DIAMOND, GCH AND WEAK SQUARE

MARTIN ZEMAN

ABsTrACT. Shelah proved recently that if K > w and S C k1 is a stationary
set of ordinals of cofinality different from cf(x) then 2% = k* implies 0, (S).
We show that for singular k, an elaboration on his argument allows to derive
Ox(T) from 2% = gt 4 0% where T' = {§ < k1 |cf(§) = cf(k)}. This gives a
strong restriction on the existence of saturated ideals on k1.

AMS Subject Classification: 03E04, 03E05
Keywords: Diamond, Weak Square, Generalized Continuum Hypothesis

It is a well-known fact that ¢, implies 2<* = A. In many situations the converse
is also true. Jensen [3] proved that CH does not imply ¢, so when looking for the
converse one has to focus on A > wy. Let

SY = {5 < M| cf(8) = p}.

and

P
T'i = cf (k)"

Gregory observed that GCH below ws implies O, (S92). A sequence of improve-
ments on his result, mainly by Gregory [4], Jensen (unpublished) and Shelah [7],
resulted in the following theorem whose proof can be found in [2].

Theorem 0.1 (Gregory, Jensen, Shelah). If 2<% = k and 2% = k* then Q.+ (S5)
holds whenever S C k™ is a stationary set of ordinals of cofinality different from
cf(k). If k is singular and additionally O, holds then Q.+ (Ty).

Shelah also proved that for regular x, the condition 2¥ = k™ + O, is not sufficient
to guarantee Q.+ (7T,), so the absolute ZFC result is possible only for singular «.

The question remained whether the localized GCH, i.e. the equality 2% = k™ alone
implies {.+. Shelah proved this to be true for sufficiently large k, and recently [§]
found an argument that proves it for every uncountable cardinal x; see Komjath’s
paper [6] for a simplified proof and an elaboration on Shelah’s argument.

Theorem 0.2 (Shelah). Let £ > w and 2% = k™. Then Q.+ (S) holds for every
stationary S C k¥ that is disjoint with T)..

This note combines arguments from the proof of Theorem 0.1 with Shelah’s
argument for Theorem 0.2 to give a proof of ¢+ (S) for S C T.

Theorem 0.3 (Main Theorem). Assume k is a singular cardinal and T C T, is
stationary with stationarily many reflection points. Then

28 =kt + O = 0.+ (7).
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It was proved by Cummings, Foreman and Magidor [1] that for singular x, the
principle 0% is consistent with the requirement that every stationary 7' C T, has
stationarily many reflection points. Consequently, in their model we have ¢, +(S)
for all stationary S C k.

Corollary 0.4. Assume k is a singular cardinal. Then
2" = kT + O = 0.(T).

Both the above theorem and its corollary provides a very strong restriction on
the existence of saturated ideals on kT and provide a close link between the study
of such ideals and the PCF-theory.

Rinot recently extended the result of this paper to the situation where weak
square is replaced by a variant of approachability property and also showed that,
relatively to the existence to a supercompact cardinal, it is consistent that 07 fails
but ¢+ (S) holds for every stationary S C k.

1. THE ARGUMENT

We begin with splitting Shelah’s argument into two steps. We first isolate a
combinatorial statement that alone implies the existence of a ¢ (S)-sequence in
ZFC; we denote this statement by (O, (S). This statement is implicit the arguments
in Shelah [8] and Komjath [6]. It turns out that the implication Ox(S) = Oa(S)
is true no matter whether ) is a successor cardinal or not. The second step is a proof
that (Oa(S) holds, which relies on the localized GCH if A = k* and S concentrates
on points of cofinality distinct from cf (k) which gives the original Shelah’s result,
and on the weak square if k is singular and S concentrates on points of cofinality
cf(x) which gives the result in Theorem 0.3. Our approach owes a lot to Komjéath’s
exposition in [6].

Definition 1.1. Let A be a regular cardinal and S C \. We say that the pair

(x| € < A), (As |6 € S) witnesses Oa(S) iff the following three conditions are met.
(a) (we|& < A) is an enumeration of [A]<*.

(b) As C 0 and card(As) < card(d) whenever § € S.

(c) For every Z C X there is a stationary S' C S such that for every 6 € S’
there are unboundedly many o < § for which there is B < § satisfying
a,f € A5 and ZNa =za.

We say that Ox(S) holds iff there are (x¢)e and (As)s as above.

Notice that ()x(S) postulates the existence of an enumeration of [\]<* of length
A, so it imposes some constraints on the behaviour of the exponential function
below X. In particular, if A = k™ then () (S) implies 28 = x*. Notice also that
(b) in the above definition stipulates that the cardinality of As is strictly smaller
than that of §, which together with (c) implies that without loss of generality S can
be viewed as a set of singular ordinals. Of course, this has a non-trivial meaning
only when A is inaccessible. Finally observe that if there is a pair (z¢ |[§ < A),
(As |6 € S) witnessing Ox(S5) then for every enumeration (z;[{ < A) there is a
sequence (Aj |4 € S) such that the pair (zg)¢, (45)s witnesses Ox(S). To see this,
pick any f: A — A such that 25 = 2 5 for all 5 < X and let A5 = A5 U f[A;] for
all § € S satisfying f[d] C 9.

Lemma 1.2. Let X be a regular cardinal, S C X and Ox(S) hold. Then there is a
pair (z¢ | € < X)), (As |0 € S) satisfying the following.
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(a) (we|& < A) is an enumeration of [A x A]<*.

(b) As C 0 and card(As) < card(d) whenever d € S.

(c) For every Z C A x X there is a stationary S' C S such that for every 6 € S’
there are unboundedly many o < § for which there is B < § satisfying
a,feAs and ZN(axa)=z5N(axa).

Proof. Pick a pair (ye | € < A), (Bs|d € S) witnessing Ox(S). Let f: A x A — A
be a bijection and Cy = {§ < A| f[0 x 6] =d}.

To each § € S pick Cs to be a subset of lim(Cy) N ¢ of size strictly smaller
than card(d) that is cofinal in § if such a set exists; let Cs = @ otherwise. Letting
rg = f1lys] and As = BsUCs, we obtain a pair (z¢ | € < A), (45 |5 € S) as in the
conclusion of the lemma. To see this, it suffices to verify clause (c¢) in the statement
of the lemma.

Given any Z C A x A, let S’ C S be the stationary set obtained by applying
Oa(S) to f[Z]. Let § € S'Nlim(Cy). If & < 6, pick a € Cs such that @ < a. Since
S’ satisfies (c) in Definition 1.1 with f[Z],ys and By in place of Z, zz and Ay, there
are o', 8 € Bs such that o < o' and f[Z]Na’ =ys. Then f[Z]Na =ys N a and
the conclusion follows immediately from the fact that o € Cy. O

With the statement () (S) in hand, one can reformulate the first step in Shelah’s
argument into the following proposition. It reduces the proof of {(S) to the proof
of OA(S) and works even for cardinals A that are not successors, which is slightly
more than Shelah has originally proved. The second setp in Shelah’s argument can
be then viewed as a proof of O),.+(S) from the localized GCH. We will show how to
obtain Q.+ (S) from the additional assumption that 0% holds in situations where
localized GCH does not seem to suffice.

Proposition 1.3. Let A be reqular and S C X be stationary. Then
Oa(S) = 0(9)

Proof. Let (z¢|{ < A), (A5]0 € S) be a pair satisfying the conclusion of
Lemma 1.2. For # C XA X A we write (x)¢ to denote {¢ < A|(¢,¢) € z}. Con-
sider sequences (X¢,C¢ [€ < ) of length § < A such that X, C A, C¢ is closed
unbounded in A and, letting

Ve = {{a.B) € A5 x A5 (¥ < €)(X, Na = (z5), Na)},

for every £ < 8 and § € SNC; either dom(VE‘SH) is bounded in 6 or else Vg‘s 2 V£6+1'

Notice that the non-strict inclusion Vg‘s ) Vg‘f holds anyway whenever & < &',

The crucial observation is that any sequence (X¢, Ce | € < §) as above has length
strictly below A. Assume for a contradiction that this fails, that is, there is such a
sequence with § = A. Let S’ come from the application of Lemma 1.2 to the pair
<.’L‘£>£, <A(5>5 and to set

Z={( Q¢ e Xe},

and let 6 € "N A{C¢ & < A} be such that § > k if A = & and 6 is a cardinal
if A is inaccessible. We have arbitrarily large a < § for which there exists § < §
such that o, 8 € As and Z N (a x ) = 23 N (@ x a), so for each & < § the set

dom(Vg‘s) is unbounded in §. Since 6 € S N C¢ whenever £ < 6, from the properties

of the sequence (X¢, C¢ | € < ) we obtain VE‘S 2 Vg whenever € < ¢’ < §. Thisis a

contradiction, as VE‘S C As x As and card(A4;s) < card(d).
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Pick a sequence (X¢,Ce | £ < 6) as in the previous paragraph which has no
proper extension. Then 6 < A. Letting

D5 = U{(TB)S Na ‘ <a76> € V95}7

the sequence (D5 | § € S) is a Qx(S)-sequence. To see this, pick an arbitrary
X C X and a closed unbounded C' C A. There exists some § € SN C such that
dom(V}) is unbounded in § and X Na = (z5)g Na for all (o, B) € V;, as otherwise
we could extend the sequence (X¢, Ce | € < 6) by letting Xy = X and Cy = C, in
contradiction with its maximality. But then X N§ = Dj. O

We now focus on proofs of (O (S). The point of introducing () (S) is that it is
often easier to give a direct proof of (Qx(S) than a direct proof of ¢x(S). This is
clear from Shelah’s argument in [8] which in our notation is a proof of O+ (S). As
Proposition 1.3 also holds for inaccessible A, our hope was that Shelah’s argument
may be used for proofs of {,(S) for inaccessible A. It seems, however, that for
inaccessible A the proofs of ¢ (S) may require more new ideas. For instance, the
proofs of ¢y (S2) for a Mahlo cardinal A in [5] and [9] can be easily modified to
give proofs of (O (S2), but introducing a (O (S2)-sequence into the construction
does not seem to enable any strengthening of the results or a simplification of
the construction in [9]. For inaccessibles A that are not Mahlo it is not clear
either whether an argument using () (S2) may work. It is certainly clear that
constructions of a () (S2)-sequence from “below” as in Propositions 1.4 and 1.5
will not work, essentially for the same reason why constructions of {(S2) from
“below” cannot work, as described in [9]. Analogously as in [9], given any fixed
Oa(S2)-witness (z5 | B < A), (A5 | § < A), there is a < A-distributive forcing that
“kills” such a witness. On the other hand, any construction of a (), (S2)-witness
from “below” would give rise to the same witness in the ground model and in the
generic extension.

Let us turn to the proof of (O.+(S). As already mentioned above, the next
proposition can be viewed as the first step in Shelah’s argument. We include it, as
it is a starting point for our variation with weak square.

Proposition 1.4. Assume S C k% is stationary and disjoint from T,.. Then
2% =gt — OH+(S)

Proof. Pick an arbitrary enumeration (ye |€ < &T) of [s*]=*. The existence of
such an enumeration is guaranteed by the localized GCH. Let g : ¢ x k™ — kT be
a bijection where € = cf(k). For each § € S pick an increasing (with respect to
the inclusion) sequence of sets (A% |1 < ¢) such that | A% | < & for all © < ¢ and
U, A9 = 0.

We show that there is an ¢ < e such that for every Z C T there are stationarily
many ordinals § € S satisfying:

<k

(1) For unboundedly many a < § there are 5 < § such that
a,f €A and ZNa= (g [ys])..
It follows that letting As = A% and x5 = (97 '[ys]),, the pair (z5|8 < &T),
(A%|6 € S), witness O,+(S).
Assume for a contradiction there is no ¢ as in the previous paragraph. Then for
every ¢ < ¢ there is a set Z, C k™ such that (1) holds only on a non-stationary

ISee proof of Proposition 1.3 for the notation (u)s,.
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subset of S. Let Z = {(1,&) | £ € Z,} and and Z' = ¢g[Z]. The set S’ consisting of
all § € S such that

e g[e x a] = a for cofinally many a < § and

o Va<d)(FB<d)(Z Na=yg)
is stationary in k7. To each § € S’ pick a cofinal strictly increasing sequence
(a’ |n < cf(8)) such that gle x ay] = a, for each 5 < cf(6), and to each n < cf(é)
pick $, < ¢ such that Z' N a, = yg,. This is possible by the above arrangements
for elements of S’.

If 6 € S’ then there is an ¢(J) < ¢ such that a,, 3, € Af(a) for cofinally many

n < cf(d). This follows immediately if cf(d) < g, as the assignment
n + the least ¢ such that a,, 3, € A?
cannot be cofinal in €, so in fact oy, 3, € A‘f(5) for all n < cf(d). If cf(d) > e this

follows by the pigeonhole principle, namely the inverse image of some Af under
this assignment must have size cf(d). Applying the pigeonhole principle to the
assignment d — 1(d), we obtain a stationary S"” C S’ and a ¢ < ¢ such that +(§) =
for all § € S".

Pick 6 € S"”. By the above arrangements, there are cofinally many a < § for
which there are 8 < § such that a, 3 € A° and Z'Na = yg. Moreover, the ordinals
a can be chosen so that gle x a] = a. It follows that

ZN(xa)=g'[Z'Nna] =g "ys],

so Z,Na = (g '[ys]), for all a, B as above. Since this is true of any § € S" we
obtained a contradiction to the fact that Z, is a coutnerexample to (1). O

The following proposition shows how to apply a standard construction that uses
0% to prove Q.+ (T).
Proposition 1.5. Assume & is singular and T C T, is a stationary subset of k™
with stationarily many reflection points. Then

28 =kt + O = O+ (T).

Proof. We elaborate on the argument from the proof of Proposition 1.4. Let
e = cf(k). Fix the following objects:

e Sequences (y¢ |& < kt), (A% |1 < €) and a bijection g : € x kT — kT as in
the proof of Proposition 1.4.

e For each ordinal § < k% an injection hs : § — k.

e A O%-sequence (Cs|d € limN(k,xT)). For each ¢ fix an enumeration
(2 |¢ < &) of the set €.

e An increasing (with respect to the inclusion) sequence of sets (B, |t < )
such that | B, | < k for each ¢ and |J,., B, = k X k.

For each § € limN(k, k") and ¢ < k define a function fg 9 > kX Kk and a
sequence of sets <A2,L |t < e) as follows.

(&) = (n, h+(8))

where + is the least element of cg strictly above £ and n = otp(cg Nvy)—1
A, = (fO) B

2 and

2Notice that otp(c‘g N 7y) is a successor ordinal if  is as above.
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Notice that each fg is an injection. By our choice of the sets B, we then have
\A‘S | < k and UL<5
the sets Ag)b. If § is a llmit point of cg then there is an ordinal ¢ < & such that

= §. We also have the following coherency property for

5 N 5
(2) A 7L06:A§7L.
To see this notice first that if 6 is a limit point of cg then there is ( < & such that

né = c— and from the definition of f( we immediately conclude that fC fg )

The rest, follows immediately from the definition of A‘5
le an 1ncreasmg sequence (k, | ¢ < €) cofinal in &. For each § € T and ¢ < € set
Uc<m ¢..- Notice that | A%| < K, as |A57L| < | B, | for all ¢ < k,. Following
the ideas from the proof of Proposition 1.4 we prove: There is an ¢ < € such that
for every Z C k™ there are stationarily many ¢ € T satisfying:

(3) For unboundedly many a < § there are § < § such that
a,B €A and ZNa= (9" ys))..

It follows that letting x5 = (97 '[ys]), and As = A® where ¢ is as above, the pair
(x| B < k1), (As |6 € T) witnesses O+ (T).

Assume for a contradiction that no ¢ as above exists. As in the proof of Propo-
sition 1.4 pick a counterexample Z, for each 1 < ¢, let Z = {(1,£) e ex k¥ |E € Z,}
and Z' = g[Z]. Let C be a closed unbounded subset of k™. By our assumption on
T, there is a reflection point ¢’ of T' such that:

e ¢’ is a limit point of C.

e g[e x a] = a for cofinally many a < §'.

o (Vo< d)(3B<dNZ' Na=uyp).
As ¢’ is a reflection point of T', necessarily cf(d’) > e. Pick an increasing sequence
(o, | < cf(8")) cofinal in ¢' such that gle x a,)] = a, for each n < cf(4'). To each
n < cf(d") assign some 3, < 0’ satisfying Z' N, = x,. It is convenient to pick 3,
to be least posssible. Since cf(d') > €, using the pigeonhole principle we conclude
that there is some ¢' < € such that ay, 3, € Agll for coﬁnally many 71 < cf(d'). Let

deT'nCn hm(c0 ) be a limit point of {a, |a,, 8, € A, }. Such a § exists by our
choice of ' and ¢/, and by the fact that TN 4§’ is s‘ra‘rlonary in §'. Let £ < s be such
that AgL, = Ag:u N and let ¢(6) > ¢’ be such that k,5y > §. The existence of such
a ¢ follows from (2). Then ASI’L, ngC A‘f((;)7 as By C By)-

The previous paragraph proves that there is a stationary 7' C T such that for
every & € T' there is an 1(d) < e such that for cofinally many « < 4 there are
B < § such that o, € Af(sy Z'Na =yp and g[e X a] = a. The rest of the proof
literally follows the proof of Proposition 1.4. We first find a stationary 7" C T' on
which ¢(d) stabilize; let ¢ be the stabilized value. Then we unfold Z' and ys using
g and conclude that for a, 3 as above we have Z, Na = (g7 '[yg]).. This yields a
contradiction with the fact that Z, is a counterexample to (3). O
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