DIAMOND, GCH AND WEAK SQUARE

MARTIN ZEMAN

Abstract

Shelah proved recently that if $\kappa>\omega$ and $S \subseteq \kappa^{+}$is a stationary set of ordinals of cofinality different from $\operatorname{cf}(\kappa)$ then $2^{\kappa}=\kappa^{+}$implies $\diamond_{\kappa}(S)$. We show that for singular κ, an elaboration on his argument allows to derive $\nabla_{\kappa}(T)$ from $2^{\kappa}=\kappa^{+}+\square_{\kappa}^{*}$ where $T=\left\{\delta<\kappa^{+} \mid \operatorname{cf}(\delta)=\operatorname{cf}(\kappa)\right\}$. This gives a strong restriction on the existence of saturated ideals on κ^{+}.

AMS Subject Classification: 03E04, 03E05
Keywords: Diamond, Weak Square, Generalized Continuum Hypothesis

It is a well-known fact that δ_{λ} implies $2^{<\lambda}=\lambda$. In many situations the converse is also true. Jensen [3] proved that CH does not imply \diamond, so when looking for the converse one has to focus on $\lambda>\omega_{1}$. Let

$$
S_{\mu}^{\lambda}=\{\delta<\lambda \mid \operatorname{cf}(\delta)=\mu\}
$$

and

$$
T_{\kappa}=S_{\mathrm{cf}(\kappa)}^{\kappa^{+}}
$$

Gregory observed that GCH below ω_{2} implies $\diamond_{\omega_{2}}\left(S_{\omega}^{\omega_{2}}\right)$. A sequence of improvements on his result, mainly by Gregory [4], Jensen (unpublished) and Shelah [7], resulted in the following theorem whose proof can be found in [2].
Theorem 0.1 (Gregory, Jensen, Shelah). If $2^{<\kappa}=\kappa$ and $2^{\kappa}=\kappa^{+}$then $\diamond_{\kappa^{+}}(S)$ holds whenever $S \subseteq \kappa^{+}$is a stationary set of ordinals of cofinality different from $\operatorname{cf}(\kappa)$. If κ is singular and additionally \square_{κ} holds then $\diamond_{\kappa^{+}}\left(T_{\kappa}\right)$.

Shelah also proved that for regular κ, the condition $2^{\kappa}=\kappa^{+}+\square_{\kappa}$ is not sufficient to guarantee $\diamond_{\kappa^{+}}\left(T_{\kappa}\right)$, so the absolute ZFC result is possible only for singular κ.

The question remained whether the localized GCH , i.e. the equality $2^{\kappa}=\kappa^{+}$alone implies $\diamond_{\kappa^{+}}$. Shelah proved this to be true for sufficiently large κ, and recently [8] found an argument that proves it for every uncountable cardinal κ; see Komjáth's paper [6] for a simplified proof and an elaboration on Shelah's argument.
Theorem 0.2 (Shelah). Let $\kappa>\omega$ and $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}(S)$ holds for every stationary $S \subseteq \kappa^{+}$that is disjoint with T_{κ}.

This note combines arguments from the proof of Theorem 0.1 with Shelah's argument for Theorem 0.2 to give a proof of $\diamond_{\kappa^{+}}(S)$ for $S \subseteq T_{\kappa}$.
Theorem 0.3 (Main Theorem). Assume κ is a singular cardinal and $T \subseteq T_{\kappa}$ is stationary with stationarily many reflection points. Then

$$
2^{\kappa}=\kappa^{+}+\square_{\kappa}^{*} \Longrightarrow \diamond_{\kappa^{+}}(T)
$$

[^0]It was proved by Cummings, Foreman and Magidor [1] that for singular κ, the principle \square_{κ}^{*} is consistent with the requirement that every stationary $T \subseteq T_{\kappa}$ has stationarily many reflection points. Consequently, in their model we have $\diamond_{\kappa^{+}}(S)$ for all stationary $S \subseteq \kappa^{+}$.
Corollary 0.4. Assume κ is a singular cardinal. Then

$$
2^{\kappa}=\kappa^{+}+\square_{\kappa}^{*} \Longrightarrow \nabla_{\kappa}\left(T_{\kappa}\right)
$$

Both the above theorem and its corollary provides a very strong restriction on the existence of saturated ideals on κ^{+}and provide a close link between the study of such ideals and the PCF-theory.

Rinot recently extended the result of this paper to the situation where weak square is replaced by a variant of approachability property and also showed that, relatively to the existence to a supercompact cardinal, it is consistent that \square_{κ}^{*} fails but $\diamond_{\kappa^{+}}(S)$ holds for every stationary $S \subseteq \kappa^{+}$.

1. The argument

We begin with splitting Shelah's argument into two steps. We first isolate a combinatorial statement that alone implies the existence of a $\diamond_{\lambda}(S)$-sequence in ZFC; we denote this statement by $\bigcirc_{\lambda}(S)$. This statement is implicit the arguments in Shelah [8] and Komjáth [6]. It turns out that the implication $\bigcirc_{\lambda}(S) \Longrightarrow \diamond_{\lambda}(S)$ is true no matter whether λ is a successor cardinal or not. The second step is a proof that $\bigcirc_{\lambda}(S)$ holds, which relies on the localized GCH if $\lambda=\kappa^{+}$and S concentrates on points of cofinality distinct from $\operatorname{cf}(\kappa)$ which gives the original Shelah's result, and on the weak square if κ is singular and S concentrates on points of cofinality $\mathrm{cf}(\kappa)$ which gives the result in Theorem 0.3. Our approach owes a lot to Komjáth's exposition in [6].
Definition 1.1. Let λ be a regular cardinal and $S \subseteq \lambda$. We say that the pair $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle,\left\langle A_{\delta} \mid \delta \in S\right\rangle$ witnesses $\bigcirc_{\lambda}(S)$ iff the following three conditions are met.
(a) $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle$ is an enumeration of $[\lambda]^{<\lambda}$.
(b) $A_{\delta} \subseteq \delta$ and $\operatorname{card}\left(A_{\delta}\right)<\operatorname{card}(\delta)$ whenever $\delta \in S$.
(c) For every $Z \subseteq \lambda$ there is a stationary $S^{\prime} \subseteq S$ such that for every $\delta \in S^{\prime}$ there are unboundedly many $\alpha<\delta$ for which there is $\beta<\delta$ satisfying $\alpha, \beta \in A_{\delta}$ and $Z \cap \alpha=x_{\beta}$.
We say that $\bigcirc_{\lambda}(S)$ holds iff there are $\left\langle x_{\xi}\right\rangle_{\xi}$ and $\left\langle A_{\delta}\right\rangle_{\delta}$ as above.
Notice that $\bigcirc_{\lambda}(S)$ postulates the existence of an enumeration of $[\lambda]^{<\lambda}$ of length λ, so it imposes some constraints on the behaviour of the exponential function below λ. In particular, if $\lambda=\kappa^{+}$then $\bigcirc_{\lambda}(S)$ implies $2^{\kappa}=\kappa^{+}$. Notice also that (b) in the above definition stipulates that the cardinality of A_{δ} is strictly smaller than that of δ, which together with (c) implies that without loss of generality S can be viewed as a set of singular ordinals. Of course, this has a non-trivial meaning only when λ is inaccessible. Finally observe that if there is a pair $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle$, $\left\langle A_{\delta} \mid \delta \in S\right\rangle$ witnessing $\bigcirc_{\lambda}(S)$ then for every enumeration $\left\langle x_{\xi}^{\prime} \mid \xi<\lambda\right\rangle$ there is a sequence $\left\langle A_{\delta}^{\prime} \mid \delta \in S\right\rangle$ such that the pair $\left\langle x_{\xi}^{\prime}\right\rangle_{\xi},\left\langle A_{\delta}^{\prime}\right\rangle_{\delta}$ witnesses $\bigcirc_{\lambda}(S)$. To see this, pick any $f: \lambda \rightarrow \lambda$ such that $x_{\beta}=x_{f(\beta)}^{\prime}$ for all $\beta<\lambda$ and let $A_{\delta}^{\prime}=A_{\delta} \cup f\left[A_{\delta}\right]$ for all $\delta \in S$ satisfying $f[\delta] \subseteq \delta$.
Lemma 1.2. Let λ be a regular cardinal, $S \subseteq \lambda$ and $\bigcirc_{\lambda}(S)$ hold. Then there is a pair $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle,\left\langle A_{\delta} \mid \delta \in S\right\rangle$ satisfying the following.
(a) $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle$ is an enumeration of $[\lambda \times \lambda]^{<\lambda}$.
(b) $A_{\delta} \subseteq \delta$ and $\operatorname{card}\left(A_{\delta}\right)<\operatorname{card}(\delta)$ whenever $\delta \in S$.
(c) For every $Z \subseteq \lambda \times \lambda$ there is a stationary $S^{\prime} \subseteq S$ such that for every $\delta \in S^{\prime}$ there are unboundedly many $\alpha<\delta$ for which there is $\beta<\delta$ satisfying $\alpha, \beta \in A_{\delta}$ and $Z \cap(\alpha \times \alpha)=x_{\beta} \cap(\alpha \times \alpha)$.
Proof. Pick a pair $\left\langle y_{\xi} \mid \xi<\lambda\right\rangle,\left\langle B_{\delta} \mid \delta \in S\right\rangle$ witnessing $\bigcirc_{\lambda}(S)$. Let $f: \lambda \times \lambda \rightarrow \lambda$ be a bijection and $C_{f}=\{\delta<\lambda \mid f[\delta \times \delta]=\delta\}$.

To each $\delta \in S$ pick C_{δ} to be a subset of $\lim \left(C_{f}\right) \cap \delta$ of size strictly smaller than $\operatorname{card}(\delta)$ that is cofinal in δ if such a set exists; let $C_{\delta}=\varnothing$ otherwise. Letting $x_{\beta}=f^{-1}\left[y_{\beta}\right]$ and $A_{\delta}=B_{\delta} \cup C_{\delta}$, we obtain a pair $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle,\left\langle A_{\delta} \mid \delta \in S\right\rangle$ as in the conclusion of the lemma. To see this, it suffices to verify clause (c) in the statement of the lemma.

Given any $Z \subseteq \lambda \times \lambda$, let $S^{\prime} \subseteq S$ be the stationary set obtained by applying $\bigcirc_{\lambda}(S)$ to $f[Z]$. Let $\delta \in S^{\prime} \cap \lim \left(C_{f}\right)$. If $\bar{\alpha}<\delta$, pick $\alpha \in C_{\delta}$ such that $\bar{\alpha} \leq \alpha$. Since S^{\prime} satisfies (c) in Definition 1.1 with $f[Z], y_{\beta}$ and B_{δ} in place of Z, x_{β} and A_{δ}, there are $\alpha^{\prime}, \beta \in B_{\delta}$ such that $\alpha \leq \alpha^{\prime}$ and $f[Z] \cap \alpha^{\prime}=y_{\beta}$. Then $f[Z] \cap \alpha=y_{\beta} \cap \alpha$ and the conclusion follows immediately from the fact that $\alpha \in C_{f}$.

With the statement $\bigcirc_{\lambda}(S)$ in hand, one can reformulate the first step in Shelah's argument into the following proposition. It reduces the proof of $\nabla_{\lambda}(S)$ to the proof of $\bigcirc_{\lambda}(S)$ and works even for cardinals λ that are not successors, which is slightly more than Shelah has originally proved. The second setp in Shelah's argument can be then viewed as a proof of $\bigcirc_{\kappa^{+}}(S)$ from the localized GCH. We will show how to obtain $\bigcirc_{\kappa^{+}}(S)$ from the additional assumption that \square_{κ}^{*} holds in situations where localized GCH does not seem to suffice.
Proposition 1.3. Let λ be regular and $S \subseteq \lambda$ be stationary. Then

$$
\bigcirc_{\lambda}(S) \Longrightarrow \diamond_{\lambda}(S)
$$

Proof. Let $\left\langle x_{\xi} \mid \xi<\lambda\right\rangle,\left\langle A_{\delta} \mid \delta \in S\right\rangle$ be a pair satisfying the conclusion of Lemma 1.2. For $x \subseteq \lambda \times \lambda$ we write $(x)_{\xi}$ to denote $\{\zeta<\lambda \mid\langle\xi, \zeta\rangle \in x\}$. Consider sequences $\left\langle X_{\xi}, C_{\xi} \mid \xi<\theta\right\rangle$ of length $\theta \leq \lambda$ such that $X_{\xi} \subseteq \lambda, C_{\xi}$ is closed unbounded in λ and, letting

$$
V_{\xi}^{\delta}=\left\{\langle\alpha, \beta\rangle \in A_{\delta} \times A_{\delta} \mid(\forall \eta<\xi)\left(X_{\eta} \cap \alpha=\left(x_{\beta}\right)_{\eta} \cap \alpha\right)\right\},
$$

for every $\xi<\theta$ and $\delta \in S \cap C_{\xi}$ either $\operatorname{dom}\left(V_{\xi+1}^{\delta}\right)$ is bounded in δ or else $V_{\xi}^{\delta} \supsetneqq V_{\xi+1}^{\delta}$. Notice that the non-strict inclusion $V_{\xi}^{\delta} \supseteq V_{\xi^{\prime}}^{\delta}$ holds anyway whenever $\xi \leq \xi^{\prime}$.

The crucial observation is that any sequence $\left\langle X_{\xi}, C_{\xi} \mid \xi<\theta\right\rangle$ as above has length strictly below λ. Assume for a contradiction that this fails, that is, there is such a sequence with $\theta=\lambda$. Let S^{\prime} come from the application of Lemma 1.2 to the pair $\left\langle x_{\xi}\right\rangle_{\xi},\left\langle A_{\delta}\right\rangle_{\delta}$ and to set

$$
Z=\left\{\langle\xi, \zeta\rangle \mid \zeta \in X_{\xi}\right\}
$$

and let $\delta \in S^{\prime} \cap \triangle\left\{C_{\xi} \mid \xi<\lambda\right\}$ be such that $\delta>\kappa$ if $\lambda=\kappa^{+}$and δ is a cardinal if λ is inaccessible. We have arbitrarily large $\alpha<\delta$ for which there exists $\beta<\delta$ such that $\alpha, \beta \in A_{\delta}$ and $Z \cap(\alpha \times \alpha)=x_{\beta} \cap(\alpha \times \alpha)$, so for each $\xi<\delta$ the set $\operatorname{dom}\left(V_{\xi}^{\delta}\right)$ is unbounded in δ. Since $\delta \in S \cap C_{\xi}$ whenever $\xi<\delta$, from the properties of the sequence $\left\langle X_{\xi}, C_{\xi} \mid \xi<\theta\right\rangle$ we obtain $V_{\xi}^{\delta} \supsetneqq V_{\xi^{\prime}}^{\delta}$ whenever $\xi<\xi^{\prime}<\delta$. This is a contradiction, as $V_{\xi}^{\delta} \subseteq A_{\delta} \times A_{\delta}$ and $\operatorname{card}\left(A_{\delta}\right)<\operatorname{card}(\delta)$.

Pick a sequence $\left\langle X_{\xi}, C_{\xi} \mid \xi<\theta\right\rangle$ as in the previous paragraph which has no proper extension. Then $\theta<\lambda$. Letting

$$
D_{\delta}=\bigcup\left\{\left(x_{\beta}\right)_{\theta} \cap \alpha \mid\langle\alpha, \beta\rangle \in V_{\theta}^{\delta}\right\}
$$

the sequence $\left\langle D_{\delta} \mid \delta \in S\right\rangle$ is a $\diamond_{\lambda}(S)$-sequence. To see this, pick an arbitrary $X \subseteq \lambda$ and a closed unbounded $C \subseteq \lambda$. There exists some $\delta \in S \cap C$ such that $\operatorname{dom}\left(V_{\theta}^{\delta}\right)$ is unbounded in δ and $X \cap \alpha=\left(x_{\beta}\right)_{\theta} \cap \alpha$ for all $\langle\alpha, \beta\rangle \in V_{\theta}^{\delta}$, as otherwise we could extend the sequence $\left\langle X_{\xi}, C_{\xi} \mid \xi<\theta\right\rangle$ by letting $X_{\theta}=X$ and $C_{\theta}=C$, in contradiction with its maximality. But then $X \cap \delta=D_{\delta}$.

We now focus on proofs of $\bigcirc_{\lambda}(S)$. The point of introducing $\bigcirc_{\lambda}(S)$ is that it is often easier to give a direct proof of $\bigcirc_{\lambda}(S)$ than a direct proof of $\nabla_{\lambda}(S)$. This is clear from Shelah's argument in [8] which in our notation is a proof of $\bigcirc_{\kappa^{+}}(S)$. As Proposition 1.3 also holds for inaccessible λ, our hope was that Shelah's argument may be used for proofs of $\nabla_{\lambda}(S)$ for inaccessible λ. It seems, however, that for inaccessible λ the proofs of $\diamond_{\lambda}(S)$ may require more new ideas. For instance, the proofs of $\diamond_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$ for a Mahlo cardinal λ in [5] and [9] can be easily modified to give proofs of $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$, but introducing a $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$-sequence into the construction does not seem to enable any strengthening of the results or a simplification of the construction in [9]. For inaccessibles λ that are not Mahlo it is not clear either whether an argument using $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$ may work. It is certainly clear that constructions of a $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$-sequence from "below" as in Propositions 1.4 and 1.5 will not work, essentially for the same reason why constructions of $\nabla_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$ from "below" cannot work, as described in [9]. Analogously as in [9], given any fixed $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$-witness $\left\langle x_{\beta} \mid \beta<\lambda\right\rangle,\left\langle A_{\delta} \mid \delta<\lambda\right\rangle$, there is a $<\lambda$-distributive forcing that "kills" such a witness. On the other hand, any construction of a $\bigcirc_{\lambda}\left(S_{\varepsilon}^{\lambda}\right)$-witness from "below" would give rise to the same witness in the ground model and in the generic extension.

Let us turn to the proof of $\bigcirc_{\kappa^{+}}(S)$. As already mentioned above, the next proposition can be viewed as the first step in Shelah's argument. We include it, as it is a starting point for our variation with weak square.
Proposition 1.4. Assume $S \subseteq \kappa^{+}$is stationary and disjoint from T_{κ}. Then

$$
2^{\kappa}=\kappa^{+} \Longrightarrow \bigcirc_{\kappa^{+}}(S) .
$$

Proof. Pick an arbitrary enumeration $\left\langle y_{\xi} \mid \xi<\kappa^{+}\right\rangle$of $\left[\kappa^{+}\right] \leq \kappa$. The existence of such an enumeration is guaranteed by the localized GCH. Let $g: \varepsilon \times \kappa^{+} \rightarrow \kappa^{+}$be a bijection where $\varepsilon=\operatorname{cf}(\kappa)$. For each $\delta \in S$ pick an increasing (with respect to the inclusion) sequence of sets $\left\langle A_{\iota}^{\delta} \mid \iota<\varepsilon\right\rangle$ such that $\left|A_{\iota}^{\delta}\right|<\kappa$ for all $\iota<\varepsilon$ and $\bigcup_{\iota<\varepsilon} A_{\iota}^{\delta}=\delta$.

We show that there is an $\iota<\varepsilon$ such that for every $Z \subseteq \kappa^{+}$there are stationarily many ordinals $\delta \in S$ satisfying:

For unboundedly many $\alpha<\delta$ there are $\beta<\delta$ such that

$$
\begin{equation*}
\alpha, \beta \in A_{\iota}^{\delta} \text { and } Z \cap \alpha=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota} . \tag{1}
\end{equation*}
$$

It follows that letting $A_{\delta}=A_{\iota}^{\delta}$ and $x_{\beta}=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota}$, the pair $\left\langle x_{\beta} \mid \beta<\kappa^{+}\right\rangle$, $\left\langle A_{\iota}^{\delta} \mid \delta \in S\right\rangle$, witness $\bigcirc_{\kappa^{+}}(S)$.

Assume for a contradiction there is no ι as in the previous paragraph. Then for every $\iota<\varepsilon$ there is a set $Z_{\iota} \subseteq \kappa^{+}$such that (1) holds only on a non-stationary

[^1]subset of S. Let $Z=\left\{\langle\iota, \xi\rangle \mid \xi \in Z_{\iota}\right\}$ and and $Z^{\prime}=g[Z]$. The set S^{\prime} consisting of all $\delta \in S$ such that

- $g[\varepsilon \times \alpha]=\alpha$ for cofinally many $\alpha<\delta$ and
- $(\forall \alpha<\delta)(\exists \beta<\delta)\left(Z^{\prime} \cap \alpha=y_{\beta}\right)$
is stationary in κ^{+}. To each $\delta \in S^{\prime}$ pick a cofinal strictly increasing sequence $\left\langle\alpha_{\eta}^{\delta} \mid \eta<\operatorname{cf}(\delta)\right\rangle$ such that $g\left[\varepsilon \times \alpha_{\eta}\right]=\alpha_{\eta}$ for each $\eta<\operatorname{cf}(\delta)$, and to each $\eta<\operatorname{cf}(\delta)$ pick $\beta_{\eta}<\delta$ such that $Z^{\prime} \cap \alpha_{\eta}=y_{\beta_{\eta}}$. This is possible by the above arrangements for elements of S^{\prime}.

If $\delta \in S^{\prime}$ then there is an $\iota(\delta)<\varepsilon$ such that $\alpha_{\eta}, \beta_{\eta} \in A_{\iota(\delta)}^{\delta}$ for cofinally many $\eta<\operatorname{cf}(\delta)$. This follows immediately if $\operatorname{cf}(\delta)<\varepsilon$, as the assignment

$$
\eta \mapsto \text { the least } \iota \text { such that } \alpha_{\eta}, \beta_{\eta} \in A_{\iota}^{\delta}
$$

cannot be cofinal in ε, so in fact $\alpha_{\eta}, \beta_{\eta} \in A_{\iota(\delta)}^{\delta}$ for all $\eta<\operatorname{cf}(\delta)$. If $\operatorname{cf}(\delta)>\varepsilon$ this follows by the pigeonhole principle, namely the inverse image of some A_{ι}^{δ} under this assignment must have size $\operatorname{cf}(\delta)$. Applying the pigeonhole principle to the assignment $\delta \mapsto \iota(\delta)$, we obtain a stationary $S^{\prime \prime} \subseteq S^{\prime}$ and a $\iota<\varepsilon$ such that $\iota(\delta)=\iota$ for all $\delta \in S^{\prime \prime}$.

Pick $\delta \in S^{\prime \prime}$. By the above arrangements, there are cofinally many $\alpha<\delta$ for which there are $\beta<\delta$ such that $\alpha, \beta \in A_{\iota}^{\delta}$ and $Z^{\prime} \cap \alpha=y_{\beta}$. Moreover, the ordinals α can be chosen so that $g[\varepsilon \times \alpha]=\alpha$. It follows that

$$
Z \cap(\varepsilon \times \alpha)=g^{-1}\left[Z^{\prime} \cap \alpha\right]=g^{-1}\left[y_{\beta}\right]
$$

so $Z_{\iota} \cap \alpha=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota}$ for all α, β as above. Since this is true of any $\delta \in S^{\prime \prime}$ we obtained a contradiction to the fact that Z_{ι} is a coutnerexample to (1).

The following proposition shows how to apply a standard construction that uses \square_{κ}^{*} to prove $\bigcirc_{\kappa^{+}}(T)$.
Proposition 1.5. Assume κ is singular and $T \subseteq T_{\kappa}$ is a stationary subset of κ^{+} with stationarily many reflection points. Then

$$
2^{\kappa}=\kappa^{+}+\square_{\kappa}^{*} \Longrightarrow \bigcirc_{\kappa^{+}}(T)
$$

Proof. We elaborate on the argument from the proof of Proposition 1.4. Let $\varepsilon=\operatorname{cf}(\kappa)$. Fix the following objects:

- Sequences $\left\langle y_{\xi} \mid \xi<\kappa^{+}\right\rangle,\left\langle A_{\iota}^{\delta} \mid \iota<\varepsilon\right\rangle$ and a bijection $g: \varepsilon \times \kappa^{+} \rightarrow \kappa^{+}$as in the proof of Proposition 1.4.
- For each ordinal $\delta<\kappa^{+}$an injection $h_{\delta}: \delta \rightarrow \kappa$.
- A $\square_{\kappa^{*}}^{*}$-sequence $\left\langle\mathrm{C}_{\delta} \mid \delta \in \lim \cap\left(\kappa, \kappa^{+}\right)\right\rangle$. For each δ fix an enumeration $\left\langle c_{\zeta}^{\delta} \mid \zeta<\kappa\right\rangle$ of the set \mathcal{C}_{δ}.
- An increasing (with respect to the inclusion) sequence of sets $\left\langle B_{\iota} \mid \iota<\varepsilon\right\rangle$ such that $\left|B_{\iota}\right|<\kappa$ for each ι and $\bigcup_{\iota<\varepsilon} B_{\iota}=\kappa \times \kappa$.
For each $\delta \in \lim \cap\left(\kappa, \kappa^{+}\right)$and $\zeta<\kappa$ define a function $f_{\zeta}^{\delta}: \delta \rightarrow \kappa \times \kappa$ and a sequence of sets $\left\langle A_{\zeta, \iota}^{\delta} \mid \iota<\varepsilon\right\rangle$ as follows.

$$
f_{\zeta}^{\delta}(\xi)=\left\langle\eta, h_{\gamma}(\xi)\right\rangle
$$

where γ is the least element of c_{ζ}^{δ} strictly above ξ and $\eta=\operatorname{otp}\left(c_{\zeta}^{\delta} \cap \gamma\right)-1^{2}$ and

$$
A_{\zeta, \iota}^{\delta}=\left(f_{\zeta}^{\delta}\right)^{-1}\left[B_{\iota}\right]
$$

[^2]Notice that each f_{ζ}^{δ} is an injection. By our choice of the sets B_{ι} we then have $\left|A_{\zeta, \iota}^{\delta}\right|<\kappa$ and $\bigcup_{t<\varepsilon} A_{\zeta, \iota}^{\delta}=\delta$. We also have the following coherency property for the sets $A_{\zeta,,}^{\delta}$: If $\bar{\delta}$ is a limit point of c_{ζ}^{δ} then there is an ordinal $\bar{\zeta}<\kappa$ such that

$$
\begin{equation*}
A_{\zeta, \iota}^{\delta} \cap \bar{\delta}=A_{\bar{\zeta}, \iota}^{\bar{\delta}} \tag{2}
\end{equation*}
$$

To see this notice first that if $\bar{\delta}$ is a limit point of c_{ζ}^{δ} then there is $\bar{\zeta}<\kappa$ such that $c_{\zeta}^{\delta} \cap \bar{\delta}=c_{\bar{\zeta}}^{\bar{\delta}}$, and from the definition of f_{ζ}^{δ} we immediately conclude that $f_{\bar{\zeta}}^{\bar{\delta}}=f_{\zeta}^{\delta} \upharpoonright \bar{\delta}$. The rest follows immediately from the definition of $A_{\zeta, \iota}^{\delta}$.

Fix an increasing sequence $\left\langle\kappa_{\iota} \mid \iota<\varepsilon\right\rangle$ cofinal in κ. For each $\delta \in T$ and $\iota<\varepsilon$ set $A_{\iota}^{\delta}=\bigcup_{\zeta<\kappa_{\iota}} A_{\zeta, \iota}^{\delta}$. Notice that $\left|A_{\iota}^{\delta}\right|<\kappa$, as $\left|A_{\zeta, \iota}^{\delta}\right|<\left|B_{\iota}\right|$ for all $\zeta<\kappa_{\iota}$. Following the ideas from the proof of Proposition 1.4 we prove: There is an $\iota<\varepsilon$ such that for every $Z \subseteq \kappa^{+}$there are stationarily many $\delta \in T$ satisfying:

> For unboundedly many $\alpha<\delta$ there are $\beta<\delta$ such that $$
\alpha, \beta \in A_{\iota}^{\delta} \text { and } Z \cap \alpha=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota} .
$$

It follows that letting $x_{\beta}=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota}$ and $A_{\delta}=A_{\iota}^{\delta}$ where ι is as above, the pair $\left\langle x_{\beta} \mid \beta<\kappa^{+}\right\rangle,\left\langle A_{\delta} \mid \delta \in T\right\rangle$ witnesses $\bigcirc_{\kappa^{+}}(T)$.

Assume for a contradiction that no ι as above exists. As in the proof of Proposition 1.4 pick a counterexample Z_{ι} for each $\iota<\varepsilon$, let $Z=\left\{\langle\iota, \xi\rangle \in \varepsilon \times \kappa^{+} \mid \xi \in Z_{\iota}\right\}$ and $Z^{\prime}=g[Z]$. Let C be a closed unbounded subset of κ^{+}. By our assumption on T, there is a reflection point δ^{\prime} of T such that:

- δ^{\prime} is a limit point of C.
- $g[\varepsilon \times \alpha]=\alpha$ for cofinally many $\alpha<\delta^{\prime}$.
- $\left(\forall \alpha<\delta^{\prime}\right)\left(\exists \beta<\delta^{\prime}\right)\left(Z^{\prime} \cap \alpha=y_{\beta}\right)$.

As δ^{\prime} is a reflection point of T, necessarily $\operatorname{cf}\left(\delta^{\prime}\right)>\varepsilon$. Pick an increasing sequence $\left\langle\alpha_{\eta} \mid \eta<\operatorname{cf}\left(\delta^{\prime}\right)\right\rangle$ cofinal in δ^{\prime} such that $g\left[\varepsilon \times \alpha_{\eta}\right]=\alpha_{\eta}$ for each $\eta<\operatorname{cf}\left(\delta^{\prime}\right)$. To each $\eta<\operatorname{cf}\left(\delta^{\prime}\right)$ assign some $\beta_{\eta}<\delta^{\prime}$ satisfying $Z^{\prime} \cap \alpha_{\eta}=x_{\beta_{\eta}}$. It is convenient to pick β_{η} to be least posssible. Since $\operatorname{cf}\left(\delta^{\prime}\right)>\varepsilon$, using the pigeonhole principle we conclude that there is some $\iota^{\prime}<\varepsilon$ such that $\alpha_{\eta}, \beta_{\eta} \in A_{0, \iota^{\prime}}^{\delta^{\prime}}$ for cofinally many $\eta<\operatorname{cf}\left(\delta^{\prime}\right)$. Let $\delta \in T \cap C \cap \lim \left(c_{0}^{\delta^{\prime}}\right)$ be a limit point of $\left\{\alpha_{\eta} \mid \alpha_{\eta}, \beta_{\eta} \in A_{0, \iota^{\prime}}^{\delta^{\prime}}\right\}$. Such a δ exists by our choice of δ^{\prime} and ι^{\prime}, and by the fact that $T \cap \delta^{\prime}$ is stationary in δ^{\prime}. Let $\xi<\kappa$ be such that $A_{\xi, \iota^{\prime}}^{\delta}=A_{0, \iota^{\prime}}^{\delta^{\prime}} \cap \delta$ and let $\iota(\delta)>\iota^{\prime}$ be such that $\kappa_{\iota(\delta)}>\xi$. The existence of such a ξ follows from (2). Then $A_{0, \iota^{\prime}}^{\delta^{\prime}} \cap \delta \subseteq A_{\iota(\delta)}^{\delta}$, as $B_{\iota^{\prime}} \subseteq B_{\iota(\delta)}$.

The previous paragraph proves that there is a stationary $T^{\prime} \subseteq T$ such that for every $\delta \in T^{\prime}$ there is an $\iota(\delta)<\varepsilon$ such that for cofinally many $\alpha<\delta$ there are $\beta<\delta$ such that $\alpha, \beta \in A_{\iota(\delta)}^{\delta}, Z^{\prime} \cap \alpha=y_{\beta}$ and $g[\varepsilon \times \alpha]=\alpha$. The rest of the proof literally follows the proof of Proposition 1.4. We first find a stationary $T^{\prime \prime} \subseteq T^{\prime}$ on which $\iota(\delta)$ stabilize; let ι be the stabilized value. Then we unfold Z^{\prime} and y_{β} using g and conclude that for α, β as above we have $Z_{\iota} \cap \alpha=\left(g^{-1}\left[y_{\beta}\right]\right)_{\iota}$. This yields a contradiction with the fact that Z_{ι} is a counterexample to (3).

References

[1] Cummings, J., Foreman, M. and Magidor, M., Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), 35-98
[2] Devlin, K. J., Constructibility, Springer 1984
[3] Devlin, K. J. and Johnsbraten, H., The Souslin Problem, Lecture Notes in Mathematics 405, Springer 1974
[4] Gregory, J., Higher Souslin Trees and the Generalized Continuum Hypothesis, Journal of Symbolic Logic 14 (1976), 663-671
[5] Jensen, R., Diamond at Mahlo cardinals, Handwritten notes, Oberwolfach 1991
[6] Komjáth, P., Shelah's proof of diamond, unpublished
[7] Shelah, S., On successors of singular cardinals, Logic Colloquium'78, Stud. Logic Foundations Math 97, North-Holland 1979, 357-380
[8] Shelah, S., Diamonds, Shelah Archive 922
[9] Zeman, M., \diamond at Mahlo cardinals, Journal of Symbolic Logic 65(4) (2000), 1813-1822
Department of Mathematics, University of California at Irvine, Irvine, CA 92697
E-mail address: mzeman@math.uci.edu

[^0]: The author was supported in part by NSF grant DMS-0500799.

[^1]: ${ }^{1}$ See proof of Proposition 1.3 for the notation $(u)_{\eta}$.

[^2]: ${ }^{2}$ Notice that $\operatorname{otp}\left(c_{\zeta}^{\delta} \cap \gamma\right)$ is a successor ordinal if γ is as above.

