DIAMOND, GCH AND WEAK SQUARE

MARTIN ZEMAN

ABSTRACT. Shelah proved recently that if $\kappa > \omega$ and $S \subseteq \kappa^+$ is a stationary set of ordinals of cofinality different from $cf(\kappa)$ then $2^{\kappa} = \kappa^+$ implies $\Diamond_{\kappa}(S)$. We show that for singular κ , an elaboration on his argument allows to derive $\Diamond_{\kappa}(T)$ from $2^{\kappa} = \kappa^+ + \square_{\kappa}^*$ where $T = \{\delta < \kappa^+ | cf(\delta) = cf(\kappa)\}$. This gives a strong restriction on the existence of saturated ideals on κ^+ .

AMS Subject Classification: 03E04, 03E05 Keywords: Diamond, Weak Square, Generalized Continuum Hypothesis

It is a well-known fact that \Diamond_{λ} implies $2^{<\lambda} = \lambda$. In many situations the converse is also true. Jensen [3] proved that CH does not imply \Diamond , so when looking for the converse one has to focus on $\lambda > \omega_1$. Let

$$S^{\lambda}_{\mu} = \{ \delta < \lambda \, | \, \mathrm{cf}(\delta) = \mu \}.$$

and

$$T_{\kappa} = S_{\mathrm{cf}(\kappa)}^{\kappa^+}$$

Gregory observed that GCH below ω_2 implies $\Diamond_{\omega_2}(S_{\omega}^{\omega_2})$. A sequence of improvements on his result, mainly by Gregory [4], Jensen (unpublished) and Shelah [7], resulted in the following theorem whose proof can be found in [2].

Theorem 0.1 (Gregory, Jensen, Shelah). If $2^{<\kappa} = \kappa$ and $2^{\kappa} = \kappa^+$ then $\Diamond_{\kappa^+}(S)$ holds whenever $S \subseteq \kappa^+$ is a stationary set of ordinals of cofinality different from cf(κ). If κ is singular and additionally \Box_{κ} holds then $\Diamond_{\kappa^+}(T_{\kappa})$.

Shelah also proved that for regular κ , the condition $2^{\kappa} = \kappa^+ + \Box_{\kappa}$ is not sufficient to guarantee $\Diamond_{\kappa^+}(T_{\kappa})$, so the absolute ZFC result is possible only for singular κ .

The question remained whether the localized GCH, i.e. the equality $2^{\kappa} = \kappa^+$ alone implies \Diamond_{κ^+} . Shelah proved this to be true for sufficiently large κ , and recently [8] found an argument that proves it for every uncountable cardinal κ ; see Komjáth's paper [6] for a simplified proof and an elaboration on Shelah's argument.

Theorem 0.2 (Shelah). Let $\kappa > \omega$ and $2^{\kappa} = \kappa^+$. Then $\Diamond_{\kappa^+}(S)$ holds for every stationary $S \subseteq \kappa^+$ that is disjoint with T_{κ} .

This note combines arguments from the proof of Theorem 0.1 with Shelah's argument for Theorem 0.2 to give a proof of $\Diamond_{\kappa^+}(S)$ for $S \subseteq T_{\kappa}$.

Theorem 0.3 (Main Theorem). Assume κ is a singular cardinal and $T \subseteq T_{\kappa}$ is stationary with stationarily many reflection points. Then

$$2^{\kappa} = \kappa^+ + \square_{\kappa}^* \implies \Diamond_{\kappa^+}(T).$$

The author was supported in part by NSF grant DMS-0500799.

MARTIN ZEMAN

It was proved by Cummings, Foreman and Magidor [1] that for singular κ , the principle \Box_{κ}^* is consistent with the requirement that every stationary $T \subseteq T_{\kappa}$ has stationarily many reflection points. Consequently, in their model we have $\Diamond_{\kappa^+}(S)$ for all stationary $S \subseteq \kappa^+$.

Corollary 0.4. Assume κ is a singular cardinal. Then

$$2^{\kappa} = \kappa^+ + \square_{\kappa}^* \implies \Diamond_{\kappa}(T_{\kappa})$$

Both the above theorem and its corollary provides a very strong restriction on the existence of saturated ideals on κ^+ and provide a close link between the study of such ideals and the PCF-theory.

Rinot recently extended the result of this paper to the situation where weak square is replaced by a variant of approachability property and also showed that, relatively to the existence to a supercompact cardinal, it is consistent that \Box_{κ}^* fails but $\Diamond_{\kappa^+}(S)$ holds for every stationary $S \subseteq \kappa^+$.

1. The argument

We begin with splitting Shelah's argument into two steps. We first isolate a combinatorial statement that alone implies the existence of a $\Diamond_{\lambda}(S)$ -sequence in ZFC; we denote this statement by $\bigcirc_{\lambda}(S)$. This statement is implicit the arguments in Shelah [8] and Komjáth [6]. It turns out that the implication $\bigcirc_{\lambda}(S) \implies \Diamond_{\lambda}(S)$ is true no matter whether λ is a successor cardinal or not. The second step is a proof that $\bigcirc_{\lambda}(S)$ holds, which relies on the localized GCH if $\lambda = \kappa^+$ and S concentrates on points of cofinality distinct from cf(κ) which gives the original Shelah's result, and on the weak square if κ is singular and S concentrates on points of cofinality cf(κ) which gives the result in Theorem 0.3. Our approach owes a lot to Komjáth's exposition in [6].

Definition 1.1. Let λ be a regular cardinal and $S \subseteq \lambda$. We say that the pair $\langle x_{\xi} | \xi < \lambda \rangle$, $\langle A_{\delta} | \delta \in S \rangle$ witnesses $\bigcirc_{\lambda}(S)$ iff the following three conditions are met.

- (a) $\langle x_{\xi} | \xi < \lambda \rangle$ is an enumeration of $[\lambda]^{<\lambda}$.
- (b) $A_{\delta} \subseteq \delta$ and $\operatorname{card}(A_{\delta}) < \operatorname{card}(\delta)$ whenever $\delta \in S$.
- (c) For every $Z \subseteq \lambda$ there is a stationary $S' \subseteq S$ such that for every $\delta \in S'$ there are unboundedly many $\alpha < \delta$ for which there is $\beta < \delta$ satisfying $\alpha, \beta \in A_{\delta}$ and $Z \cap \alpha = x_{\beta}$.

We say that $\bigcirc_{\lambda}(S)$ holds iff there are $\langle x_{\xi} \rangle_{\xi}$ and $\langle A_{\delta} \rangle_{\delta}$ as above.

Notice that $\bigcirc_{\lambda}(S)$ postulates the existence of an enumeration of $[\lambda]^{<\lambda}$ of length λ , so it imposes some constraints on the behaviour of the exponential function below λ . In particular, if $\lambda = \kappa^+$ then $\bigcirc_{\lambda}(S)$ implies $2^{\kappa} = \kappa^+$. Notice also that (b) in the above definition stipulates that the cardinality of A_{δ} is strictly smaller than that of δ , which together with (c) implies that without loss of generality S can be viewed as a set of singular ordinals. Of course, this has a non-trivial meaning only when λ is inaccessible. Finally observe that if there is a pair $\langle x_{\xi} | \xi < \lambda \rangle$, $\langle A_{\delta} | \delta \in S \rangle$ witnessing $\bigcirc_{\lambda}(S)$ then for every enumeration $\langle x'_{\xi} | \xi < \lambda \rangle$ there is a sequence $\langle A'_{\delta} | \delta \in S \rangle$ such that the pair $\langle x'_{\xi} \rangle_{\xi}$, $\langle A'_{\delta} \rangle_{\delta}$ witnesses $\bigcirc_{\lambda}(S)$. To see this, pick any $f : \lambda \to \lambda$ such that $x_{\beta} = x'_{f(\beta)}$ for all $\beta < \lambda$ and let $A'_{\delta} = A_{\delta} \cup f[A_{\delta}]$ for all $\delta \in S$ satisfying $f[\delta] \subseteq \delta$.

Lemma 1.2. Let λ be a regular cardinal, $S \subseteq \lambda$ and $\bigcirc_{\lambda}(S)$ hold. Then there is a pair $\langle x_{\xi} | \xi < \lambda \rangle$, $\langle A_{\delta} | \delta \in S \rangle$ satisfying the following.

- (a) $\langle x_{\xi} | \xi < \lambda \rangle$ is an enumeration of $[\lambda \times \lambda]^{<\lambda}$.
- (b) $A_{\delta} \subseteq \delta$ and $\operatorname{card}(A_{\delta}) < \operatorname{card}(\delta)$ whenever $\delta \in S$.
- (c) For every $Z \subseteq \lambda \times \lambda$ there is a stationary $S' \subseteq S$ such that for every $\delta \in S'$ there are unboundedly many $\alpha < \delta$ for which there is $\beta < \delta$ satisfying $\alpha, \beta \in A_{\delta}$ and $Z \cap (\alpha \times \alpha) = x_{\beta} \cap (\alpha \times \alpha)$.

Proof. Pick a pair $\langle y_{\xi} | \xi < \lambda \rangle$, $\langle B_{\delta} | \delta \in S \rangle$ witnessing $\bigcap_{\lambda}(S)$. Let $f : \lambda \times \lambda \to \lambda$ be a bijection and $C_f = \{\delta < \lambda | f[\delta \times \delta] = \delta\}$.

To each $\delta \in S$ pick C_{δ} to be a subset of $\lim(C_f) \cap \delta$ of size strictly smaller than $\operatorname{card}(\delta)$ that is cofinal in δ if such a set exists; let $C_{\delta} = \emptyset$ otherwise. Letting $x_{\beta} = f^{-1}[y_{\beta}]$ and $A_{\delta} = B_{\delta} \cup C_{\delta}$, we obtain a pair $\langle x_{\xi} | \xi < \lambda \rangle$, $\langle A_{\delta} | \delta \in S \rangle$ as in the conclusion of the lemma. To see this, it suffices to verify clause (c) in the statement of the lemma.

Given any $Z \subseteq \lambda \times \lambda$, let $S' \subseteq S$ be the stationary set obtained by applying $\bigcirc_{\lambda}(S)$ to f[Z]. Let $\delta \in S' \cap \lim(C_f)$. If $\bar{\alpha} < \delta$, pick $\alpha \in C_{\delta}$ such that $\bar{\alpha} \leq \alpha$. Since S' satisfies (c) in Definition 1.1 with $f[Z], y_{\beta}$ and B_{δ} in place of Z, x_{β} and A_{δ} , there are $\alpha', \beta \in B_{\delta}$ such that $\alpha \leq \alpha'$ and $f[Z] \cap \alpha' = y_{\beta}$. Then $f[Z] \cap \alpha = y_{\beta} \cap \alpha$ and the conclusion follows immediately from the fact that $\alpha \in C_f$.

With the statement $\bigcirc_{\lambda}(S)$ in hand, one can reformulate the first step in Shelah's argument into the following proposition. It reduces the proof of $\diamondsuit_{\lambda}(S)$ to the proof of $\bigcirc_{\lambda}(S)$ and works even for cardinals λ that are not successors, which is slightly more than Shelah has originally proved. The second setp in Shelah's argument can be then viewed as a proof of $\bigcirc_{\kappa^+}(S)$ from the localized GCH. We will show how to obtain $\bigcirc_{\kappa^+}(S)$ from the additional assumption that \square_{κ}^* holds in situations where localized GCH does not seem to suffice.

Proposition 1.3. Let λ be regular and $S \subseteq \lambda$ be stationary. Then

 $\bigcirc_{\lambda}(S) \implies \Diamond_{\lambda}(S)$

Proof. Let $\langle x_{\xi} | \xi < \lambda \rangle$, $\langle A_{\delta} | \delta \in S \rangle$ be a pair satisfying the conclusion of Lemma 1.2. For $x \subseteq \lambda \times \lambda$ we write $(x)_{\xi}$ to denote $\{\zeta < \lambda | \langle \xi, \zeta \rangle \in x\}$. Consider sequences $\langle X_{\xi}, C_{\xi} | \xi < \theta \rangle$ of length $\theta \leq \lambda$ such that $X_{\xi} \subseteq \lambda$, C_{ξ} is closed unbounded in λ and, letting

$$V_{\xi}^{\delta} = \{ \langle \alpha, \beta \rangle \in A_{\delta} \times A_{\delta} \mid (\forall \eta < \xi) (X_{\eta} \cap \alpha = (x_{\beta})_{\eta} \cap \alpha) \},\$$

for every $\xi < \theta$ and $\delta \in S \cap C_{\xi}$ either dom $(V_{\xi+1}^{\delta})$ is bounded in δ or else $V_{\xi}^{\delta} \supseteq V_{\xi+1}^{\delta}$. Notice that the non-strict inclusion $V_{\xi}^{\delta} \supseteq V_{\xi'}^{\delta}$ holds anyway whenever $\xi \leq \xi'$.

The crucial observation is that any sequence $\langle X_{\xi}, C_{\xi} | \xi < \theta \rangle$ as above has length strictly below λ . Assume for a contradiction that this fails, that is, there is such a sequence with $\theta = \lambda$. Let S' come from the application of Lemma 1.2 to the pair $\langle x_{\xi} \rangle_{\xi}, \langle A_{\delta} \rangle_{\delta}$ and to set

$$Z = \{ \langle \xi, \zeta \rangle \, | \, \zeta \in X_{\xi} \},\$$

and let $\delta \in S' \cap \bigtriangleup \{C_{\xi} | \xi < \lambda\}$ be such that $\delta > \kappa$ if $\lambda = \kappa^+$ and δ is a cardinal if λ is inaccessible. We have arbitrarily large $\alpha < \delta$ for which there exists $\beta < \delta$ such that $\alpha, \beta \in A_{\delta}$ and $Z \cap (\alpha \times \alpha) = x_{\beta} \cap (\alpha \times \alpha)$, so for each $\xi < \delta$ the set dom (V_{ξ}^{δ}) is unbounded in δ . Since $\delta \in S \cap C_{\xi}$ whenever $\xi < \delta$, from the properties of the sequence $\langle X_{\xi}, C_{\xi} | \xi < \theta \rangle$ we obtain $V_{\xi}^{\delta} \supseteq V_{\xi'}^{\delta}$ whenever $\xi < \xi' < \delta$. This is a contradiction, as $V_{\xi}^{\delta} \subseteq A_{\delta} \times A_{\delta}$ and card $(A_{\delta}) < \operatorname{card}(\delta)$.

MARTIN ZEMAN

Pick a sequence $\langle X_{\xi}, C_{\xi} | \xi < \theta \rangle$ as in the previous paragraph which has no proper extension. Then $\theta < \lambda$. Letting

$$D_{\delta} = \bigcup \{ (x_{\beta})_{\theta} \cap \alpha \mid \langle \alpha, \beta \rangle \in V_{\theta}^{\delta} \},\$$

the sequence $\langle D_{\delta} | \delta \in S \rangle$ is a $\Diamond_{\lambda}(S)$ -sequence. To see this, pick an arbitrary $X \subseteq \lambda$ and a closed unbounded $C \subseteq \lambda$. There exists some $\delta \in S \cap C$ such that $\operatorname{dom}(V_{\theta}^{\delta})$ is unbounded in δ and $X \cap \alpha = (x_{\beta})_{\theta} \cap \alpha$ for all $\langle \alpha, \beta \rangle \in V_{\theta}^{\delta}$, as otherwise we could extend the sequence $\langle X_{\xi}, C_{\xi} | \xi < \theta \rangle$ by letting $X_{\theta} = X$ and $C_{\theta} = C$, in contradiction with its maximality. But then $X \cap \delta = D_{\delta}$.

We now focus on proofs of $\bigcap_{\lambda}(S)$. The point of introducing $\bigcap_{\lambda}(S)$ is that it is often easier to give a direct proof of $\bigcap_{\lambda}(S)$ than a direct proof of $\Diamond_{\lambda}(S)$. This is clear from Shelah's argument in [8] which in our notation is a proof of $\bigcap_{\kappa^+}(S)$. As Proposition 1.3 also holds for inaccessible λ , our hope was that Shelah's argument may be used for proofs of $\Diamond_{\lambda}(S)$ for inaccessible λ . It seems, however, that for inaccessible λ the proofs of $\Diamond_{\lambda}(S)$ may require more new ideas. For instance, the proofs of $\Diamond_{\lambda}(S_{\varepsilon}^{\lambda})$ for a Mahlo cardinal λ in [5] and [9] can be easily modified to give proofs of $\bigcap_{\lambda} (S_{\varepsilon}^{\lambda})$, but introducing a $\bigcap_{\lambda} (S_{\varepsilon}^{\lambda})$ -sequence into the construction does not seem to enable any strengthening of the results or a simplification of the construction in [9]. For inaccessibles λ that are not Mahlo it is not clear either whether an argument using $\bigcap_{\lambda}(S_{\varepsilon}^{\lambda})$ may work. It is certainly clear that constructions of a $\bigcap_{\lambda} (S_{\varepsilon}^{\lambda})$ -sequence from "below" as in Propositions 1.4 and 1.5 will not work, essentially for the same reason why constructions of $\Diamond_{\lambda}(S_{\varepsilon}^{\lambda})$ from "below" cannot work, as described in [9]. Analogously as in [9], given any fixed $\bigcap_{\lambda} (S_{\varepsilon}^{\lambda})$ -witness $\langle x_{\beta} \mid \beta < \lambda \rangle$, $\langle A_{\delta} \mid \delta < \lambda \rangle$, there is a $< \lambda$ -distributive forcing that "kills" such a witness. On the other hand, any construction of a $\bigcap_{\lambda} (S_{\varepsilon}^{\lambda})$ -witness from "below" would give rise to the same witness in the ground model and in the generic extension.

Let us turn to the proof of $\bigcirc_{\kappa^+}(S)$. As already mentioned above, the next proposition can be viewed as the first step in Shelah's argument. We include it, as it is a starting point for our variation with weak square.

Proposition 1.4. Assume $S \subseteq \kappa^+$ is stationary and disjoint from T_{κ} . Then

$$2^{\kappa} = \kappa^+ \implies \bigcirc_{\kappa^+} (S).$$

Proof. Pick an arbitrary enumeration $\langle y_{\xi} | \xi < \kappa^+ \rangle$ of $[\kappa^+]^{\leq \kappa}$. The existence of such an enumeration is guaranteed by the localized GCH. Let $g : \varepsilon \times \kappa^+ \to \kappa^+$ be a bijection where $\varepsilon = \operatorname{cf}(\kappa)$. For each $\delta \in S$ pick an increasing (with respect to the inclusion) sequence of sets $\langle A_{\iota}^{\delta} | \iota < \varepsilon \rangle$ such that $|A_{\iota}^{\delta}| < \kappa$ for all $\iota < \varepsilon$ and $\bigcup_{\iota < \varepsilon} A_{\iota}^{\delta} = \delta$.

We show that there is an $\iota < \varepsilon$ such that for every $Z \subseteq \kappa^+$ there are stationarily many ordinals $\delta \in S$ satisfying:

(1) For unboundedly many
$$\alpha < \delta$$
 there are $\beta < \delta$ such that $\alpha, \beta \in A_{\iota}^{\delta}$ and $Z \cap \alpha = (g^{-1}[y_{\beta}])_{\iota}$.

It follows that letting $A_{\delta} = A_{\iota}^{\delta}$ and $x_{\beta} = (g^{-1}[y_{\beta}])_{\iota}$, the pair $\langle x_{\beta} | \beta < \kappa^{+} \rangle$, $\langle A_{\iota}^{\delta} | \delta \in S \rangle$, witness $\bigcirc_{\kappa^{+}} (S)$.¹

Assume for a contradiction there is no ι as in the previous paragraph. Then for every $\iota < \varepsilon$ there is a set $Z_{\iota} \subseteq \kappa^+$ such that (1) holds only on a non-stationary

¹See proof of Proposition 1.3 for the notation $(u)_{\eta}$.

subset of S. Let $Z = \{ \langle \iota, \xi \rangle | \xi \in Z_{\iota} \}$ and and Z' = g[Z]. The set S' consisting of all $\delta \in S$ such that

- $g[\varepsilon \times \alpha] = \alpha$ for cofinally many $\alpha < \delta$ and
- $(\forall \alpha < \delta) (\exists \beta < \delta) (Z' \cap \alpha = y_{\beta})$

is stationary in κ^+ . To each $\delta \in S'$ pick a cofinal strictly increasing sequence $\langle \alpha_{\eta}^{\delta} | \eta < \operatorname{cf}(\delta) \rangle$ such that $g[\varepsilon \times \alpha_{\eta}] = \alpha_{\eta}$ for each $\eta < \operatorname{cf}(\delta)$, and to each $\eta < \operatorname{cf}(\delta)$ pick $\beta_{\eta} < \delta$ such that $Z' \cap \alpha_{\eta} = y_{\beta_{\eta}}$. This is possible by the above arrangements for elements of S'.

If $\delta \in S'$ then there is an $\iota(\delta) < \varepsilon$ such that $\alpha_{\eta}, \beta_{\eta} \in A^{\delta}_{\iota(\delta)}$ for cofinally many $\eta < \operatorname{cf}(\delta)$. This follows immediately if $\operatorname{cf}(\delta) < \varepsilon$, as the assignment

$$\eta \mapsto \text{the least } \iota \text{ such that } \alpha_{\eta}, \beta_{\eta} \in A_{\iota}^{\delta}$$

cannot be cofinal in ε , so in fact $\alpha_{\eta}, \beta_{\eta} \in A^{\delta}_{\iota(\delta)}$ for all $\eta < \operatorname{cf}(\delta)$. If $\operatorname{cf}(\delta) > \varepsilon$ this follows by the pigeonhole principle, namely the inverse image of some A^{δ}_{ι} under this assignment must have size $\operatorname{cf}(\delta)$. Applying the pigeonhole principle to the assignment $\delta \mapsto \iota(\delta)$, we obtain a stationary $S'' \subseteq S'$ and a $\iota < \varepsilon$ such that $\iota(\delta) = \iota$ for all $\delta \in S''$.

Pick $\delta \in S''$. By the above arrangements, there are cofinally many $\alpha < \delta$ for which there are $\beta < \delta$ such that $\alpha, \beta \in A_{\iota}^{\delta}$ and $Z' \cap \alpha = y_{\beta}$. Moreover, the ordinals α can be chosen so that $g[\varepsilon \times \alpha] = \alpha$. It follows that

$$Z \cap (\varepsilon \times \alpha) = g^{-1}[Z' \cap \alpha] = g^{-1}[y_{\beta}],$$

so $Z_{\iota} \cap \alpha = (g^{-1}[y_{\beta}])_{\iota}$ for all α, β as above. Since this is true of any $\delta \in S''$ we obtained a contradiction to the fact that Z_{ι} is a continer apple to (1).

The following proposition shows how to apply a standard construction that uses \Box_{κ}^* to prove $\bigcirc_{\kappa^+}(T)$.

Proposition 1.5. Assume κ is singular and $T \subseteq T_{\kappa}$ is a stationary subset of κ^+ with stationarily many reflection points. Then

$$2^{\kappa} = \kappa^+ + \square_{\kappa}^* \implies \bigcirc_{\kappa^+} (T).$$

Proof. We elaborate on the argument from the proof of Proposition 1.4. Let $\varepsilon = \operatorname{cf}(\kappa)$. Fix the following objects:

- Sequences $\langle y_{\xi} | \xi < \kappa^+ \rangle$, $\langle A_{\iota}^{\delta} | \iota < \varepsilon \rangle$ and a bijection $g : \varepsilon \times \kappa^+ \to \kappa^+$ as in the proof of Proposition 1.4.
- For each ordinal $\delta < \kappa^+$ an injection $h_\delta : \delta \to \kappa$.
- A \Box_{κ}^* -sequence $\langle \mathfrak{C}_{\delta} | \delta \in \lim \cap (\kappa, \kappa^+) \rangle$. For each δ fix an enumeration $\langle c_{\zeta}^{\delta} | \zeta < \kappa \rangle$ of the set \mathfrak{C}_{δ} .
- An increasing (with respect to the inclusion) sequence of sets $\langle B_{\iota} | \iota < \varepsilon \rangle$ such that $|B_{\iota}| < \kappa$ for each ι and $\bigcup_{\iota < \varepsilon} B_{\iota} = \kappa \times \kappa$.

For each $\delta \in \lim \cap (\kappa, \kappa^+)$ and $\zeta < \kappa$ define a function $f_{\zeta}^{\delta} : \delta \to \kappa \times \kappa$ and a sequence of sets $\langle A_{\zeta, \iota}^{\delta} | \iota < \varepsilon \rangle$ as follows.

$$f_{\zeta}^{\delta}(\xi) = \langle \eta, h_{\gamma}(\xi) \rangle$$

where γ is the least element of c_{ζ}^{δ} strictly above ξ and $\eta = \operatorname{otp}(c_{\zeta}^{\delta} \cap \gamma) - 1^{-2}$ and

$$A^{\delta}_{\zeta,\iota} = (f^{\delta}_{\zeta})^{-1} [B_{\iota}].$$

²Notice that $\operatorname{otp}(c_{\zeta}^{\delta} \cap \gamma)$ is a successor ordinal if γ is as above.

MARTIN ZEMAN

Notice that each f_{ζ}^{δ} is an injection. By our choice of the sets B_{ι} we then have $|A_{\zeta,\iota}^{\delta}| < \kappa$ and $\bigcup_{\iota < \varepsilon} A_{\zeta,\iota}^{\delta} = \delta$. We also have the following coherency property for the sets $A^{\delta}_{\zeta,\iota}$: If $\bar{\delta}$ is a limit point of c^{δ}_{ζ} then there is an ordinal $\bar{\zeta} < \kappa$ such that

(2)
$$A^{\delta}_{\zeta,\iota} \cap \bar{\delta} = A^{\delta}_{\bar{\zeta},\iota}$$

To see this notice first that if $\bar{\delta}$ is a limit point of c_{ζ}^{δ} then there is $\bar{\zeta} < \kappa$ such that $c^{\delta}_{\zeta} \cap \bar{\delta} = c^{\bar{\delta}}_{\bar{\zeta}}$, and from the definition of f^{δ}_{ζ} we immediately conclude that $f^{\bar{\delta}}_{\bar{\zeta}} = f^{\delta}_{\zeta} \upharpoonright \bar{\delta}$. The rest follows immediately from the definition of $A_{\zeta,\iota}^{\delta}$.

Fix an increasing sequence $\langle \kappa_{\iota} | \iota < \varepsilon \rangle$ cofinal in κ . For each $\delta \in T$ and $\iota < \varepsilon$ set $A_{\iota}^{\delta} = \bigcup_{\zeta < \kappa_{\iota}} A_{\zeta,\iota}^{\delta}$. Notice that $|A_{\iota}^{\delta}| < \kappa$, as $|A_{\zeta,\iota}^{\delta}| < |B_{\iota}|$ for all $\zeta < \kappa_{\iota}$. Following the ideas from the proof of Proposition 1.4 we prove: There is an $\iota < \varepsilon$ such that for every $Z \subset \kappa^+$ there are stationarily many $\delta \in T$ satisfying:

(3) For unboundedly many
$$\alpha < \delta$$
 there are $\beta < \delta$ such that $\alpha, \beta \in A_{\iota}^{\delta}$ and $Z \cap \alpha = (g^{-1}[y_{\beta}])_{\iota}$.

It follows that letting $x_{\beta} = (g^{-1}[y_{\beta}])_{\iota}$ and $A_{\delta} = A_{\iota}^{\delta}$ where ι is as above, the pair $\langle x_{\beta} | \beta < \kappa^{+} \rangle, \langle A_{\delta} | \delta \in T \rangle$ witnesses $\bigcap_{\kappa^{+}} (T).$

Assume for a contradiction that no ι as above exists. As in the proof of Proposition 1.4 pick a counterexample Z_{ι} for each $\iota < \varepsilon$, let $Z = \{\langle \iota, \xi \rangle \in \varepsilon \times \kappa^+ \mid \xi \in Z_{\iota}\}$ and Z' = q[Z]. Let C be a closed unbounded subset of κ^+ . By our assumption on T, there is a reflection point δ' of T such that:

- δ' is a limit point of C.
- g[ε × α] = α for cofinally many α < δ'.
 (∀α < δ')(∃β < δ')(Z' ∩ α = y_β).

As δ' is a reflection point of T, necessarily $cf(\delta') > \varepsilon$. Pick an increasing sequence $\langle \alpha_{\eta} | \eta < \operatorname{cf}(\delta') \rangle$ cofinal in δ' such that $g[\varepsilon \times \alpha_{\eta}] = \alpha_{\eta}$ for each $\eta < \operatorname{cf}(\delta')$. To each $\eta < \operatorname{cf}(\delta')$ assign some $\beta_{\eta} < \delta'$ satisfying $Z' \cap \alpha_{\eta} = x_{\beta_{\eta}}$. It is convenient to pick β_{η} to be least posssible. Since $cf(\delta') > \varepsilon$, using the pigeonhole principle we conclude that there is some $\iota' < \varepsilon$ such that $\alpha_{\eta}, \beta_{\eta} \in A_{0,\iota'}^{\delta'}$ for cofinally many $\eta < \operatorname{cf}(\delta')$. Let $\delta \in T \cap C \cap \lim(c_0^{\delta'})$ be a limit point of $\{\alpha_\eta \mid \alpha_\eta, \beta_\eta \in A_{0,\iota'}^{\delta'}\}$. Such a δ exists by our choice of δ' and ι' , and by the fact that $T \cap \delta'$ is stationary in δ' . Let $\xi < \kappa$ be such that $A_{\xi,\iota'}^{\delta} = A_{0,\iota'}^{\delta'} \cap \delta$ and let $\iota(\delta) > \iota'$ be such that $\kappa_{\iota(\delta)} > \xi$. The existence of such a ξ follows from (2). Then $A_{0,\iota'}^{\delta'} \cap \delta \subseteq A_{\iota(\delta)}^{\delta}$, as $B_{\iota'} \subseteq B_{\iota(\delta)}$.

The previous paragraph proves that there is a stationary $T' \subset T$ such that for every $\delta \in T'$ there is an $\iota(\delta) < \varepsilon$ such that for cofinally many $\alpha < \delta$ there are $\beta < \delta$ such that $\alpha, \beta \in A_{\iota(\delta)}^{\delta}, Z' \cap \alpha = y_{\beta}$ and $g[\varepsilon \times \alpha] = \alpha$. The rest of the proof literally follows the proof of Proposition 1.4. We first find a stationary $T'' \subseteq T'$ on which $\iota(\delta)$ stabilize; let ι be the stabilized value. Then we unfold Z' and y_{β} using g and conclude that for α, β as above we have $Z_{\iota} \cap \alpha = (g^{-1}[y_{\beta}])_{\iota}$. This yields a contradiction with the fact that Z_{ι} is a counterexample to (3).

References

- [1] Cummings, J., Foreman, M. and Magidor, M., Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), 35-98
- Devlin, K. J., Constructibility, Springer 1984
- [3] Devlin, K. J. and Johnsbraten, H., The Souslin Problem, Lecture Notes in Mathematics 405, Springer 1974

- [4] Gregory, J., Higher Souslin Trees and the Generalized Continuum Hypothesis, Journal of Symbolic Logic 14 (1976), 663-671
- [5] Jensen, R., Diamond at Mahlo cardinals, Handwritten notes, Oberwolfach 1991
- [6] Komjáth, P., Shelah's proof of diamond, unpublished
- [7] Shelah, S., On successors of singular cardinals, Logic Colloquium'78, Stud. Logic Foundations Math 97, North-Holland 1979, 357-380
- [8] Shelah, S., Diamonds, Shelah Archive 922
- [9] Zeman, M., \Diamond at Mahlo cardinals, Journal of Symbolic Logic 65(4) (2000), 1813-1822

Department of Mathematics, University of California at Irvine, Irvine, CA 92697 $E\text{-}mail\ address: \verb+mzeman@math.uci.edu$