
DIAMOND, GCH AND WEAK SQUAREMARTIN ZEMANAbstrat. Shelah proved reently that if � > ! and S � �+ is a stationaryset of ordinals of o�nality di�erent from f(�) then 2� = �+ implies ��(S).We show that for singular �, an elaboration on his argument allows to derive��(T ) from 2� = �+ + ��� where T = fÆ < �+ j f(Æ) = f(�)g. This gives astrong restrition on the existene of saturated ideals on �+.AMS Subjet Classi�ation: 03E04, 03E05Keywords: Diamond, Weak Square, Generalized Continuum HypothesisIt is a well-known fat that �� implies 2<� = �. In many situations the onverseis also true. Jensen [3℄ proved that CH does not imply �, so when looking for theonverse one has to fous on � > !1. LetS�� = fÆ < � j f(Æ) = �g:and T� = S�+f(�):Gregory observed that GCH below !2 implies �!2(S!2! ). A sequene of improve-ments on his result, mainly by Gregory [4℄, Jensen (unpublished) and Shelah [7℄,resulted in the following theorem whose proof an be found in [2℄.Theorem 0.1 (Gregory, Jensen, Shelah). If 2<� = � and 2� = �+ then ��+(S)holds whenever S � �+ is a stationary set of ordinals of o�nality di�erent fromf(�). If � is singular and additionally �� holds then ��+(T�).Shelah also proved that for regular �, the ondition 2� = �++ �� is not suÆientto guarantee ��+(T�), so the absolute ZFC result is possible only for singular �.The question remained whether the loalized GCH, i.e. the equality 2� = �+ aloneimplies ��+ . Shelah proved this to be true for suÆiently large �, and reently [8℄found an argument that proves it for every unountable ardinal �; see Komj�ath'spaper [6℄ for a simpli�ed proof and an elaboration on Shelah's argument.Theorem 0.2 (Shelah). Let � > ! and 2� = �+. Then ��+(S) holds for everystationary S � �+ that is disjoint with T�.This note ombines arguments from the proof of Theorem 0.1 with Shelah'sargument for Theorem 0.2 to give a proof of ��+(S) for S � T�.Theorem 0.3 (Main Theorem). Assume � is a singular ardinal and T � T� isstationary with stationarily many reetion points. Then2� = �+ + ��� =) ��+(T ):The author was supported in part by NSF grant DMS-0500799.1



2 MARTIN ZEMANIt was proved by Cummings, Foreman and Magidor [1℄ that for singular �, thepriniple ��� is onsistent with the requirement that every stationary T � T� hasstationarily many reetion points. Consequently, in their model we have ��+(S)for all stationary S � �+.Corollary 0.4. Assume � is a singular ardinal. Then2� = �+ + ��� =) ��(T�):Both the above theorem and its orollary provides a very strong restrition onthe existene of saturated ideals on �+ and provide a lose link between the studyof suh ideals and the PCF-theory.Rinot reently extended the result of this paper to the situation where weaksquare is replaed by a variant of approahability property and also showed that,relatively to the existene to a superompat ardinal, it is onsistent that ��� failsbut ��+(S) holds for every stationary S � �+.1. The argumentWe begin with splitting Shelah's argument into two steps. We �rst isolate aombinatorial statement that alone implies the existene of a ��(S)-sequene inZFC; we denote this statement by�(S). This statement is impliit the argumentsin Shelah [8℄ and Komj�ath [6℄. It turns out that the impliation�(S) =) ��(S)is true no matter whether � is a suessor ardinal or not. The seond step is a proofthat �(S) holds, whih relies on the loalized GCH if � = �+ and S onentrateson points of o�nality distint from f(�) whih gives the original Shelah's result,and on the weak square if � is singular and S onentrates on points of o�nalityf(�) whih gives the result in Theorem 0.3. Our approah owes a lot to Komj�ath'sexposition in [6℄.De�nition 1.1. Let � be a regular ardinal and S � �. We say that the pairhx� j � < �i, hAÆ j Æ 2 Si witnesses �(S) i� the following three onditions are met.(a) hx� j � < �i is an enumeration of [�℄<�.(b) AÆ � Æ and ard(AÆ) < ard(Æ) whenever Æ 2 S.() For every Z � � there is a stationary S0 � S suh that for every Æ 2 S0there are unboundedly many � < Æ for whih there is � < Æ satisfying�; � 2 AÆ and Z \ � = x�.We say that �(S) holds i� there are hx�i� and hAÆiÆ as above.Notie that�(S) postulates the existene of an enumeration of [�℄<� of length�, so it imposes some onstraints on the behaviour of the exponential funtionbelow �. In partiular, if � = �+ then �(S) implies 2� = �+. Notie also that(b) in the above de�nition stipulates that the ardinality of AÆ is stritly smallerthan that of Æ, whih together with () implies that without loss of generality S anbe viewed as a set of singular ordinals. Of ourse, this has a non-trivial meaningonly when � is inaessible. Finally observe that if there is a pair hx� j � < �i,hAÆ j Æ 2 Si witnessing �(S) then for every enumeration hx0� j � < �i there is asequene hA0Æ j Æ 2 Si suh that the pair hx0�i� , hA0ÆiÆ witnesses �(S). To see this,pik any f : � ! � suh that x� = x0f(�) for all � < � and let A0Æ = AÆ [ f [AÆ ℄ forall Æ 2 S satisfying f [Æ℄ � Æ.Lemma 1.2. Let � be a regular ardinal, S � � and �(S) hold. Then there is apair hx� j � < �i, hAÆ j Æ 2 Si satisfying the following.



DIAMOND, GCH AND WEAK SQUARE 3(a) hx� j � < �i is an enumeration of [�� �℄<�.(b) AÆ � Æ and ard(AÆ) < ard(Æ) whenever Æ 2 S.() For every Z � ��� there is a stationary S0 � S suh that for every Æ 2 S0there are unboundedly many � < Æ for whih there is � < Æ satisfying�; � 2 AÆ and Z \ (�� �) = x� \ (�� �).Proof. Pik a pair hy� j � < �i, hBÆ j Æ 2 Si witnessing �(S). Let f : �� � ! �be a bijetion and Cf = fÆ < � j f [Æ � Æ℄ = Æg.To eah Æ 2 S pik CÆ to be a subset of lim(Cf ) \ Æ of size stritly smallerthan ard(Æ) that is o�nal in Æ if suh a set exists; let CÆ = ? otherwise. Lettingx� = f�1[y� ℄ and AÆ = BÆ [CÆ , we obtain a pair hx� j � < �i, hAÆ j Æ 2 Si as in theonlusion of the lemma. To see this, it suÆes to verify lause () in the statementof the lemma.Given any Z � � � �, let S0 � S be the stationary set obtained by applying�(S) to f [Z℄. Let Æ 2 S0 \ lim(Cf ). If �� < Æ, pik � 2 CÆ suh that �� � �. SineS0 satis�es () in De�nition 1.1 with f [Z℄; y� and BÆ in plae of Z; x� and AÆ, thereare �0; � 2 BÆ suh that � � �0 and f [Z℄ \ �0 = y�. Then f [Z℄ \ � = y� \ � andthe onlusion follows immediately from the fat that � 2 Cf . utWith the statement�(S) in hand, one an reformulate the �rst step in Shelah'sargument into the following proposition. It redues the proof of ��(S) to the proofof �(S) and works even for ardinals � that are not suessors, whih is slightlymore than Shelah has originally proved. The seond setp in Shelah's argument anbe then viewed as a proof of�+(S) from the loalized GCH. We will show how toobtain �+(S) from the additional assumption that ��� holds in situations whereloalized GCH does not seem to suÆe.Proposition 1.3. Let � be regular and S � � be stationary. Then�(S) =) ��(S)Proof. Let hx� j � < �i, hAÆ j Æ 2 Si be a pair satisfying the onlusion ofLemma 1.2. For x � � � � we write (x)� to denote f� < � jh�; �i 2 xg. Con-sider sequenes hX� ; C� j � < �i of length � � � suh that X� � �, C� is losedunbounded in � and, lettingV Æ� = fh�; �i 2 AÆ �AÆ j(8� < �)(X� \ � = (x�)� \ �)g;for every � < � and Æ 2 S \C� either dom(V Æ�+1) is bounded in Æ or else V Æ� % V Æ�+1.Notie that the non-strit inlusion V Æ� � V Æ�0 holds anyway whenever � � �0.The ruial observation is that any sequene hX� ; C� j � < �i as above has lengthstritly below �. Assume for a ontradition that this fails, that is, there is suh asequene with � = �. Let S0 ome from the appliation of Lemma 1.2 to the pairhx�i�, hAÆiÆ and to set Z = fh�; �i j � 2 X�g;and let Æ 2 S0 \ 4fC� j � < �g be suh that Æ > � if � = �+ and Æ is a ardinalif � is inaessible. We have arbitrarily large � < Æ for whih there exists � < Æsuh that �; � 2 AÆ and Z \ (� � �) = x� \ (� � �), so for eah � < Æ the setdom(V Æ� ) is unbounded in Æ. Sine Æ 2 S \C� whenever � < Æ, from the propertiesof the sequene hX� ; C� j � < �i we obtain V Æ� % V Æ�0 whenever � < �0 < Æ. This is aontradition, as V Æ� � AÆ �AÆ and ard(AÆ) < ard(Æ).



4 MARTIN ZEMANPik a sequene hX�; C� j � < �i as in the previous paragraph whih has noproper extension. Then � < �. LettingDÆ =[f(x�)� \ � j h�; �i 2 V Æ� g;the sequene hDÆ j Æ 2 Si is a ��(S)-sequene. To see this, pik an arbitraryX � � and a losed unbounded C � �. There exists some Æ 2 S \ C suh thatdom(V Æ� ) is unbounded in Æ and X \� = (x�)� \� for all h�; �i 2 V Æ� , as otherwisewe ould extend the sequene hX�; C� j � < �i by letting X� = X and C� = C, inontradition with its maximality. But then X \ Æ = DÆ. utWe now fous on proofs of �(S). The point of introduing �(S) is that it isoften easier to give a diret proof of �(S) than a diret proof of ��(S). This islear from Shelah's argument in [8℄ whih in our notation is a proof of �+(S). AsProposition 1.3 also holds for inaessible �, our hope was that Shelah's argumentmay be used for proofs of ��(S) for inaessible �. It seems, however, that forinaessible � the proofs of ��(S) may require more new ideas. For instane, theproofs of ��(S�" ) for a Mahlo ardinal � in [5℄ and [9℄ an be easily modi�ed togive proofs of �(S�" ), but introduing a �(S�" )-sequene into the onstrutiondoes not seem to enable any strengthening of the results or a simpli�ation ofthe onstrution in [9℄. For inaessibles � that are not Mahlo it is not leareither whether an argument using �(S�" ) may work. It is ertainly lear thatonstrutions of a �(S�" )-sequene from \below" as in Propositions 1.4 and 1.5will not work, essentially for the same reason why onstrutions of ��(S�" ) from\below" annot work, as desribed in [9℄. Analogously as in [9℄, given any �xed�(S�" )-witness hx� j � < �i, hAÆ j Æ < �i, there is a < �-distributive foring that\kills" suh a witness. On the other hand, any onstrution of a �(S�" )-witnessfrom \below" would give rise to the same witness in the ground model and in thegeneri extension.Let us turn to the proof of �+(S). As already mentioned above, the nextproposition an be viewed as the �rst step in Shelah's argument. We inlude it, asit is a starting point for our variation with weak square.Proposition 1.4. Assume S � �+ is stationary and disjoint from T�. Then2� = �+ =) �+(S):Proof. Pik an arbitrary enumeration hy� j � < �+i of [�+℄��. The existene ofsuh an enumeration is guaranteed by the loalized GCH. Let g : "� �+ ! �+ bea bijetion where " = f(�). For eah Æ 2 S pik an inreasing (with respet tothe inlusion) sequene of sets hAÆ� j � < "i suh that jAÆ� j < � for all � < " andS�<"AÆ� = Æ.We show that there is an � < " suh that for every Z � �+ there are stationarilymany ordinals Æ 2 S satisfying:(1) For unboundedly many � < Æ there are � < Æ suh that�; � 2 AÆ� and Z \ � = (g�1[y� ℄)�:It follows that letting AÆ = AÆ� and x� = (g�1[y� ℄)�, the pair hx� j� < �+i,hAÆ� j Æ 2 Si, witness �+(S). 1Assume for a ontradition there is no � as in the previous paragraph. Then forevery � < " there is a set Z� � �+ suh that (1) holds only on a non-stationary1See proof of Proposition 1.3 for the notation (u)� .



DIAMOND, GCH AND WEAK SQUARE 5subset of S. Let Z = fh�; �i j � 2 Z�g and and Z 0 = g[Z℄. The set S0 onsisting ofall Æ 2 S suh that� g["� �℄ = � for o�nally many � < Æ and� (8� < Æ)(9� < Æ)(Z 0 \ � = y�)is stationary in �+. To eah Æ 2 S0 pik a o�nal stritly inreasing sequeneh�Æ� j � < f(Æ)i suh that g["� �� ℄ = �� for eah � < f(Æ), and to eah � < f(Æ)pik �� < Æ suh that Z 0 \ �� = y�� . This is possible by the above arrangementsfor elements of S0.If Æ 2 S0 then there is an �(Æ) < " suh that ��; �� 2 AÆ�(Æ) for o�nally many� < f(Æ). This follows immediately if f(Æ) < ", as the assignment� 7! the least � suh that �� ; �� 2 AÆ�annot be o�nal in ", so in fat �� ; �� 2 AÆ�(Æ) for all � < f(Æ). If f(Æ) > " thisfollows by the pigeonhole priniple, namely the inverse image of some AÆ� underthis assignment must have size f(Æ). Applying the pigeonhole priniple to theassignment Æ 7! �(Æ), we obtain a stationary S00 � S0 and a � < " suh that �(Æ) = �for all Æ 2 S00.Pik Æ 2 S00. By the above arrangements, there are o�nally many � < Æ forwhih there are � < Æ suh that �; � 2 AÆ� and Z 0 \� = y� . Moreover, the ordinals� an be hosen so that g["� �℄ = �. It follows thatZ \ ("� �) = g�1[Z 0 \ �℄ = g�1[y� ℄;so Z� \ � = (g�1[y�℄)� for all �; � as above. Sine this is true of any Æ 2 S00 weobtained a ontradition to the fat that Z� is a outnerexample to (1). utThe following proposition shows how to apply a standard onstrution that uses��� to prove �+(T ).Proposition 1.5. Assume � is singular and T � T� is a stationary subset of �+with stationarily many reetion points. Then2� = �+ + ��� =) �+(T ):Proof. We elaborate on the argument from the proof of Proposition 1.4. Let" = f(�). Fix the following objets:� Sequenes hy� j � < �+i, hAÆ� j � < "i and a bijetion g : "� �+ ! �+ as inthe proof of Proposition 1.4.� For eah ordinal Æ < �+ an injetion hÆ : Æ ! �.� A ���-sequene hCÆ j Æ 2 lim\(�; �+)i. For eah Æ �x an enumerationhÆ� j � < �i of the set CÆ.� An inreasing (with respet to the inlusion) sequene of sets hB� j � < "isuh that jB� j < � for eah � and S�<"B� = �� �.For eah Æ 2 lim\(�; �+) and � < � de�ne a funtion f Æ� : Æ ! � � � and asequene of sets hAÆ�;� j � < "i as follows.fÆ� (�) = h�; h(�)iwhere  is the least element of Æ� stritly above � and � = otp(Æ� \ )� 1 2 andAÆ�;� = (f Æ� )�1[B�℄:2Notie that otp(Æ� \ ) is a suessor ordinal if  is as above.



6 MARTIN ZEMANNotie that eah f Æ� is an injetion. By our hoie of the sets B� we then havejAÆ�;� j < � and S�<"AÆ�;� = Æ. We also have the following ohereny property forthe sets AÆ�;�: If �Æ is a limit point of Æ� then there is an ordinal �� < � suh that(2) AÆ�;� \ �Æ = A�Æ��;�:To see this notie �rst that if �Æ is a limit point of Æ� then there is �� < � suh thatÆ�\�Æ = �Æ�� , and from the de�nition of f Æ� we immediately onlude that f �Æ�� = fÆ� � �Æ.The rest follows immediately from the de�nition of AÆ�;�.Fix an inreasing sequene h�� j � < "i o�nal in �. For eah Æ 2 T and � < " setAÆ� = S�<�� AÆ�;�. Notie that jAÆ� j < �, as jAÆ�;� j < jB� j for all � < ��. Followingthe ideas from the proof of Proposition 1.4 we prove: There is an � < " suh thatfor every Z � �+ there are stationarily many Æ 2 T satisfying:(3) For unboundedly many � < Æ there are � < Æ suh that�; � 2 AÆ� and Z \ � = (g�1[y� ℄)�.It follows that letting x� = (g�1[y� ℄)� and AÆ = AÆ� where � is as above, the pairhx� j� < �+i, hAÆ j Æ 2 T i witnesses �+(T ).Assume for a ontradition that no � as above exists. As in the proof of Propo-sition 1.4 pik a ounterexample Z� for eah � < ", let Z = fh�; �i 2 "��+ j � 2 Z�gand Z 0 = g[Z℄. Let C be a losed unbounded subset of �+. By our assumption onT , there is a reetion point Æ0 of T suh that:� Æ0 is a limit point of C.� g["� �℄ = � for o�nally many � < Æ0.� (8� < Æ0)(9� < Æ0)(Z 0 \ � = y�).As Æ0 is a reetion point of T , neessarily f(Æ0) > ". Pik an inreasing sequeneh�� j � < f(Æ0)i o�nal in Æ0 suh that g["� ��℄ = �� for eah � < f(Æ0). To eah� < f(Æ0) assign some �� < Æ0 satisfying Z 0 \ �� = x�� . It is onvenient to pik ��to be least posssible. Sine f(Æ0) > ", using the pigeonhole priniple we onludethat there is some �0 < " suh that ��; �� 2 AÆ00;�0 for o�nally many � < f(Æ0). LetÆ 2 T \C \ lim(Æ00 ) be a limit point of f�� j��; �� 2 AÆ00;�0g. Suh a Æ exists by ourhoie of Æ0 and �0, and by the fat that T \ Æ0 is stationary in Æ0. Let � < � be suhthat AÆ�;�0 = AÆ00;�0 \ Æ and let �(Æ) > �0 be suh that ��(Æ) > �. The existene of suha � follows from (2). Then AÆ00;�0 \ Æ � AÆ�(Æ), as B�0 � B�(Æ).The previous paragraph proves that there is a stationary T 0 � T suh that forevery Æ 2 T 0 there is an �(Æ) < " suh that for o�nally many � < Æ there are� < Æ suh that �; � 2 AÆ�(Æ), Z 0 \ � = y� and g["� �℄ = �. The rest of the proofliterally follows the proof of Proposition 1.4. We �rst �nd a stationary T 00 � T 0 onwhih �(Æ) stabilize; let � be the stabilized value. Then we unfold Z 0 and y� usingg and onlude that for �; � as above we have Z� \ � = (g�1[y�℄)�. This yields aontradition with the fat that Z� is a ounterexample to (3). utReferenes[1℄ Cummings, J., Foreman, M. and Magidor, M., Squares, sales and stationary reetion,Journal of Mathematial Logi 1 (2001), 35-98[2℄ Devlin, K. J., Construtibility, Springer 1984[3℄ Devlin, K. J. and Johnsbraten, H., The Souslin Problem, Leture Notes in Mathemat-is 405, Springer 1974
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