements

in T52,±±,1−deg.
(6.18c) A la (6.17c): Four orbits of nontrivial 5 · 5′ lift invariant. Each with 52

elements in T52,±±,1−deg over any H-M level 0 element.

That’s a total of 5 · 2 · 20+20 · 4 · 5 · 4+4 · 8 · 52 = 2600 elements in T52,±±,1−deg.
Use the notation (4.19). There is a similarity between two types of elements:

(6.19a) vvv,vvv′,1,3ggg = (α0, vvvα
−1
0 , 5vvv′α0,−vvv+5vvv′α

−1
0 ) in a (6.18b) orbit over the dou-

ble identity element vvv mod 5,1,3ggg; and

(6.19b) vvv,vvv′,3,4ggg = (α0, 5vvv′α
−1
0 , vvvα0, vvv−5vvv′α

−1
0 ) in a (6.18c) orbit over an H-M

element vvv mod 5,3,4ggg.

In both cases, vvv mod 5 is determined; and being in T52,±±,1−deg implies vvv′ = mvvv
mod 5, m ∈ Z/5. in case (6.19a) (resp. (6.19b)) there are then, 5 · 52 (resp. 4 · 52,
because m = 0 would give an H-M rep. not included in these orbits) choices of
the pairs (m,vvv′) subject to one further constraint: the elements have a specific lift
invariant value corresponding to their orbit.

7. Frattini monodromy and Interpreting moduli Components

7.1. Are braid components ever accidental? Discuss the different braid
components, including those whose lift invariant is ` divisible.

7.2. The Nielsen class Ni(G`k+1 ,C+32−32) for ` = 2 and k > 0.

7.3. Values of r that work on example (1.2c).

Definition 7.1 (Eventually `-Frattini).

Appendix A. Notation

A.1. Group notation. An n dimensional group representation of a group G
over a field K is a homomorphism T : G→ GLn(K). It’s character is the function
g ∈ G 7→ t(T (g)): t denotes the trace of the matrix. The symmetric group on
{1, . . . , n}, Sn, natural embeds in GLn(Q) by mapping a permutation g(i) = ji,
i = 1, . . . , n, to the matrix with 1 in all (i, ji) positions, 0 elsewhere. We can apply
t to a permutation representation. The result is the number of fixed points of T (g).

If you mod out the center (diagonal matrices) of GLn(K), you get PGLn(K).
Similarly, there is PSLn(K), the quotient of the matrices of determinant 1 over the
field K by its diagonal matrices.

An elementary abelian group of order 4 is a Klein (or Klein 4-) group. The
dihedral group of order 2d, denoted Dd, is characterized by being generated by two
involutions αi, i = 1, 2, with ordα1α2 = d. Another characterization is that it has
generators 〈α1, β〉 with α1βα

−1 = β−1, so β = α1α2 in the 1st formulation.
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An subset in a group G is called `′ if the order of the elements in it is prime to
`. We can replace ` by any integer for this definition. For example: We can speak
of an `′ conjugacy class.

Suppose a group G is a semidirect product of a group H that is a quotient of G,
and the abelian kernel M of that quotient. It is convenient and memorable to write

the elements in M ×sH in the form
(
h 0
m 1

)
with h ∈ H and m ∈ M . Then, the

standard matrix multiplication of g1 =
(
h1 0
m1 1

)
and g2 =

(
h2 0
m2 1

)
symbolically

gives
(

h1h2 0

m
h2
1 +m2 1

)
. From this we take the semidirect product multiplication,

which is compatible with a right-hand action of H on M .

Appendix B. Frattini comments

B.1. Precision on the Frattini module construction. [Fr06, §2.1] has an
exposition on this topic, mainly because it was not classical restricting to one prime
at a time, though it is based on [Br82]. An `-representation cover, ψ : R → G, of
a finite group G is a cover with kernel a central ` extension of G with ker(R → G
isomorphic to H2(G,Z`). Such a cover is maximal in the sense that there is no
larger cover ψ′ : R′ → G with kernel a central ` extension that factors through ψ.
Such a representation cover always exists. Main points:

(2.1a) ψ is an `-Frattini cover; so it is a quotient of the universal `-Frattini
cover of G.

(2.1b) ψ is unique if and only if G is `-perfect: G = G0 has no Z/` quotient.
(2.1c) Its maximal Z/` quotient is a quotient of G`,1 → G0.

Then, the Frattini module M(G, `) is a quotient of the natural Z/`[G] module
induced from inducing Ker(ψP`,1) from NG(P`) to G. Nailing the exact module
precisely takes advantage of two cohomological facts: M(G, `) is indecomposable,
and H2(G,M(G, `)) is 1-dimensional.

Remark B.1.

Proof. The characteristic Frattini cover ψ1,0 : G1((Z/p)2) → (Z/p)2 factors
through ψab = (Z/p2)2 → (Z/p)2 (modding out by p). The nontrivial element of
Z/2 acts by multiplication by −1 on (Z/p2)2. In fact, ψab is the maximal abelian
extension through which ψ1,0 factors.

Loewy layers of any (Z/p)2×sZ/2 module are copies of 111 and 111−. So, any proper
extension of ψab through which ψ1,0 factors, also factors through ψ′ : H → (Z/p)2
with ker(ψ′) of dimension 3 and H not abelian.

We choose the Heller construction (in [?, Part II], for example) to describe the
characteristic module

M0((Z/p)2 ×sZ/2) = ker(G1((Z/p)2 ×sZ/2)→ (Z/p)2 ×sZ/2)(p odd).

Here is the rubric for this simple, though still nontrivial case. Suppose G0 is p-
split: G0 = P ∗ ×sH with (|H|, p) = 1 and P ∗ the p-Sylow, as in our case. Use the
Poincaré-Birkhoff-Witt basis of the universal enveloping algebra (from the proof
of Lem. ??) to deduce the action of H from its conjugation action on P ∗. In our

case, the `th Loewy layer of Z/p[P ∗] def
= P111, with P ∗ = (Z/p)2 consists of sums of
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111 (resp. 111−) if ` is even (resp. odd) from 0 to 2p− 2 (resp. 1 to 2p− 1). That is the
projective indecomposable module for 111.

Now list the Loewy display for the projective indecomposable modules for G0

by tensoring the Loewy layers of the projective indecomposables for 111 with the semi-
simple modules for H [?, p. 737]. In our case, the semi-simples for Z/2 are just 111
and 111− giving P111 and P111− as the projective indecomposables, the latter having the
same look as the former except you switch the levels with 111 with those with 111−.

Finally, M0 is Ω2
def
= ker(ψ2 : P111− ⊕ P111− → ker(P111 → 111)) with this understanding:

ker(P111 → 111) has at its head 111−⊕111− and ψ2 is the map from the minimal projective
(P111− ⊕ P111−) that maps onto ker(P111 → 111). �

B.2. The Schur multiplier for (Z/`k+1)2 ×sZ/3. [?, Cor. 5.7] shows that
V2,0 ×sZ/3 (which happens to be A4), has

0→ V2,0 → V2,0 ⊕ 1112

for its Loewy display, where 111` is the trivial Z/`[G] module for any G.

Definition B.2. Let J`,G be the intersection of the maximal left (or right)
ideals of Z/`[G]: This is the Jacobson radical of the group ring. The maximal
semi-simple quotient of any module M is M/J`,GM , and it is 1st Loewy layer.
Then, proceed inductively, applying this with M/J`,GM replacing M . We also
need info on the nonsplit subquotients which are obtained from arrows between the
layers. [Fr06, App. A.2] does an exposition on this.

Jenning’s Theorem gives Loewy layer dimensions as coefficients of a Hilbert
polynomial HG(t) when G is a `-group. In that case, since the irreducibles are just
111`, we only need the arrows between layers.

[Fr06, Lem. A.3] says H(Z/`)n(t) = ( 1−t`
1−t )n. Then, the respective Loewy layers

of Z/`[(Z/`)2] have dimensions 1, 2, . . . , `, `−1, . . . , 1. If x1, x2 are generators of

(Z/`)2, then the symbols xu1x
`−u
2 , represent generators of copies of 111` at Loewy

layer o. Arrows from 111` associated to xu1x
`−u
2 go to copies of 111` associated to

xu1x
`−1−u
2 and xu−11 x`−u2 under the above constraints. Most of this was seen using

the Poincare-Birkoff-Witt basis for the universal enveloping algebra of the group
ring [?, p. 88]. Now we must add the action of Z/3.
§B.1 reminds of the Loewy display of the module MG

`k+1
, which we denote by

M`k+1 when there is no confusion. Cor. B.3 shows that, for each `k+1, the maximal
Z/`k+1 quotient of the Schur multiplier is Z/`k+1.

Corollary B.3. The `-Frattini module M` of G` has one copy of 111G` at its
head. The extension of V` defined by 111G` is the Heisenberg group to which the action
of Z/3 on G` extends G`.

Appendix C. Detecting a MT

Appendix D. Some comments on using the program [GAP00]

On occasions in this paper we have applied the computer program [GAP00]
to guide us. Mostly that has been to assure, as in §3.1, there is a chance to divine
the braid orbits on Nielsen class elements. We are using ‘standard’ mathematical
proofs, and not relying on [GAP00] as the final arbiter. As in [BFr02], that assures
we understood the nature of components and their cusps. Without exception, in
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[BFr02], this exposed solid reasons why Schur multipliers of alternating groups
where producing interesting phenomena.

If, however, we open up the applications, of braid actions on objects like Nielsen
classes, we can’t expect to take applications to completion within a reasonable time
frame without occasionally moving on with a [GAP00]-identified phenomena that
momentarily looks accidental. Especially, since we expect this often for families of
covers of low numbers of branch points.

A slightly different problem occurs with certain portions of group theory where
attempts at classification are out of the question for even group theorists, much
less for our applications. For example, §2.1.3 suggests that we understand the
characteristic extension of a finite group G reasonably well. That hides delicate
points that surely would require [GAP00] to complete if we were to take other
Frattini cases of MTs for, say, all n ≡ 5 mod 8 explicitly.

There is documentation of, say, [GAP00] running to many pages, and there
is the hope that as it is used, it proves its reliability. [Da12] discusses the imple-
mentation rather than the mathematics of the algorithms that lie behind programs.
This brief article discusses a publication format – “literate program ”, suggested
by D. Knuth – that would validate (in real time, say, during a talk) that a result
running under a computer program is accurate and can be checked in a specified
time. The article even suggests that this downloading of “literate documents” would
validate our checking of citation trails. While the article speaks in terms of com-
putational mathematics, so much of mathematics – including the Loewy modules
that arise in considering `-Frattini covers – is a black box to most mathematicians,
even if they agree to the types of applications we include below. In a 2-page,
non-technical article, [Da12] suggests that there is a need for a computational
mathematics “proof” standard under the heading of literate software. I would in-
clude the many places where space limitations are claimed for non-documentation
of crucial calculations, even as I’m aware this is asking for a great deal.

Appendix E. Spaces in the split case

Consider any groupG and any collection of conjugacy classes C′ whose elements
generate G. We restrict to classes C with support in C′ with these constraints.

(5.1a) Ni(G,C) must be nonempty (or the Hurwitz spaces are empty).
(5.1b) C must be Q-rational.
(5.1c) Geometric properties – preserved by GQ – must separate braid orbits.

Property (E.1b) is necessary and sufficient that the Hurwitz space have Q as defi-
nition field [FrV91, Main Thm.]. It is, however, the components that we need over
Q, and the much harder check of (E.1c) assures that. Here we seek `-adic represen-
tations comparable to those from the series of modular curves {X1(`k+1)}∞k=0 as `
varies in the split case of (1.11.2).

We consider building on An, as in the Frattini case where

Gn,`,0 = (Z/`)n/〈(1, . . . , 1)〉 ×sAn
def
= Vn ×sAn,

by taking n = 5. The first test, (E.1a), is that Ni((G5,`,0,C34) is nonempty. We
find now that this is not so.

Lemma E.1. For all primes ` not dividing n, every āaa ∈ Vn has a unique repre-
sentative (a1, . . . , an) where

∑n
i=1 ai = 0 mod `. In particular, for n = 5, and all

` 6= 3, 5, Ni(G5,`,0,C34) is empty.
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Proof. Given a representative a1, . . . , an for āaa, since ` is prime to n, there is
a unique m mod ` for which

∑n
i=1 ai ≡ m · n mod `. The desired representative

is (a1, . . . , an) − m(t, . . . , 1). So, for ` not dividing n, we may replace Vn by the
submodule of (Z/`)n consisting of elements whose entries sum to 0.

Now we show the Nielsen class Ni(G5,`,0,C) is empty. Use the semidirect
product multiplication in §A.1. Given g ∈ A5, the elements in G5,`,0 above g in the
conjugacy class of g have the form

{
(

1 0
aaa 1

)(
g 0
000 1

)(
1 0
−aaa 1

)
}aaa∈V5

.

We know H4 is transitive on Ni(A5,C34). So, if Ni(G5,`,0,C34) is nonempty
there are elements in it lying above any given element in Ni(A5,C34). Choose
the H-M rep. gggH-M = (g1, g

−1
1 , g2, g

−1
2 ); as in Lem. 2.9, where g1 = (1 2 3) and

g2 = (4 5 6). With no loss, assume a representative above it has the form

ggg′
def
= ((000, g1), (aaa1, g1)−1), (aaa2 + ccc, g2), (ccc, g2)−1),

for some aaa1 of form aaag1 −aaa and aaa2 and ccc of form aaag2 −aaa. Write aaag1 −aaa explicitly to
see its 4th and 5th entries are 0. Similarly, the 1st and 2nd entries of aaag2 −aaa are 0.

Now apply the product-one condition, (1.4b). Conclude: −(aaa1)g
−1
1 + (a2)g

−1
2

is 000. So, the 4th and 5th (resp. 1st and 2nd) elements of this sum are 0. That
means aaa1 = (a′, a′, a′, 0, 0) and aaa2 = (0, 0, a′′, a′′, a′′). Conclude that a′ = a′′ ≡ 0
mod `. That is, the group generated by the entries of ggg′ does not generate G5,`,0,
a necessary condition for being in the Nielsen class. �
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