
DIAMOND, GCH AND WEAK SQUAREMARTIN ZEMANAbstra
t. Shelah proved re
ently that if � > ! and S � �+ is a stationaryset of ordinals of 
o�nality di�erent from 
f(�) then 2� = �+ implies ��(S).We show that for singular �, an elaboration on his argument allows to derive��(T ) from 2� = �+ + ��� where T = fÆ < �+ j 
f(Æ) = 
f(�)g. This gives astrong restri
tion on the existen
e of saturated ideals on �+.AMS Subje
t Classi�
ation: 03E04, 03E05Keywords: Diamond, Weak Square, Generalized Continuum HypothesisIt is a well-known fa
t that �� implies 2<� = �. In many situations the 
onverseis also true. Jensen [3℄ proved that CH does not imply �, so when looking for the
onverse one has to fo
us on � > !1. LetS�� = fÆ < � j 
f(Æ) = �g:and T� = S�+
f(�):Gregory observed that GCH below !2 implies �!2(S!2! ). A sequen
e of improve-ments on his result, mainly by Gregory [4℄, Jensen (unpublished) and Shelah [7℄,resulted in the following theorem whose proof 
an be found in [2℄.Theorem 0.1 (Gregory, Jensen, Shelah). If 2<� = � and 2� = �+ then ��+(S)holds whenever S � �+ is a stationary set of ordinals of 
o�nality di�erent from
f(�). If � is singular and additionally �� holds then ��+(T�).Shelah also proved that for regular �, the 
ondition 2� = �++ �� is not suÆ
ientto guarantee ��+(T�), so the absolute ZFC result is possible only for singular �.The question remained whether the lo
alized GCH, i.e. the equality 2� = �+ aloneimplies ��+ . Shelah proved this to be true for suÆ
iently large �, and re
ently [8℄found an argument that proves it for every un
ountable 
ardinal �; see Komj�ath'spaper [6℄ for a simpli�ed proof and an elaboration on Shelah's argument.Theorem 0.2 (Shelah). Let � > ! and 2� = �+. Then ��+(S) holds for everystationary S � �+ that is disjoint with T�.This note 
ombines arguments from the proof of Theorem 0.1 with Shelah'sargument for Theorem 0.2 to give a proof of ��+(S) for S � T�.Theorem 0.3 (Main Theorem). Assume � is a singular 
ardinal and T � T� isstationary with stationarily many re
e
tion points. Then2� = �+ + ��� =) ��+(T ):The author was supported in part by NSF grant DMS-0500799.1



2 MARTIN ZEMANIt was proved by Cummings, Foreman and Magidor [1℄ that for singular �, theprin
iple ��� is 
onsistent with the requirement that every stationary T � T� hasstationarily many re
e
tion points. Consequently, in their model we have ��+(S)for all stationary S � �+.Corollary 0.4. Assume � is a singular 
ardinal. Then2� = �+ + ��� =) ��(T�):Both the above theorem and its 
orollary provides a very strong restri
tion onthe existen
e of saturated ideals on �+ and provide a 
lose link between the studyof su
h ideals and the PCF-theory.Rinot re
ently extended the result of this paper to the situation where weaksquare is repla
ed by a variant of approa
hability property and also showed that,relatively to the existen
e to a super
ompa
t 
ardinal, it is 
onsistent that ��� failsbut ��+(S) holds for every stationary S � �+.1. The argumentWe begin with splitting Shelah's argument into two steps. We �rst isolate a
ombinatorial statement that alone implies the existen
e of a ��(S)-sequen
e inZFC; we denote this statement by
�(S). This statement is impli
it the argumentsin Shelah [8℄ and Komj�ath [6℄. It turns out that the impli
ation
�(S) =) ��(S)is true no matter whether � is a su

essor 
ardinal or not. The se
ond step is a proofthat 
�(S) holds, whi
h relies on the lo
alized GCH if � = �+ and S 
on
entrateson points of 
o�nality distin
t from 
f(�) whi
h gives the original Shelah's result,and on the weak square if � is singular and S 
on
entrates on points of 
o�nality
f(�) whi
h gives the result in Theorem 0.3. Our approa
h owes a lot to Komj�ath'sexposition in [6℄.De�nition 1.1. Let � be a regular 
ardinal and S � �. We say that the pairhx� j � < �i, hAÆ j Æ 2 Si witnesses 
�(S) i� the following three 
onditions are met.(a) hx� j � < �i is an enumeration of [�℄<�.(b) AÆ � Æ and 
ard(AÆ) < 
ard(Æ) whenever Æ 2 S.(
) For every Z � � there is a stationary S0 � S su
h that for every Æ 2 S0there are unboundedly many � < Æ for whi
h there is � < Æ satisfying�; � 2 AÆ and Z \ � = x�.We say that 
�(S) holds i� there are hx�i� and hAÆiÆ as above.Noti
e that
�(S) postulates the existen
e of an enumeration of [�℄<� of length�, so it imposes some 
onstraints on the behaviour of the exponential fun
tionbelow �. In parti
ular, if � = �+ then 
�(S) implies 2� = �+. Noti
e also that(b) in the above de�nition stipulates that the 
ardinality of AÆ is stri
tly smallerthan that of Æ, whi
h together with (
) implies that without loss of generality S 
anbe viewed as a set of singular ordinals. Of 
ourse, this has a non-trivial meaningonly when � is ina

essible. Finally observe that if there is a pair hx� j � < �i,hAÆ j Æ 2 Si witnessing 
�(S) then for every enumeration hx0� j � < �i there is asequen
e hA0Æ j Æ 2 Si su
h that the pair hx0�i� , hA0ÆiÆ witnesses 
�(S). To see this,pi
k any f : � ! � su
h that x� = x0f(�) for all � < � and let A0Æ = AÆ [ f [AÆ ℄ forall Æ 2 S satisfying f [Æ℄ � Æ.Lemma 1.2. Let � be a regular 
ardinal, S � � and 
�(S) hold. Then there is apair hx� j � < �i, hAÆ j Æ 2 Si satisfying the following.



DIAMOND, GCH AND WEAK SQUARE 3(a) hx� j � < �i is an enumeration of [�� �℄<�.(b) AÆ � Æ and 
ard(AÆ) < 
ard(Æ) whenever Æ 2 S.(
) For every Z � ��� there is a stationary S0 � S su
h that for every Æ 2 S0there are unboundedly many � < Æ for whi
h there is � < Æ satisfying�; � 2 AÆ and Z \ (�� �) = x� \ (�� �).Proof. Pi
k a pair hy� j � < �i, hBÆ j Æ 2 Si witnessing 
�(S). Let f : �� � ! �be a bije
tion and Cf = fÆ < � j f [Æ � Æ℄ = Æg.To ea
h Æ 2 S pi
k CÆ to be a subset of lim(Cf ) \ Æ of size stri
tly smallerthan 
ard(Æ) that is 
o�nal in Æ if su
h a set exists; let CÆ = ? otherwise. Lettingx� = f�1[y� ℄ and AÆ = BÆ [CÆ , we obtain a pair hx� j � < �i, hAÆ j Æ 2 Si as in the
on
lusion of the lemma. To see this, it suÆ
es to verify 
lause (
) in the statementof the lemma.Given any Z � � � �, let S0 � S be the stationary set obtained by applying
�(S) to f [Z℄. Let Æ 2 S0 \ lim(Cf ). If �� < Æ, pi
k � 2 CÆ su
h that �� � �. Sin
eS0 satis�es (
) in De�nition 1.1 with f [Z℄; y� and BÆ in pla
e of Z; x� and AÆ, thereare �0; � 2 BÆ su
h that � � �0 and f [Z℄ \ �0 = y�. Then f [Z℄ \ � = y� \ � andthe 
on
lusion follows immediately from the fa
t that � 2 Cf . utWith the statement
�(S) in hand, one 
an reformulate the �rst step in Shelah'sargument into the following proposition. It redu
es the proof of ��(S) to the proofof 
�(S) and works even for 
ardinals � that are not su

essors, whi
h is slightlymore than Shelah has originally proved. The se
ond setp in Shelah's argument 
anbe then viewed as a proof of
�+(S) from the lo
alized GCH. We will show how toobtain 
�+(S) from the additional assumption that ��� holds in situations wherelo
alized GCH does not seem to suÆ
e.Proposition 1.3. Let � be regular and S � � be stationary. Then
�(S) =) ��(S)Proof. Let hx� j � < �i, hAÆ j Æ 2 Si be a pair satisfying the 
on
lusion ofLemma 1.2. For x � � � � we write (x)� to denote f� < � jh�; �i 2 xg. Con-sider sequen
es hX� ; C� j � < �i of length � � � su
h that X� � �, C� is 
losedunbounded in � and, lettingV Æ� = fh�; �i 2 AÆ �AÆ j(8� < �)(X� \ � = (x�)� \ �)g;for every � < � and Æ 2 S \C� either dom(V Æ�+1) is bounded in Æ or else V Æ� % V Æ�+1.Noti
e that the non-stri
t in
lusion V Æ� � V Æ�0 holds anyway whenever � � �0.The 
ru
ial observation is that any sequen
e hX� ; C� j � < �i as above has lengthstri
tly below �. Assume for a 
ontradi
tion that this fails, that is, there is su
h asequen
e with � = �. Let S0 
ome from the appli
ation of Lemma 1.2 to the pairhx�i�, hAÆiÆ and to set Z = fh�; �i j � 2 X�g;and let Æ 2 S0 \ 4fC� j � < �g be su
h that Æ > � if � = �+ and Æ is a 
ardinalif � is ina

essible. We have arbitrarily large � < Æ for whi
h there exists � < Æsu
h that �; � 2 AÆ and Z \ (� � �) = x� \ (� � �), so for ea
h � < Æ the setdom(V Æ� ) is unbounded in Æ. Sin
e Æ 2 S \C� whenever � < Æ, from the propertiesof the sequen
e hX� ; C� j � < �i we obtain V Æ� % V Æ�0 whenever � < �0 < Æ. This is a
ontradi
tion, as V Æ� � AÆ �AÆ and 
ard(AÆ) < 
ard(Æ).



4 MARTIN ZEMANPi
k a sequen
e hX�; C� j � < �i as in the previous paragraph whi
h has noproper extension. Then � < �. LettingDÆ =[f(x�)� \ � j h�; �i 2 V Æ� g;the sequen
e hDÆ j Æ 2 Si is a ��(S)-sequen
e. To see this, pi
k an arbitraryX � � and a 
losed unbounded C � �. There exists some Æ 2 S \ C su
h thatdom(V Æ� ) is unbounded in Æ and X \� = (x�)� \� for all h�; �i 2 V Æ� , as otherwisewe 
ould extend the sequen
e hX�; C� j � < �i by letting X� = X and C� = C, in
ontradi
tion with its maximality. But then X \ Æ = DÆ. utWe now fo
us on proofs of 
�(S). The point of introdu
ing 
�(S) is that it isoften easier to give a dire
t proof of 
�(S) than a dire
t proof of ��(S). This is
lear from Shelah's argument in [8℄ whi
h in our notation is a proof of 
�+(S). AsProposition 1.3 also holds for ina

essible �, our hope was that Shelah's argumentmay be used for proofs of ��(S) for ina

essible �. It seems, however, that forina

essible � the proofs of ��(S) may require more new ideas. For instan
e, theproofs of ��(S�" ) for a Mahlo 
ardinal � in [5℄ and [9℄ 
an be easily modi�ed togive proofs of 
�(S�" ), but introdu
ing a 
�(S�" )-sequen
e into the 
onstru
tiondoes not seem to enable any strengthening of the results or a simpli�
ation ofthe 
onstru
tion in [9℄. For ina

essibles � that are not Mahlo it is not 
leareither whether an argument using 
�(S�" ) may work. It is 
ertainly 
lear that
onstru
tions of a 
�(S�" )-sequen
e from \below" as in Propositions 1.4 and 1.5will not work, essentially for the same reason why 
onstru
tions of ��(S�" ) from\below" 
annot work, as des
ribed in [9℄. Analogously as in [9℄, given any �xed
�(S�" )-witness hx� j � < �i, hAÆ j Æ < �i, there is a < �-distributive for
ing that\kills" su
h a witness. On the other hand, any 
onstru
tion of a 
�(S�" )-witnessfrom \below" would give rise to the same witness in the ground model and in thegeneri
 extension.Let us turn to the proof of 
�+(S). As already mentioned above, the nextproposition 
an be viewed as the �rst step in Shelah's argument. We in
lude it, asit is a starting point for our variation with weak square.Proposition 1.4. Assume S � �+ is stationary and disjoint from T�. Then2� = �+ =) 
�+(S):Proof. Pi
k an arbitrary enumeration hy� j � < �+i of [�+℄��. The existen
e ofsu
h an enumeration is guaranteed by the lo
alized GCH. Let g : "� �+ ! �+ bea bije
tion where " = 
f(�). For ea
h Æ 2 S pi
k an in
reasing (with respe
t tothe in
lusion) sequen
e of sets hAÆ� j � < "i su
h that jAÆ� j < � for all � < " andS�<"AÆ� = Æ.We show that there is an � < " su
h that for every Z � �+ there are stationarilymany ordinals Æ 2 S satisfying:(1) For unboundedly many � < Æ there are � < Æ su
h that�; � 2 AÆ� and Z \ � = (g�1[y� ℄)�:It follows that letting AÆ = AÆ� and x� = (g�1[y� ℄)�, the pair hx� j� < �+i,hAÆ� j Æ 2 Si, witness 
�+(S). 1Assume for a 
ontradi
tion there is no � as in the previous paragraph. Then forevery � < " there is a set Z� � �+ su
h that (1) holds only on a non-stationary1See proof of Proposition 1.3 for the notation (u)� .



DIAMOND, GCH AND WEAK SQUARE 5subset of S. Let Z = fh�; �i j � 2 Z�g and and Z 0 = g[Z℄. The set S0 
onsisting ofall Æ 2 S su
h that� g["� �℄ = � for 
o�nally many � < Æ and� (8� < Æ)(9� < Æ)(Z 0 \ � = y�)is stationary in �+. To ea
h Æ 2 S0 pi
k a 
o�nal stri
tly in
reasing sequen
eh�Æ� j � < 
f(Æ)i su
h that g["� �� ℄ = �� for ea
h � < 
f(Æ), and to ea
h � < 
f(Æ)pi
k �� < Æ su
h that Z 0 \ �� = y�� . This is possible by the above arrangementsfor elements of S0.If Æ 2 S0 then there is an �(Æ) < " su
h that ��; �� 2 AÆ�(Æ) for 
o�nally many� < 
f(Æ). This follows immediately if 
f(Æ) < ", as the assignment� 7! the least � su
h that �� ; �� 2 AÆ�
annot be 
o�nal in ", so in fa
t �� ; �� 2 AÆ�(Æ) for all � < 
f(Æ). If 
f(Æ) > " thisfollows by the pigeonhole prin
iple, namely the inverse image of some AÆ� underthis assignment must have size 
f(Æ). Applying the pigeonhole prin
iple to theassignment Æ 7! �(Æ), we obtain a stationary S00 � S0 and a � < " su
h that �(Æ) = �for all Æ 2 S00.Pi
k Æ 2 S00. By the above arrangements, there are 
o�nally many � < Æ forwhi
h there are � < Æ su
h that �; � 2 AÆ� and Z 0 \� = y� . Moreover, the ordinals� 
an be 
hosen so that g["� �℄ = �. It follows thatZ \ ("� �) = g�1[Z 0 \ �℄ = g�1[y� ℄;so Z� \ � = (g�1[y�℄)� for all �; � as above. Sin
e this is true of any Æ 2 S00 weobtained a 
ontradi
tion to the fa
t that Z� is a 
outnerexample to (1). utThe following proposition shows how to apply a standard 
onstru
tion that uses��� to prove 
�+(T ).Proposition 1.5. Assume � is singular and T � T� is a stationary subset of �+with stationarily many re
e
tion points. Then2� = �+ + ��� =) 
�+(T ):Proof. We elaborate on the argument from the proof of Proposition 1.4. Let" = 
f(�). Fix the following obje
ts:� Sequen
es hy� j � < �+i, hAÆ� j � < "i and a bije
tion g : "� �+ ! �+ as inthe proof of Proposition 1.4.� For ea
h ordinal Æ < �+ an inje
tion hÆ : Æ ! �.� A ���-sequen
e hCÆ j Æ 2 lim\(�; �+)i. For ea
h Æ �x an enumerationh
Æ� j � < �i of the set CÆ.� An in
reasing (with respe
t to the in
lusion) sequen
e of sets hB� j � < "isu
h that jB� j < � for ea
h � and S�<"B� = �� �.For ea
h Æ 2 lim\(�; �+) and � < � de�ne a fun
tion f Æ� : Æ ! � � � and asequen
e of sets hAÆ�;� j � < "i as follows.fÆ� (�) = h�; h
(�)iwhere 
 is the least element of 
Æ� stri
tly above � and � = otp(
Æ� \ 
)� 1 2 andAÆ�;� = (f Æ� )�1[B�℄:2Noti
e that otp(
Æ� \ 
) is a su

essor ordinal if 
 is as above.



6 MARTIN ZEMANNoti
e that ea
h f Æ� is an inje
tion. By our 
hoi
e of the sets B� we then havejAÆ�;� j < � and S�<"AÆ�;� = Æ. We also have the following 
oheren
y property forthe sets AÆ�;�: If �Æ is a limit point of 
Æ� then there is an ordinal �� < � su
h that(2) AÆ�;� \ �Æ = A�Æ��;�:To see this noti
e �rst that if �Æ is a limit point of 
Æ� then there is �� < � su
h that
Æ�\�Æ = 
�Æ�� , and from the de�nition of f Æ� we immediately 
on
lude that f �Æ�� = fÆ� � �Æ.The rest follows immediately from the de�nition of AÆ�;�.Fix an in
reasing sequen
e h�� j � < "i 
o�nal in �. For ea
h Æ 2 T and � < " setAÆ� = S�<�� AÆ�;�. Noti
e that jAÆ� j < �, as jAÆ�;� j < jB� j for all � < ��. Followingthe ideas from the proof of Proposition 1.4 we prove: There is an � < " su
h thatfor every Z � �+ there are stationarily many Æ 2 T satisfying:(3) For unboundedly many � < Æ there are � < Æ su
h that�; � 2 AÆ� and Z \ � = (g�1[y� ℄)�.It follows that letting x� = (g�1[y� ℄)� and AÆ = AÆ� where � is as above, the pairhx� j� < �+i, hAÆ j Æ 2 T i witnesses 
�+(T ).Assume for a 
ontradi
tion that no � as above exists. As in the proof of Propo-sition 1.4 pi
k a 
ounterexample Z� for ea
h � < ", let Z = fh�; �i 2 "��+ j � 2 Z�gand Z 0 = g[Z℄. Let C be a 
losed unbounded subset of �+. By our assumption onT , there is a re
e
tion point Æ0 of T su
h that:� Æ0 is a limit point of C.� g["� �℄ = � for 
o�nally many � < Æ0.� (8� < Æ0)(9� < Æ0)(Z 0 \ � = y�).As Æ0 is a re
e
tion point of T , ne
essarily 
f(Æ0) > ". Pi
k an in
reasing sequen
eh�� j � < 
f(Æ0)i 
o�nal in Æ0 su
h that g["� ��℄ = �� for ea
h � < 
f(Æ0). To ea
h� < 
f(Æ0) assign some �� < Æ0 satisfying Z 0 \ �� = x�� . It is 
onvenient to pi
k ��to be least posssible. Sin
e 
f(Æ0) > ", using the pigeonhole prin
iple we 
on
ludethat there is some �0 < " su
h that ��; �� 2 AÆ00;�0 for 
o�nally many � < 
f(Æ0). LetÆ 2 T \C \ lim(
Æ00 ) be a limit point of f�� j��; �� 2 AÆ00;�0g. Su
h a Æ exists by our
hoi
e of Æ0 and �0, and by the fa
t that T \ Æ0 is stationary in Æ0. Let � < � be su
hthat AÆ�;�0 = AÆ00;�0 \ Æ and let �(Æ) > �0 be su
h that ��(Æ) > �. The existen
e of su
ha � follows from (2). Then AÆ00;�0 \ Æ � AÆ�(Æ), as B�0 � B�(Æ).The previous paragraph proves that there is a stationary T 0 � T su
h that forevery Æ 2 T 0 there is an �(Æ) < " su
h that for 
o�nally many � < Æ there are� < Æ su
h that �; � 2 AÆ�(Æ), Z 0 \ � = y� and g["� �℄ = �. The rest of the proofliterally follows the proof of Proposition 1.4. We �rst �nd a stationary T 00 � T 0 onwhi
h �(Æ) stabilize; let � be the stabilized value. Then we unfold Z 0 and y� usingg and 
on
lude that for �; � as above we have Z� \ � = (g�1[y�℄)�. This yields a
ontradi
tion with the fa
t that Z� is a 
ounterexample to (3). utReferen
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