
DODD PARAMETERS AND �-INDEXING OF EXTENDERSMARTIN ZEMANAbstra
t. We study generalizations of Dodd parameters and establish their�ne stru
tural properties in Jensen extender models with �-indexing. Theseproperties are one of the key tools in various 
ombinatorial 
onstru
tions, su
has 
onstru
tions of square sequen
es and morasses.AMS Subje
t Classi�
ation: 03E05, 03E45, 03E55Keywords: Extender model, Fine Stru
tureTypi
al 
ombinatorial 
onstru
tions in extender models, su
h as 
onstru
tions ofsquare sequen
es, build on the analysis of Dodd parameters of 
ertain a
tive levelsof the models. Dodd parameters 
ome into play whenever we try to 
onstru
t
ombinatorial obje
ts that involve some form of \
oheren
y". The reason why theyhave to be 
onsidered is that the standard �ne stru
tural 
hara
teristi
s of premi
eare typi
ally 
omputed relative to a 
ertain additional 
onstant. This impairs theuniformity of the des
ription of the 
ombinatorial obje
ts we are 
onstru
ting, andthereby 
ompli
ates the veri�
ation of the \
oheren
y" 
onditions.In this paper we will deal with Jensen extender models with the so-
alled �-indexing introdu
ed in [2℄. The relevant ba
kground and notation 
an also befound in [17℄. We establish the relationship between the Dodd parameter and thestandard parameter for type B levels of extender models and prove the soliditytheorem for the Dodd parameters. These results are formulated in Theorems 1.1and 1.2. The a
tual formulations of both theorems are adjusted so that they 
an beimmediately applied in [12℄ and [13℄, where the fa
ts about the Dodd paremetersare used as a bla
k box. Dodd parameters were originally introdu
ed in [1℄ in
onne
tion with 
onstru
tions of models for strong 
ardinals. For extender modelsof Mit
hell-Steel type [7℄, the Dodd solidity was established by Steel [9, 15℄, andwas used in a substantial way in 
ombinatorial 
onstru
tions in [9, 10℄ and in theResear
h partially supported by the NSF grant DMS-0204728.1



2 MARTIN ZEMANproof of the weak 
overing lemma for Steel's 
ore model [5, 6℄. Dodd parameterswere also 
onsidered in [4℄ in 
onstru
tions of extender models. The results ofthe 
urrent paper di�er from those in [9℄ and [15℄ in several respe
ts. The mostobvious di�eren
e is that, here we deal with models with �-indexing, whi
h meansthat the relationship between the standard paramter and the Dodd parameter isdi�erent from that in models with Mit
hell-Steel indexing. In models with �-indexing, the fa
t that the Dodd parameter is distin
t from the standard parameteris already a large 
ardinal axiom beyond a superstrong 
ardinal. In models withMit
hell-Steel indexing, it is a relatively modest large 
ardinal axiom well belowone strong 
ardinal. We show that, in the models with �-indexing, there is a
anoni
al uniform way of 
onversion between the standard parameter and the Doddparameter. Moreover, Proposition 1.3 shows that, under a 
ertain relatively modestsmallness 
ondition, this 
onversion is parti
ularly simple (although Proposition 1.3does not seem to be relevant if we are interested in 
ombinatorial 
onstru
tions intheir full generality). Se
ondly, in this paper we are 
onsidering slightly generalizedversions of Dodd parameters; su
h generalizations are not needed for the basi

onstru
tion of a square sequen
e, but they o

ur in more deli
ate 
onstru
tions ofsquare sequen
es with some amount of 
ondensational 
oheren
y, and even in the
onstru
tion of an ordinary Gap-1 Morass [13℄.The only \smallnes 
ondition" used in the �ne stru
ture theory of models with�-indexing is iterability. This means that, modulo iterability, our �ne stru
turetheory is developed for models satisfying any large 
ardinal axiom that is witnessedby extenders in the sense of [17℄. (That is, extenders whose sup of generators doesnot ex
eed the image of the 
riti
al point.) Let us also mention that the strategyof the proof of our main results is 
ompletely di�erent from that used in the proofof Dodd solidity in Mit
hell-Steel models in [15℄. This was 
aused by our e�ort toavoid any dire
t referen
e to iterability in our arguments by substituting 
omparisonarguments by appli
ations of the 
ondensation lemma and the solidity theorem forthe standard parameters. However, we did not su

eed 
ompletely in this e�ortand the paper does 
ontain a version of a 
omparison argument after all.We brie
y re
all some notation and terminology from [17℄. Given two primitivere
ursively 
losed ordinals � < �, an extender at (�; �) is a map F : V ! P(�)



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 3with V � P(�) whi
h preserves primitive re
ursive de�nitions; we of 
ourse requirethat V is 
losed under su
h de�nitions. The ordinal � is 
alled the 
riti
al pointof F and denoted by 
r(F ), and � is 
alled the length of F and denoted by �(F ).If �� < � is primitive re
ursively 
losed, we de�ne F j �� : V ! P(��) to be the mapx 7! F (x) \ ��; this map is obviously an extender. Typi
ally, V is a set of the formP(�) \M where M is some a

eptable J-stru
ture. So we 
an form an ultrapowerUlt(M;F ) of M by F . An ordinal �� 2 (�; �) is a 
utpoint of F just in 
ase that forevery x 2 dom(F ) that 
odes a fun
tion from � into � (in the obvious way based onG�odel pairing �;�), F (x)\ �� 
odes a total fun
tion from �� into ��. More pre
isely,��; �� 2 F (x) implies � < �� for every � < ��. In the language of ultrapowers thissays that �(f)(�) < �� for every fun
tion f : � ! � from the model F is appliedto and every � < ��; here � is the asso
iated ultrapower map. A J-stru
ture M is
oherent just in 
ase that M is of the form hJA� ; F i and JA� = Ult(JA# ; F ) where� = 
r(F ) is the largest 
ardinal in JA# and �(F ) is the image of � under theasso
iated ultrapower map, and thus the largest 
ardinal in JA� . The extender Fmeasures all subsets of � that are in JA# , but not ne
essarily all subsets in P(�)\M ,sin
e the option # < �+M is allowed. Thus, F need not be weakly amenable withrespe
t to M , but M is always an amenable stru
ture. If M is a 
oherent stru
tue,we often write �(M) for �(F ).If M = hJE� ; F i is a potential premouse in the sense of [17℄, Chapter 9 (see also[12℄), M is of type A if F has no 
utpoints, of type B if the set of all 
utpointsof F is nonempty and bounded in �(M) def= �(F ), and of type C if the set of all
utpoints of F is unbounded in �(M). A premouse is a potential premouse thatsatis�es the initial segment 
ondition, whi
h will be dis
ussed in a little while. If Mis a type B potential premi
e, the largest 
utpoint of F is denoted by ��M . Letting� = 
r(F ) and � = �+M , the height of Ult(JE� ; F j��M ) is denoted by 
M . Inthe genaral �ne stru
ture theory for premi
e, the language for 
oherent stru
tures
ontains just predi
ate symbols denoting E and F , and the language for premi
e
ontains an additional 
onstant symbol denoting F j��M . In the 
ase of type Aor C premi
e, there is no di�eren
e between the two languages. The initial segment
ondition requires that F j �� 2 M whenever �� is a 
utpoint of F . In the 
ase oftype B premi
e, this is equivalent to the 
ondition F j��M 2 M . This is in general



4 MARTIN ZEMANweaker than the requirement that F j��M is on the E-sequen
e, whi
h 
onsiderablysimpli�es proofs of iterability in the 
onstru
tions of extender models. However,if M is weakly iterable in the sense of [17℄ (see below), then 
M is the index ofF j��M . For the purpose of doing 
ombinatori
s, it is more 
onvenient to use 
Minstead of F j��M as the additional parameter, so our expanded language of premi
ewill 
ontain a 
onstant symbol _
 denoting 
M . This makes no di�eren
e from the�ne stru
tural point of view, sin
e F j��M and 
M are lightfa
e �1(M)-de�nablefrom ea
h other in the language for 
oherent stru
tures. For type B premi
e M , weshall sti
k to the following 
onvention. The �1-Skolem fun
tion 
omputed in thelanguage for premi
e will be denoted by hM . The �1-Skolem fun
tion 
omputedin the language for 
oherent stru
tures, i.e. in the language with no additional
onstants, will be denoted by h�M . For type A and C premi
e, there is obviously nodi�eren
e between hM and h�M , sin
e the 
orresponding language for premi
e doesnot have any additional 
onstant symbol. (Or, alternatively, if we want to have auniform de�nition of the language for premi
e, we might introdu
e an additional
onstant symbol _
 and interpret it always as 0. Obviously, the di�eren
e betweenthe two languages will be merely 
osmeti
.) Any 
utpoint of F is a limit 
ardinal inM ; sin
e JE� = V M� for any su
h 
ardinal �, the 
oheren
y 
ondition 
ombined withthe initial segment 
ondition guarantee that that F j� is a superstrong extender inM whenever � is a 
utpoint of F . Thus, the presen
e of 
utpoints is a very stronglarge 
ardinal hypothesis.Let us now state the Condensation Lemma from [17℄ we will refer to throughoutthe paper. This lemma is true for weakly iterable premi
e. Re
all that a premouseM is weakly iterable just in 
ase every 
ountable premouse that is elementarilyembeddable into M is (!1 + 1; !1)-iterable in the sense of [17℄, Chapter 9. Su
hpremi
e are automati
ally solid.Lemma 0.1. Let �M and M be premi
e of the same type where M is weakly iterableand let � : �M ! M be an embedding whi
h is both 
ardinal preserving and �(n)0 -preserving (with respe
t to the language of premi
e!), and su
h that � � !%n+1�M = id.Then �M is weakly iterable and, 
onsequently, solid. Furthermore, if � � � = idand �M is sound above �, then one of the following holds:(a) �M is the 
ore of M above � and � is the asso
iated 
ore map.



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 5(b) �M is a proper initial segment of M .(
) �M = Ult�(M jj �; EM� ) for some � and � su
h that � � � < ht(M), � � !�and � = �+M jj � where � = 
r(EM� ); moreover, � is maximal with theseproperties. Also, EM� has a single generator �.(d) �M is a proper initial segment of Ult(M;EM� ).If M satis�es the assumptions of the Condensation Lemma and is additionallysound above �, then (a) 
an be reformulated as follows:(a0) �M = M and � = id.Throughout the paper, we will try to avoid any dire
t referen
e to iterabilitywhenever possible and substitute it by an appli
ation of the Condensation Lemma.This approa
h is useful in many situations, as unlike the weak iterability, solidityis a �rst order property of premi
e.1. Dodd ParametersWe �rst introdu
e the parameters d�M , whi
h are generalizations of the Doddparameters. Our 
ontext is adjusted to the needs of 
ombinatorial 
onstru
tionsof e.g. [12, 13, 14℄ and [16℄. Thus, the traditional notions of the Dodd proje
tumand Dodd parameter (for the de�nitios, see e.g. [12℄ or [9℄) will a
tually not be
onsidered. Re
all that the 
anoni
al well-ordering of all �nite sets of ordinals isdenoted by <�.De�nition. Let M be an a
tive premouse and � = 
r(EMtop) and let � be an ordinalsatisfying �+M � �:The parameter d�M is the <�-least �nite set of ordinals d su
h thatM = h�M (�[fdg),if de�ned. We write dM for d!%1MM whenever � < !%1M .Obviously, d�M need not be de�ned for ea
h M and �, and its existen
e guaranteesthat !%1M � �. However, d�M is de�ned, granting that !%1M � � and M is 1-soundabove �, whi
h is pre
isely the situation we are interested in. It is easy to see thatif �� � � and d��M is de�ned then so is d�M and d�M = d��M � �. For 1-sound Mwith � < !%1M , the Dodd parameter in the traditional sense is just dM . Clearly,d�M = ? if M is a type C premouse. If M is a 1-sound type A premouse then easily



6 MARTIN ZEMANd�M = p1M � �, and the notions of Dodd solidity and solidity 
oin
ide. Thus, thenotion is non-trivial only for type B premi
e.Dodd solidity witnesses are de�ned in the obvious way. Given an ordinal � � �and a parameter p 2 [On \M ℄<!, the standard Dodd solidity witness �W �;pM for �with respe
t to M and p is the transitive 
ollapse of the hull h�M (� [fp� (�+ 1)g).Thus, the only di�eren
e between the standard solidity witness in the usual senseW �;pM and the standard Dodd solidity witness �W �;pM is that �W �;pM is 
omputed withno referen
e to 
M . Similarly, a pair hQ; ri is a generalized Dodd solidity witnessfor � with respe
t to M and p just in 
ase that Q is transitive, r 2 Q, and forevery �1-formula in the language for 
oherent stru
tures '(x; v1; : : : ; v`) and every�1; : : : ; �` < � we haveM j= '(p� (� + 1); �1; : : : ; �`) �! Q j= '(r; �1; : : : ; �`)The property of being a generalized Dodd solidity witness is �1 in the language for
oherent stru
tures. We will often make use of the following fa
t:(1) The existen
e of generalized witnesses is equivalent to theexisten
e of standard witnesses.This is expressed in a somewhat sloppy way, but the meaning of (1) is obvious. Itsays that if � 2 On \M and p 2 [On \M ℄<! are arbitrary, then W �;pM 2 M ifand only if M 
ontains some generalized witness for � with respe
t to M and p,and the 
orresponding fa
t is true for Dodd solidity witnesses as well. In [17℄, thisis formulated as Lemma 1.12.3. The lemma assumes that p is a good parameterand � 2 p. However, it is easy to see that this assumption is super
uous: Re
allthat the heart of the proof of Lemma 1.12.3 is to show the \if" impli
ation. Inthat proof, the assumptions on � and p are used to show that M has a 
ardinallarger than �. It is argued that � is the 
riti
al point of the witness map and,
onsequently, the image of � under the witness map is a 
ardinal in M . But if �and p are arbitrary, then either the witness map has a 
riti
al point � �, or it doesnot have a 
riti
al point at all. In the former 
ase, we still get a 
ardinal in Mabove �, and exa
tly as in the proof of Lemma 1.12.3 
on
lude that W �;pM 2 M .In the latter 
ase, W �;pM is an initial segment of M . But it must be a proper initialsegment, as W �;pM is embeddable into some generalized witness that is an elementof M .



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 7De�nition. We say that M is Dodd solid above � just in 
ase d�M is de�ned and�W �;d�MM 2 M for every � 2 d�M . This is equivalent to the requirement that ea
h� 2 d�M has a generalized Dodd solidity witness with respe
t to M and d�M that isan element of M .The reader familiar with the notion of Dodd solidity in the traditional sensewill immediately noti
e that the above de�nition does not 
ontain any requirement
orresponding to the requirement in the traditional de�nition that the restri
tionof EMtop to (�� [ d�M ) � (�� + 1) is an element of M . for any �� stri
tly smaller thanthe Dodd proje
tum. The reason why we do not need this requirement is that weonly need to 
onsider situations where the Dodd proje
tum agrees with the �rstproje
tum, and so the 
orresponding 
lause is automati
ally satis�ed, as followsfrom the elementary properties of proje
ta.In all relevant 
ases, the Dodd parameter d�M 
an be 
omputed from the standardparameter of M and an additional �nite set of ordinals, whi
h we denote by e�M .This is, however, not immediately 
lear from the de�nition of e�M .De�nition. Let M be a type B potential premouse and � 2 On. The <�-least�nite set of ordinals e su
h that 
M 2 h�M (� [ fpM � �; eg) is denoted by e�M .Obviously, e�M is always de�ned and e�M � 
M +1. The main result of this paperis summarized in the following two theorems.Theorem 1.1. Let M be a weakly iterable type B premouse and let � = 
r(EMtop).Assume further that M is sound above � where � � maxf�+M ; !%1Mg. Then d�M isde�ned and:(a) d�M = (pM � �) [ e�M .(b) M is Dodd solid above �.Theorem 1.2. Let M be a weakly iterable type B premouse and let � � �+M where� = 
r(EMtop). Assume that d is a parameter satisfying:� d \ � = ?.� M = h�M (� [ fdg).� Every � 2 d has a generalized Dodd solidity witness with respe
t to M andd that is an element of M .Then



8 MARTIN ZEMAN(a) d = d�M ;(b) d�M = (pM � �) [ e�M ;(
) M is sound above �.Under a 
ertain smallness 
ondition, the 
onversion between d�M and pM � �simpli�es as follows.Proposition 1.3. Assume there is no inner model with a 
ardinal whi
h is bothsub
ompa
t and superstrong. Then (a) in Theorem 1.1 
an be reformulated asfollows: d�M = pM � � or d�M = (pM [ f��Mg) � � or d�M = (pM [ f
Mg) � �.Moreover, the se
ond possibility 
an only o

ur if ��M = max(d�M ).Sub
ompa
tness is a large 
ardinal property slightly stronger than 1-extendibility.More pre
isely, if � is sub
ompa
t then there are many 1-extendible 
ardinals below�, see [11℄ or [12℄ or for a de�nition. It 
an be shown [18℄ that either of the threepossibilities named in the above proposition 
an o

ur, and a
tually well belowthat smallness 
ondition. We don't know whether the smallness 
ondition 
an beomitted, but we believe it 
annot. Let us also note that there are obvious reformu-lations for type A premi
e. As has been mentioned above, Theorem 1.1 does notsay anyghing new in this 
ase. In Theorem 1.2, only (a) needs an argument; (b)and (
) then follow dire
tly from (a). But (a) is nothing else but Lemma 1.12.5from [17℄ in this 
ase.We now turn to the proof of the two theorems; as a by-produ
t we will get aproof of Proposition 1.3. Throughout the proof of Theorem 1.1, we will assume that� < ��M . Roughly speaking, we 
an do this without loss of generality, sin
e thereis less work to be done for larger �. A 
loser examination of the entire situationreveals that the only more serious issue 
onne
ted with this assumption o

urswhen 
M 2 e�M , but we will explain at the beginning of the proof of Lemma 1.6why the assumption is harmless.We �x the following notation. E will be the extender sequen
e of M , F willbe the top extender of M , � = 
r(F ) and � = �+M . Furthermore, if � is theultrapower map asso
iated with Ult(JE� ; F ) and f : n�! � or f : n�! P(�) is inM (here n is a natural number), we will often write F (f) for �(f). This is possible,sin
e f is uniformly re
ursively en
odable into a subset of � in either of these 
ases.



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 9Both theorems are proved by indu
tion on the height of M . Thus, our argumentwill make use of the following indu
tion hypothesis:(2) If M� is a weakly iterable premouse with ht(M�) < ht(M)then Theorems 1.1 and 1.2 hold of M�.Proof of Theorem 1.1. Sin
e M is sound above �, the following holds of(pM � �) [ e�M :h�M (� [ fpM � �; e�Mg) � h�M (� [ fpM � �; 
Mg) = hM (� [ fpM � �g) = M:This 
omputation does not make use of the minimality of e�M . It follows that d�Mis de�ned and d�M �� (pM � �) [ e�M . To see the equality, it suÆ
es to verify:(3) �W �;(pM��)[e�MM 2M whenever � 2 (pM � �) [ e�M :Indeed, the assumption d�M <� (pM � �) [ e�M would lead to a 
ontradi
tion asfollows: Fix � 2 [(pM��)[e�M ℄�d�M su
h that [(pM��)[e�M ℄�(�+1) = d�M�(�+1).Let W = �W �;(pM��)[e�MM and � : W ! M be the 
anoni
al map; this map is �1-preserving in the language for 
oherent stru
tures. Obviously � [ fd�Mg � rng(�),so rng(�) = M . Consequently, W = M and � = id. But (3) guarantees thatW 2M , a 
ontradi
tion.The veri�
ation of (3) will take the most part of the paper. As usual, we willstart with the largest � 2 (pM � �) [ e�M and gradually move downward. Theassumptions of Theorem 1.1 require merely that M is sound above �. However, we
an without loss of generality assume:(4) M is fully sound.Although most of the argument will go through without this assumption, the two
omparison arguments we des
ribe below do make use of it.To see (4), noti
e that if M� = 
ore(M), �
 : M� ! M is the 
ore map and�� = (��1
 )00�, then �
(
M�) = 
M and �(e��M�) = e�M . This follows from thepreservation properties of �
 by a straightforward re
e
tion argument: Obviously
M 2 h�M (�[fpM ; �
(e��M�)g), as 
M� 2 h�M (�� [fpM� ; e��M�g). So e�M �� �
(e��M�).On the other hand, if this inequality were stri
t, M would satisfy the statement(9e <� �
(e��M�))(9x � �(��))(x is �nite & 
M = h�M (�; pM [ e)):



10 MARTIN ZEMANThe preservation properties of �
 would then yield 
M� = h�M�(x; pM� [ e�) forsome e� <� e��M� and some �nite x � ��, a 
ontradi
tion. On
e we have provedthat �W �;(pM����)[e��M�M� 2 M� for � 2 pM� [ e��M� , the preservation properties of�
 will imply that �
(�W �;(pM����)[e��M�M� ) is a generalized Dodd solidity witness for�
(�) with respe
t to M and pM [ e�M , and thereby prove Theorem 1.1.Lemma 1.4. �W�;(pM��)[e�MM 2M whenever � 2 (pM � �) [ e�M and � > 
M .Proof. Sin
e e�M � 
M + 1, we have(pM � �) [ e�M � (
M + 1) = pM � (
M + 1):Then easily �W �;(pM��)[e�MM = W �;(pM��)[e�MM , and this obje
t is an element of Mby the solidity of M . ut(Lemma 1.4)Noti
e that the above lemma in fa
t establishes the agreement between d�M andpM above 
M . We now fo
us on the interval [��M ; 
M ℄. Our next observation is:Lemma 1.5. If ��M � � < �(M) then ��M 2 h�M (� [ f�g) and h�M (� [ f�g) \ 
Mis 
o�nal in 
M .Proof. Let �M be the transitive 
ollapse of h�M (� [ f�g) and � : �M ! M be theun
ollapsing map. Then �� def= ��1(�) < �( �M ) is an upper bound for (��1)00��M ,so ��� def= (��1)00��M � �� < �( �M). Now ��� is a 
utpoint of �F , the top extender of�M . Indeed, if f : � ! � is in �M and Æ < ��� then �(Æ) < ��M , so �( �F (f)(Æ)) =F (f)(�(Æ)) < ��M , and, 
onsequently, �F (f)(Æ) is an element of (��1)00��M = ���.The way we de�ned ��� also guarantees that ��M � �(���) � �. The latter inequalityhere ensures that �(���) < �(M). So �(���) is a 
utpoint of M , sin
e being a
utpoint is a �1-property. But it 
annot be stri
tly larger than ��M , as ��M is thelargest 
utpoint of M . So ne
essarily �(���) = ��M , whi
h proves the �rst part ofthe lemma.Towards the se
ond part of the lemma, re
all that the ultrapower embedding�� : JE� ! JE
M asso
iated with Ult(JE� ; F j��M ) is 
o�nal and ��(x) = F (x) \ ��Mfor every x � �. Thus, the mapx 7! the least � su
h that F (x) \ ��M 2 SE�maps P(�)\M 
o�nally into 
M , and is easily seen to be �1(M) in the parameter��M . The rest follows from the fa
ts that � � � and ��M 2 rng(�). ut(Lemma 1.5)



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 11The above lemma easily yields:(5) If (pM [ e�M )� (��M + 1) 6= ? then e�M \ [��M ; 
M ) = ?.To see this, assume for a 
ontradi
tion that e�M has an element in the interval[��M ; 
M ). Let � be the largest one. Then � > ��M . To see this, noti
e that thehypothesis in (5) implies that, assuming � = ��M , there is some �0 2 pM [ e�Mthat is stri
tly larger than ��M . By Lemma 1.5, � = ��M must be then in thehull h�M (� [ f�0g), so h�M (� [ fpM [ e�Mg) = h�M (� [ fpM [ (e�M � f�g)g), andwe have a 
ontradi
tion with the minimality of e�M . Sin
e � > ��M , we 
an �ndan ordinal � 2 h�M (� [ f��Mg) that is larger than �. Obviously, h�M (� [ f��Mg)
ontains a surje
tive map f : ��M ! �, so we 
an �x a � < ��M with f(�) = �.Thus, � 2 h�M (� [ f��M ; �g). Let e = (e�M � f�g) [ f��M ; �g. Clearly, e <� e�M andh�M (� [ fpM � �; eg) � h�M (� [ fpM � �; e�Mg) 3 
M . This again 
ontradi
ts theminimality of e�M .Noti
e also that(6) If (pM [ e�M )� (��M + 1) = ? then ��M = max(pM [ e�M ):Sin
e ��M is a 
utpoint of F , the map k : M jj 
M !M , de�ned by k(��(f)(�)) =�(f)(�) for f 2 ��\M and � < ��M (here �� is as in the proof of Lemma 1.5), has
riti
al point ��M and k(��M ) = �(M). This map is �1-preserving (with respe
t tothe language for 
oherent stru
tures), so 
M =2 h�M (� [ fdg) for any �nite d � ��M .Thus, (pM � �) [ e�M 6� ��M , whi
h immediately yields (6).So far we have 
hara
terized d�M � (
M + 1) and established the Dodd solidityfor this top part of d�M . By the above dis
ussion, the next possible element of d�Mis 
M . This happens pre
isely when 
M 2 e�M . Noti
e that(7) e�M = f
Mgin this 
ase, and we have to establish (3) for � = 
M . As this requires a nontrivialamount of e�ort, we will formulate it as a lemma.Lemma 1.6. Assume that 
M 2 e�M . Then �W 
M ;pMM 2M .Obviously, we 
an write pM instead of (pM��)[e�M in the above lemma. Beforegoing into the proof of this lemma, let us dis
uss the 
onsequen
es. For every



12 MARTIN ZEMAN� 2 (pM � �) \ 
M we have �W �;(pM��)[f
MgM = W �;pMM 2 M ; the membership toM follows from the solidity of M . Due to (7), we 
an then 
on
lude:Lemma 1.7. If 
M 2 e�M then d�M = (pM � �) [ f
Mg and M is Dodd solid.Proof of Lemma 1.6. The proof is based on a 
omparison argument. Thispaper builds on the theory presented in [17℄, whi
h uses fully ��-iterations in 
om-parison arguments, and in this respe
t it di�ers from that in [7℄. The use of fully��-iterations has an advantage that the general theory be
omes very \
lean". Un-fortunately, there is also one drawba
k of this approa
h, namely, that the 
ompar-ison argument breaks down in 
ertain spe
ial 
ases when we apply a superstrongextender at the very �rst step on the \winning" side of the 
oiteration. Sin
e the
omparison des
ribed below does apply a superstrong extender at the �rst step onthe \winning" side, it is 
onvenient to treat 
ertain situations independently. Wewill split the entire argument into two 
ases. Case 1 will deal with the situationswhi
h give rise to pathologies in the 
omparison argument; it will turn out that no
omparison argument is needed in this 
ase. In Case 2, we present the 
omparisonargument itself and no pathologies will o

ur here. Our strategy is analogous tothat in the proof of the solidity theorem in [17℄, Se
tion 9.3. However, as the 
urrentsituation is somewhat spe
i�
, the argument in Case 1 will be shorter than that in[17℄.A simple re
e
tion argument guarantees that we 
an without loss of generalityassume that M is 
ountable and (!1 + 1; !1)-iterable. We �x an enumeration~e = hei; i 2 !i of M and the ~e-minimal (!1 + 1; !1)-iteration strategy S guaranteedby Neeman-Steel [8℄ (for the version for �-indexing, see also [17℄, Lemma 9.2.11).At this point, we should explain one issue. Re
all that just before we went intothe proof of Theorem 1.1, we made an assumption � < ��M . We argued that thisassumption is harmless, sin
e there is less work to do for larger �. This is really the
ase, sin
e the same argument we used to identify d�M�(
M+1) and prove the Doddsolidity will also work for � > ��M , granting that 
M =2 d�M . Indeed, the argumentdid not require any knowledge of !%1M other than the inequality !%1M � �, whi
h isalways true if d�M is de�ned. However, if 
M 2 d�M and � � ��M , that argument isnot going to work, and the 
omparison argument we are going to give will make asubstantial use of the fa
t that !%1M � ��M . But this is always the 
ase, as 
M 2 d�M
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essarily implies � � 
M , and there are no M -
ardinals in the interval [��M ; 
M ℄other than ��M .Let us now make some settings and also re
all some notation that will be usedthroughout the rest of the proof. We set(8) W = �W 
M ;pMM ;so(9) 
r(EWtop) = 
r(EMtop) = � and �+W = �+M = � .Letm = 8<: the least i 2 ! su
h that !%i+1M � � , if de�ned,! otherwise;M 0 = Ult�(M;E
M ) and � : M !M 0 is the asso
iated ultrapower embedding;~M = Ultm(M;E
M ) and ~� : M ! ~M is the asso
iated ultrapower embedding:For basi
 information on m-ultrapowers see e.g. [17℄, Se
tion 3.5 or [12℄. Denotethe 
olle
tion of all fun
tions used to build Ultm(M;E
M ) by �m(�;M). Workingin the language for premi
e, � is fully ��-preserving and ~� is �(m)0 -preserving and
o�nal at the level m. We also have the  Lo�s theorem for �(m)0 -formulae for bothultrapowers. Moreover, � is �(i)2 -preserving whenever !%i+1M > �.Case 1: P(
M ) \ Ult�(M;E
M ) 6= P(
M ) \ Ult(M;E
M ).This happens pre
isely when m 2 ! and !%m+1M = � . We only show that thesetwo 
lauses ne
essarily follow, as only this half of the equivalen
e is relevant forthe argument below. Noti
e that if m = ! (that is, !%!M > �) or !%m+1M � � thenUlt(HmM ; E
M ) = HmM 0 where HmM and HmM 0 is the domain of the m-th redu
t ofM and M 0, respe
tively. So Ult(M;E
M ) and M 0 agree up to a 
ommon 
ardinalthat is larger than 
M and, 
onsequently, Ult(M;E
M ) and M 0 
ontain the samesubsets of 
M .As an immediate 
onsequen
e we have !%1M > �, so(10) � : M !M 0 is �2-preserving with respe
t to the language of premi
e.



14 MARTIN ZEMANLet ~� : ~M !M 0 be the 
anoni
al embedding de�ned by~� : ~�(f)(�) 7! �(f)(�)for f 2 �m(�;M) and � < ��M . Re
all that f need not be an element of M ,but it has a fun
tionally absolute �(m�1)1 -de�nition in some parameter from M .More pre
isely, there is a �(m�1)1 -formula '(v0; v1; v2) su
h that ' de�nes a partialfun
tion by (a1; a2) 7! b i� Q j= '(b; a1; a2) whenever Q is an a

eptable J-stru
turefor the language of premi
e, and y = f(�) just in 
ase that M j= '(y; �; p) for someparameter p 2M . Then �(f) is the fun
tion de�ned by ' over M 0 in the parameter�(p). Standard arguments then yield:� ~� : ~M !M 0 is �(m)0 -preserving with respe
t to the language for premi
e;� 
r(~�) = 
+ ~MM ;� !%m+1~M � 
M and ~M is sound above 
M .The �rst 
lause follows from the  Lo�s theorem for �(m)0 -formulae by the standardargument. To see the se
ond 
lause, noti
e that ~� is the identity up to 
M + 1 byde�nition, so 
r(~�) � 
+ ~MM . Our assumption guarantees that Ult(M;E
M ) and M 0have di�erent power sets of 
M . Sin
e P(
M ) \ ~M = P(
M ) \ Ult(M;E
M ), wesee that M 0 has more subsets of 
M than ~M . Consequently, 
+ ~MM < 
+M 0M . Sin
e~�(
+ ~MM ) = 
+M 0M , the 
onslusion follows. The third 
lause is a standard 
onsequen
eof the soundness of M , the two fa
ts that !%m+1M = � and ~�(�) = 
M , and generalproperties of m-ultrapowers.The three 
lauses established in the previous paragraph enable us to apply theCondensation Lemma to ~� : ~M ! M 0. This is possible, as M 0, being a ��-ultrapower of M by an internal extender, is itself (!1 + 1; !1)-iterable. We want toinfer that the 
on
lusion (b) is the 
ase, that is, we want to show:(11) ~M is a proper initial segment of M 0.We �rst fo
us on ruling out (a). Noti
e that !%m+1M 0 � 
M and M 0 is sound above
M ; this follows similarly as in the 
ase of ~M above. (a0) would then imply that~M = M 0, whi
h 
ontradi
ts the assumption that ~M and M 0 have distin
t powersets of 
M . To see that (
) and (d) in the Condensation Lemma fail is easy, asboth (
) and (d) would imply that the 
ardinal prede
essor of 
r(~�) in ~M is a limit
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ardinal in ~M . In the present situation, however, this 
ardinal prede
essor is equalto 
M , whi
h is a su

essor 
ardinal in ~M . ut(11)The indu
tion hypothesis (2) guarantees that the following statement is true:(12) Let R be a type B proper initial segment of M and �R bean ordinal su
h that �R � maxf(
r(ERtop)+R; !%1Rg. Then� R is Dodd solid above �R;� d�R = (pR � �R) [ e�R.By the preservation properties of �, this statement is true with M 0 in pla
e of M .This 
ombined with (11) implies that ~M is Dodd solid above ~� = ~�(�). Letting�0 = �(�), general properties of �ne ultrapowers easily imply that both ~M and M 0are type B premi
e, ~�(pM ��) = p ~M � ~� and �(pM ��) = pM 0 ��0. Furthermore,~�(
M ) = 
 ~M and �(
M ) = 
M 0 ; as a 
onsequen
e we obtain that e~�~M = f
 ~Mg ande�0M 0 = f
M 0g. Finally (12) implies that ~W def= �W 
 ~M ;d~�~M~M 2 ~M .Noti
e also that ~�(p ~M � ~�) = pM 0 � �0 and ~�(
 ~M ) = 
M 0 ; this is an immediate
onsequen
e of the above 
al
ulations and the de�nition of ~�. Our next step is toshow that:(13) In M 0, there is a generalized Dodd solidity witness for 
M 0with respe
t to M 0 and pM 0 .For this, we have to refer to the preservation properties of ~�. We show:~� : ~M !M 0 is �1-preserving with respe
t to the language of premi
e.This is obvious if m > 0, so it suÆ
es to fo
us on the 
ase where m = 0. In this
ase, ~M is a result of a 
oarse ultrapower, so ~� is �0-preserving and 
o�nal. M 0 isnot a result of a 
oarse ultrapower, but it is still true that �0 is 
o�nal. To see this,re
all that the assignmentx 7! the least � su
h that F (x) 2 JE�is �1(M) and maps P(�) \M 
o�nally into ht(M), and similarlyx 7! the least � su
h that F 0(x) 2 JE0�is �1(M 0) and maps P(�0)\M 0 
o�nally into ht(M 0) where F 0 is the top extenderof M 0 and �0 = 
r(F 0). Now noti
e that �0 maps � 
o�nally into its image 
M ,
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h easily yields the 
o�nality of �0. On
e we have established the 
o�nality ofboth � and �0, the 
o�nality of ~� follows immediately.The 
al
ulations following (12), together with the preservation properties of ~�guarantee that W 0 = ~�( ~W ) is a generalized Dodd solidity witness for 
M 0 withrespe
t to M 0 and pM 0 � �0, thus proving (13). Now the statement(9W 0)(W 0 is a generalized Dodd solidity witness for 
M 0with respe
t to M 0 and pM 0 and M 0)is easily �2, so (10) then immediately yields that M 
ontains some generalized Doddsolidity witness for 
M with respe
t to pM and M . This 
ompletes the dis
ussionin Case 1. ut(Case 1)Case 2: P(
M ) \ Ult�(M;E
M ) = P(
M ) \ Ult(M;E
M ).Let � : W ! M be the 
anoni
al witness map, that is, the un
ollapsing mapasso
iated with h�M (
M [ fpM � (
M + 1)g). Then 
M = 
r(�), so 
M = (��M )+Wand W is a potential premouse whi
h fails to satisfy the initial segment 
onditionat ��M = ��W def= ��. Noti
e that the 
oherent stru
ture determined by EWtop j��W isjust M jj 
M ; this follows from the fa
t that � � �� = id. Fix the following data:� �0 : JE� ! JE
M is the 
anoni
al ultrapower embedding by EWtop j��;� �W : JE� ! JE�W is the 
anoni
al ultrapower embedding by EWtop;� �W : M jj 
M !W is the 
anoni
al map de�ned by�W : �0(f)(�) 7! �W (f)(�)for f 2 �JE� \ JE� and � < ��.Obviously, �W maps JE
M 
o�nally into JE�W . As �� is a 
utpoint of EWtop, we seethat 
r(�W ) = �� and �W (��) = �(W ). Noti
e also that ea
h � < �W is of the form�W (f)(�) for some f : �� ! 
M that is an element of JE
M , and some � < �(W ).(By the 
o�nality of �W , 
hoose �� so that �W (��) > � and some �f 2 JE� whi
hmaps � surje
tively onto ��. Letting f = �0( �f), we see that �W (f) = �W ( �f) is asurje
tion of �(W ) onto �W (��), so one 
an �nd some � as required above.) Letting�H be the extender at (��; �(W )) derived from �W , the above observations allow usto 
on
lude that(14) JEW�W = Ult(JE
M ; �H) and �W is the asso
iated ultrapower embedding,
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oherent stru
ture (see the introdu
tion). Sin
e 
M = (��)+W ,the extender �H is weakly amenable with respe
t to W and it is then easy to ver-ify that �Q is a
tually a potential premouse. Moreover, �Q is a type A potentialpremouse: Indeed, the fa
t that �� is the largest 
utpoint of EWtop guarantees thatthere are 
o�nally many ordinals below �(W ) that are of the form �W (f)(��) forsome f 2 ��\JE� . Thus, the ordinals of the form �W (g)(��) where g 2 ���� \JE
Malso 
onstitute a 
o�nal subset of �(W ), sin
e the fun
tions g in
lude all fun
tionsof the form �0(f) where f is as above. This allows us to 
on
lude:�Q = hJE�W ; �Hi is a type A premouse.The amenability of both stru
tures hJE
M ; EWtop j��i and W together with (14) alsoyield that W = Ult(hJE
M ; EWtop j��i; �H) and �W is the asso
iated ultrapower embed-ding. So W is fully determined by hJE
M ; EWtop j��i and �H . Also, hJE
M ; EWtop j��i,being a 
oherent stru
ture, is fully determined by JE� and EWtop j�� = EMtop j��.Thus, to prove that W 2 M , it suÆ
es to verify that both EMtop j�� and �H areelements of M . That EMtop j�� 2 M is an immediate 
onsequen
e of the initialsegment 
ondition for M . To see that �H 2M , we show(15) �Q 2M:Let� �M : JE� ! JE�M be the 
anoni
al ultrapower embedding by EMtop;� �M : M jj 
M !M be the 
anoni
al map de�ned by�M : �0(f)(�) 7! �M (f)(�)for f 2 �JE� \ JE� and � < ��.� H be the extender at (��; �(M)) derived from �M .A dis
ussion similar to that above shows that(16) Q = hJE�M ; Hi is a 
oherent stru
tureand(17) M = Ult(M jj 
M ; H) and �M is the asso
iated ultrapower embedding.Sin
e 
M < (��)+M , the extender H is not weakly amenable with respe
t to M .This means that Q is not a potential premouse. Instead, Q is a protomouse in the



18 MARTIN ZEMANsense of [17, 12℄ or [13℄. The extenders �H and H are extra
ted from EWtop and EMtoprespe
tively, so the stru
tures �Q and Q 
annot 
arry more information than W andM . (A
tually, Q and M 
arry the same amount of information.) As a 
onsequen
ewe get the following, with respe
t to the language for 
oherent stru
tures:(18) � : �Q! Q is �0-preserving and 
o�nal.Indeed, � 
an be viewed as a map from �Q to Q, sin
e �Q has the same domain asW and Q has the same domain as M . This also guarantees the 
o�nality of �.Thus, to see that � is �0-preserving, it suÆ
es to show that �( �H \ x) = H \ �(x)for all suÆ
iently large x 2 �Q. By the 
o�nality of �W , the set x 
an be 
hosen ofthe form JEW� where � = �W (��) for some �� < � . In this 
ase �H \ x is of the formfh�W (g)(�) \ ��; �W (g)(�)i; � < ��g for any surje
tion g : �� ! P(��) \ JE�0 that isan element of M jj 
M ; here �0 = �0(��). In parti
ular, g 
an be 
hosen of the form�0(f) where f : � ! P(�) \ JE�� is any surje
tion that is an element of JE� . Then�W (g) = �W (f), and we have(19) �H \ x = fh�W (f)(�) \ ��; �W (f)(�)i; � < ��g:The abuse of notation we introdu
ed immediately before the beginning of the proofof Theorem 1.1 allows us to write EWtop(f) instead of �W (f), so (19) 
an be rewrittenas �H \ x = fhEWtop(f)(�) \ ��; EWtop(f)(�)i; � < ��g, and the following 
al
ulation
an be easily veri�ed:�( �H \ x) = �(fhEWtop(f)(�) \ ��; EWtop(f)(�)i; � < ��g)= fh�(EWtop(f))(�) \ ��; �(EWtop(f))(�)i; � < ��g= fhEMtop(f)(�) \ ��; EMtop(f)(�)i; � < ��g= H \ �(x):The se
ond equality here follows from the preservation properties of � and the fa
tthat 
r(�) = 
M . To see the third equality, noti
e that �(EWtop(f)) = EMtop(f).The last 
lause is a 
onsequen
e of the fa
t that EMtop(f) = �M (f) is a surje
tionof �(M) onto P(�(M)) \ JE�(�) = P(�(M)) \ �(x), so it enables us to isolate allx � �(M) from �(x) whi
h are in the rangle of H in the same way we did it for �Hin (19).



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 19For the argument we are going to do below, we will need the following �nestru
tural fa
t about �Q. Let �p = ��1(pM � (
M + 1)). Then(20) h �Q(
M [ f�pg) = �Q; so !%1�Q � 
M :The proof of (20) 
ontains an ingredient from the proof of (30), namely a 
onstru
-tion of an auxiliary fun
ion f . Although that proof 
omes later in this paper, westill prefer to give the details of the 
onstru
tion of f there rather than here. Re
allthat h��Q is the same as h �Q sin
e �Q is a type A premouse and W = h�W (
M[f�pg). Fixan ordinal � < �W . As �W is 
o�nal, the argument from the proof of (30) yields afun
tion f : 1+j�pj�� ! 
M that is an element of JE
M and su
h that � = �W (f)(�; �p)for some � < 
M . Now f(�) = otp(g(�)) for a suitable g : �� ! P(��) that is anelement of JE
M , so our abuse of notation (see the previous paragraph) enables usto write � = otp( �H(g)(�; �p)). This tells us that �W = On \ �Q � h �Q(
M [ f�pg), soh �Q(
M [ f�pg) = �Q. ut(20)The 
on
lusion (18) 
ombined with the fa
t that Q and M have the same domainimply that hM; �Q; 
M i is a good phalanx in the sense of [17℄, Se
tion 9.1. Ourstrategy now is to 
ompare this phalanx with M and use standard 
omparisonte
hniques to infer that �Q 2 M , and thereby 
omplete the proof of Lemma 1.6.This is not possible verbatim, as it is not 
lear that the phalanx is embeddedableinto a suÆ
iently iterable premouse in the manner des
ribed in [17℄, Se
tion 9.2.For this reason, the entire 
omparison argument needs 
ertain amendments whi
hare des
ribed below. The �rst step in our argument is to show that the phalanx is
oiterable with M . In fa
t, we show that the phalanx is normally (!1 + 1)-iterable.We show this by embedding iterations of hM; �Q; 
M i into slight modi�
ations ofiterations of M . In order to des
ribe how these modi�
ations will be formed, weneed the following notation.Given a type B premouse P , we de�ne a protomouse Q(P ) in the same mannerwe de�ned Q in (16). More pre
isely, letting �P : P jj 
P ! P be the 
anoni
al mapde�ned in an analogous way as �M , the stru
ture Q(P ) is of the form hJEP�P ; HP iwhere �P = ht(P ) and HP is a (��P ; �(P ))-extender derived from �P . The stru
turesP and Q(P ) have the same domain.



20 MARTIN ZEMANLemma 1.8. Let P be a type B premouse and FP be a total extender on P su
h thatP 0 = Ult(P; FP ) exists (that is, the 
orresponding ultrapower is well-founded; P 0 istransitive). Let � : P ! P 0 be the asso
iated ultrapower embedding. Then Q(P 0) =Ult(Q(P ); FP ) and � : Q(P )! Q(P 0) is the asso
iated ultrapower embedding.Proof. Re
all also P and Q(P ) have the same domain, and the same applies toP 0 and Q(P 0). So � is 
learly an ultrapower map when viewed as a map betweenthe domains of Q(P ) and Q(P 0). Thus, it suÆ
es to show that � retains thepreservation properties when viewed as a map between Q(P ) and Q(P 0). Thisamounts to showing that �(HP \ x) = HP 0 \ �(x) for all x 2 P and 
an be provedthe same way as (18). ut(Lemma 1.8)Write ( �Q�1; �Q0) for (M; �Q), so from now on we 
an write h �Q�1; �Q0; 
M i insteadof hM; �Q; 
M i. We have seen that �Q is embedded into Q(M) via �. Now if �Qi isa model of some iteration of h �Q�1; �Q0; 
M i that is on the same bran
h as �Q0 = �Qand there is no trun
ation point on this bran
h, the 
riti
al point of the iterationmap ��0;i : �Q! �Qi is stri
tly above 
M , so ��+ �Qi = 
M . If ~Mi is the 
orrespondingmodel of the iteration of M that arises in the 
ourse of the 
opying 
onstru
tionthen the 
riti
al point of the iteration map ~�0;i : M ! ~Mi is also above 
M , but
M is not a 
ardinal in M and ~Mi. The relationship between �Qi and ~Mi resemblesto that between �Q and M , and we will embed �Qi into Q( ~Mi). In all other 
ases we
an imitate the usual 
opying 
onstru
tion; the treatment of anomalies, howeverrequires a bit of extra 
are, too.Let us now pro
eed with the 
onstru
tion. We shall give a re
ursive de�nition ofa normal iteration strategy �S for h �Q�1; �Q0; 
M i. Following the standard approa
h,this iteration strategy will be a pullba
k of Sunder �, but we have to be a bit 
arefulabout the 
opy maps (re
all that Swas �xed at the beginning of this se
tion). Let�= be a normal iteration of h �Q�1; �Q0; 
M i a

ording to �S with iteration indi
es ��i,
riti
al points ��i, premi
e �Qi, iteration maps ��ij and the asso
iated tree ordering<�=. Starting from �= and the embeddings id : �Q�1 !M and � : �Q! Q, we de�nea normal iteration ~= of M a

ording to S with iteration indi
es ~�i, 
riti
al points~�i, premi
e ~Mi, iteration maps ~�ij (so ~M0 = M) and the asso
iated tree ordering<~= together with \
opy" maps �i su
h that:(a) ��1 = id : �Q�1 ! ~M0 and �0 = � : �Q0 ! Q( ~M0);
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o�nal whenever 0 ��= i and there isno trun
ation point on the bran
h [0; i℄�=;(
) �i : �Qi ! ~Mi if at least one of the 
onditions in (b) fails and ��i�1 6= ��; inthis 
ase, �i is fully ��-preserving;(d) �i : �Qi ! ~Mi = Ult( ~M0 jj 
 ~M0 ; EQ( ~Mi�1)top ) = ~Mi�1 if(�) 0 ��= i� 1, there is no trun
ation point on the bran
h [0; i� 1℄�= and��i�1 = ht( �Qi�1);in this 
ase ��i�1 = �� as ��0;i�1 � (
M + 1) = id, and i is a strong anomalyin the sense of [17℄, Se
tion 9.1; it follows that f�1; ig is a maximal bran
hin �=. Regarding the equality ~Mi = ~Mi�1, see below.(e) �i : �Qi ! ~�0;i(M jj 
M ) is �0-preserving and 
o�nal if the following two
onditions are satis�ed:{ ��i�1 = �� and{ the 
ondition (�) from (d) fails;as in (d), i is a strong anomaly, so f�1; ig is a maximal bran
h in �=.Clauses (a), (
) and (e) 
an be veri�ed similarly as in the 
ase where we have astandard embedding of a phalanx into a premouse (see [17℄, Lemma 9.2.9). Clause(b) is a 
onsequen
e of Lemma 1.8. Let �i�1 be the immediate <�=-prede
essor of i.If ��i�1 : �Q�i�1 ! Q( ~M�i�1) and �i�1 are already given, the lemma allows us tode�ne the embedding �i : ~Qi ! Q( ~Mi) in the standard way. To see (d), noti
ethat (�) implies that the extender EQ( ~Mi�1)~�i�1 = EQ( ~Mi�1)top is not total on M0, andthe result of 
orresponding ultrapower is just ~Mi�1; this follows from the fa
t that~Mi�1 agrees with ~M0 up to 
 ~M0 + 1. Stri
tly speaking, ~= is not a normal iteration,as it may 
ontain bran
hes of the form f0; ig whenever EQ( ~Mi�1)~�i�1 is a top extenderof Q( ~Mi�1). But obviously, by removing su
h bran
hes from ~=, we obtain a normaliteration. All the remaining issues 
an be handled in the standard way.The 
opying 
onstru
tion des
ribed above provides us with the obvious de�nitionof �S, namely �S(�=) = S(~=) whenever �= is an iteration of limit length. This givesthe normal iterability of the phalanx hM; �Q; 
M i, and thereby its 
oiterability withM . The 
oiteration of the phalanx with M terminates in, say, �+ 1 < !1 steps. Tokeep the notation visually 
onsistent with that in the previous paragraph, let �= bethe iteration on the phalanx side, let ~= be its 
opy as des
ribed above and let = be



22 MARTIN ZEMANthe iteration on the M -side. Denote the premi
e in = by Mi and the iteration mapsin = by �ij . Thus, the last models in �=, ~= and = are �Q�, ~Q� and M�, respe
tively.Also, ��i are the indi
es of the 
oiteration.The appli
ation of the Neeman-Steel Lemma as des
ribed in [17℄, Lemma 9.2.12,goes literally through even in the present 
ontext; the details are left to the reader.We thus obtain:� 0 ��= �;� �Q� is an initial segment of M�;� [0; �℄�= has no trun
ation points.Noti
e that if �Q� = M�, then [0; �℄= ne
essarily 
ontains a trun
ation point. Thisfollows from the fa
t that if the iteration maps ��0;� : �Q0 ! �Q� and � : M0 ! M�are total, then they preserve the premi
e type. Now M is a type B premouse, soM� would be of type B as well. On the other hand, �Q0 = M is a type A premouse,so �Q� is of type A. So we have:Either �Q� is a proper initial segment of M� or elsethere is a trun
ation point on the main bran
h of =.Now we 
an pro
eed in the usual way. If �Q� is a proper initial segment of M�,then �Q� is sound. So the phalanx side of the 
oiteration is not moved, as otherwise(20) would imply that �Q� fails to be sound. This means that �Q� = �Q0 = �Q. Noti
ethat ��0 = 
M , as EM
M 6= ? = E �Q
M . Assume there is a disagreement between theextender sequen
es of M1 and �Q. Then ��1 is stri
tly larger than 
M and is a 
ardinalin M�. Sin
e �Q proje
ts to 
M , we see that �Q is a
tually a proper inital segment ofM� jj ��1 = M1 jj ��1, a 
ontradi
tion. So �Q must be a proper initial segment of M1and � = 1. By (20), �Q 
an be en
oded into a subset b of 
M that is �1( �Q), andtherefore into an element of M1 = Ult�(M;E
M ). Now re
all that we are in Case 2,so b 2 Ult(M;E
M ). We want to see that b 2 M , as this will enable us to de
odeb inside M and 
on
lude that �Q 2 M . The argument is des
ribed in [17℄, proof ofTheorem 9.3.1, Case 1. The point is that in M , there are sequen
es hg�; � < 
M iand h�� ; � < 
M i su
h that g� : � ! � , �� < ��M and � = �̂(g�)(��) where �̂is the ultrapower embedding asso
iated with Ult(M;E
M ). Sin
e E
M 2 M andb = �̂(f)(�̂) for some f and �̂ that also are elements of M , the statement \� 2 b"
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an be expressed as �̂(g�)(��) 2 �̂(f)(�̂). Using the  Lo�s Theorem, this 
an beexpressed internally in M .Now assume that �Q� = M�. Let i > 0 be the least su
h that EMi��i is an extender.Noti
e that i exists, as there must be a trun
ation point on the main bran
h of =(so � > 1). Obviously, Mi = M1 so ��i indexes an extender on the M1-sequen
e(possibly the top one). Also, let j + 1 be the last trun
ation point on that bran
h.The set b en
oding �Q is �1( �Q), so by standard arguments, b is �1(M�j ) where M�jis the result of the last trun
ation on the main bran
h in =. So b 2 M�j where�j is the immediate <=-prede
essor of j + 1. Now either �j = 1 or else �j > 1, inwhi
h 
ase ��i is a 
ardinal in M�j . In either 
ase, b is an element of M1, due to theagreement between M1 and M�j . Now apply the assumption of Case 2, and as inthe previous 
ase 
on
lude that b 2M and �Q 2M . ut(Lemma 1.6)From now on we 
an assume(21) e�M 6= f
Mg:By (5), e�M � ��M + 1.Lemma 1.9. Assume that ��M 2 e�M . Then �W ��M ;(pM��)[e�MM 2M .Proof. By (6), ��M 2 e�M just in 
ase that ��M = max(pM [ e�M ). Letting W =�W ��M ;(pM��)[e�MM and � : W ! M be the 
anoni
al witness map, we see that
r(�) = ��M and �(��M ) = �(M). This follows from the fa
t that ��M is the largest
utpoint of EMtop. So W is a 
oherent stru
ture with �(W ) = ��M and EWtop = F j��M .By the initial segment 
ondition, F j��M = E
M , so W = M jj 
M 2M .ut(Lemma 1.9)This takes 
are of the top part of the Dodd parameter above ��M , and we have:d�M � ��M = (pM [ e�M )� ��M and �W �;d�MM 2M whenever � 2 d�M � ��M :Re
all that we are in the pro
ess of verifying (3) and that we have already donethe job for � � ��M . From now on we will assume:� < ��M and � 2 (pM � �) [ e�M(22) d�M � (� + 1) = (pM [ e�M )� (� + 1)(23) �W Æ;d�MM 2M whenever Æ 2 d�M � (� + 1):(24)



24 MARTIN ZEMANWe will �rst dis
uss the 
ase where � 2 pM � �.Lemma 1.10. Assume � 2 pM � � and (22) { (24) hold. Then �W �;pM[e�MM 2M .Proof. Let W = W �;pMM and let � : W ! M be the 
anoni
al witness map. Letfurther e1 = e�M � � and e2 = e�M \ �:Then �(�) > �. By the de�nition of e�M , there is some �nite a � � su
h that(25) (9e)(9��)(e 2 [On℄<! & �� < �(�) & 
M = h�M (a; fpM � f�g; ��; e; e2g);this is witnessed by e1 and �. Sin
e � is �1-preserving with respe
t to the languagefor 
oherent stru
tures (in fa
t, with respe
t to the language for premi
e) and theobje
ts 
M , pM � f�g, a and e2 are in the range of �, there is an e 2 rng(�)witnessing (25). Assume e is the <�-least su
h.Claim. e = e1, so e�M 2 rng(�).Proof. Suppose this is false. There are two possibilities. First 
onsider thepossibility e1 <� e. If this happens then (25) 
an be rewritten as(9�e)(9��)(�e <� e & �� < �(�) & 
M = h�M (a; fpM � f�g; ��; �e; e2g):It would follow that rng(�) 
ontains some �nite set of ordinals �e <� e witnessing(25), whi
h 
ontradi
ts the minimality of e.Now 
onsider the 
ase where e <� e1. Fix Æ 2 e1 � e su
h that e1 � (Æ + 1) =e � (Æ + 1). Let �W = �W Æ;pM[e�MM and �� : �W ! M be the 
anoni
al witnessmap. Sin
e Æ > �, we 
an apply (23) and (24) and 
on
lude that W � 2 M . Onthe other hand, the de�nition of Æ guarantees that pM [ e � rng(��). Sin
e ��is �1-preserving with respe
t to the language for 
oherent stru
tures, we see thatboth pM and 
M = h�M (a; fpM � f�g; ��; e; e2g) are in rng(��); here �� < � 
omesagain from (25). But this means that rng(��) � h�M (�; pM [ f
Mg) = M . So�W = M , a 
ontradi
tion again. ut(Claim)Let q be su
h that �(q) = (pM [ e�M ) � (� + 1). The Dodd solidity witness�W �;pM[e�MM is the transitive 
ollapse ofY = h�M (� [ f(pM [ e�M )� (� + 1)g):



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 25By the preservation properties of �, the stru
tures (Y;2) and (h�W (� [ fqg);2) areisomorphi
 (this notation suppresses the predi
ates), so �W �;pM[e�MM is the transitive
ollapse of h�W (� [fqg). Sin
e M is solid, we know that W 2M . Now M is a
tive,so its domain is a ZFC�-model. It follows immediately that both h�W (� [ fqg) and�W �;pM[e�MM are in M . ut(Lemma 1.10)It remains to dis
uss the 
ase where � 2 e�M . This will require some e�ort.In a series of lemmata, we �rst show that the top extender of �W �;pM[e�MM 
an befa
tored into two extenders; one of them will be an element of M and the other onewill satisfy the initial segment 
ondition. We then apply a 
omparison argumentof the same kind we did in Case 2 in the proof of Lemma 1.6 to 
on
lude that thisextender is in M . We will also see that su
h a fa
toring implies the existen
e of a
ardinal in M that is both sub
ompa
t and superstrong. Thus, under a suitable(and relatively modest) anti-large 
ardinal assumption, we will be able to 
on
ludethat e�M \ ��M = ?, whi
h will prove Proposition 1.3.In addition to (21) { (24), from now on we assume:� 2 e�M(26) W = �W �;pM[e�MM and � : W !M is the 
anoni
al witness map(27) 
 = (��1)00
M(28)Obviously, W is a type B potential premouse and �(��W ) = ��M .Lemma 1.11. 
 < (��W )+W .Proof. Obviously, 
 � (��W )+W . Assume for a 
ontradi
tion that 
 = (��W )+W .Sin
e � maps 
 
o�nally into 
M , we 
an apply the Interpolation Lemma ([17℄,Lemma 3.6.10) to the embedding � : W ! M and �nd a 
oherent stru
ture ~M ,and maps ~� and �0 su
h that:� ~� : W ! ~M is �0-preserving with respe
t to the language for 
oherentstru
tures and 
o�nal;� �0 : ~M ! M is �0-preserving with respe
t to the language for 
oherentstru
tures;� ~� � JEW
 = � � JEW
 ;� 
r(�0) = 
M and �0(
M ) = (��M )+M ;



26 MARTIN ZEMAN� �0 Æ ~� = �.The de�nition of � guarantees that (pM [ e�M ) � f�g is 
ontained in rng(�), andtherefore also in rng(�0). But sin
e 
r(�0) = 
M > � � �, we also have the in
lusion� [ f�g � rng(�0). It follows that � [ fpM [ e�Mg � rng(�0). Now the fa
t that
r(�0) > � (re
all that � = �+M where � = 
r(F )) implies that �0 : ~M ! Mis 
o�nal, and therefore �1-preserving with respe
t to the language for 
oherentstru
tures. From this we immediately infer that rng(�0) = h�M (�[fpM[e�Mg) = M ,and obtain a 
ontradi
tion with the next-to-last 
lause above, whi
h tells us thatrng(�0) has a 
riti
al point. ut(Lemma 1.11)Before pro
eeding further, we observe:(29) 
M =2 rng(�):Otherwise 
M 2 h�M (� [ fpM [ (e�M � f�g) [ eg) for some �nite e � �. But(e�M � f�g) [ e <� e�M , whi
h 
ontradi
ts the minimality of e�M . ut(29)Let us also point out that (29) implies the failure of the Initial Segment Conditionfor W . If W satis�ed the Initial Segment Condition then EWtop j��W 2 W , andthe preservation properties of � would yield �(EWtop j��W ) = F j��M . Sin
e JE� isobviously in the range of �, also 
M = ht(Ult(JE� ; F j��M )) would end up in rng(�),whi
h is impossible.Re
all that ��W is the largest 
ardinal in JEW
 . Let N be the level of W 
ollapsing
 and n 2 ! be su
h that !%n+1N � ��W < !%nN ; these obje
ts exist by Lemma 1.11.Our observation (29) guarantees that �(
) > 
M . Letting N 0 = �(N), we nowapply the interpolation lemma to the embedding � � N : N ! N 0. We obtain atransitive stru
ture ~N together with maps ~� and �0 satisfying:� ~� : N ! ~N is �(n)0 -preserving with respe
t to the language for 
oherentstru
tures and 
o�nal at the level n;� �0 : ~N ! N 0 is �(n)0 -preserving with respe
t to the language for 
oherentstru
tures;� �0 Æ ~� = �;� ~� � JEN
 = � � JEN
 ;� 
M = ~�(
) = (��M )+ ~N (this has a meaning also when 
 = ht(N));� �0 � 
M = id;



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 27� 
r(�0) = 
M and �0(
M ) = �(
) def= 
0 whenever 
 < ht(N).For n > 0, the 
o�nality of ~� at the level n follows from the soundness of N(soundness with respe
t to the language for premi
e, of 
ourse), as it implies thatRnN , when 
omputed in the language for 
oherent stru
tures, is nonempty ([17℄,Lemma 3.6.3 (h)). The se
ond 
lause is then an immediate 
onsequen
e of the
o�nality of ~� at the level n ([17℄, Lemma 3.6.10). For n = 0, the 
o�nality of ~�follows dire
tly from the pseudoultrapower 
onstru
tion.Fix the following notation. Assuming that N is a
tive, we let� � = 
r(ENtop) and ~� = ~�(�);� # = �+N , #0 = ~�(#) and ~# = sup(~�00(#));� G = ENtop, ~G = E ~Ntop and G0 = EN 0top.Lemma 1.12. N is a
tive, ht(N) = 
, # = � and E� 6= ?.Proof. First observe that � = 
r(�). This is standard: If not, then � 2 h�M (� [fpM [ (e�M � f�g)g), so h�M (� [ fpM [ (e�M � f�g)g) � h�M (� [ fpM [ e�Mg) = M .We then arrive at a 
ontradi
tion exa
tly as in the proof of (29).We will split the proof into a sequen
e of 
laims in whi
h we rule out all possi-bilities that are in
ompatible with the statement of the lemma.Claim 1. N is a
tive, n = 0 and ~�00# is bounded in #0.Proof. Assume for a 
ontradi
tion that this fails, so either N is passive or n > 0or ~�00# is 
o�nal in #0. We �rst show that 
 < ht(N). This is 
lear if N is passive,as JEN
 is a ZFC�-model. Now suppose that N is a
tive and 
 = ht(N), that is,EW
 6= ?. In this 
ase we have n = 0, so our assumption implies that �00# = ~�00#is 
o�nal in #0. Re
all that W j= 
f(
) = 
f(#), that is, in W there is a stri
tlymonotoni
 fun
tion f : # ! 
 that is 
o�nal in 
. Then �(f) : #0 ! 
0 is stri
tlymonotoni
 and 
o�nal in 
0, so
0 = sup(�(f)00#0) = sup(�(f)00(�00#)) = sup(�00(f 00#)) = sup(�00
) = 
M :This 
ontradi
ts the fa
t that 
0 > 
M . The se
ond equality here follows from the
o�nality of �00# in #0. So indeed 
 < ht(N) and, 
onsequently, 
M = 
r(�0).As a next step we show ~N is a premouse, and if N is a
tive then ~N is of thesame type as N and N 0. The key point here is to verify that ~G is a total extenderon ~N . This is a �2-property. If n > 0 then ~G is total on ~N , as ~�, being a �ne



28 MARTIN ZEMANpseudoultrapower embedding, is �2-preserving ([17℄, Lemma 3.6.3 (d)). If ~�00# is
o�nal in #0, a standard argument yieldsdom( ~G) = [f~�(x); x 2 JEN# & x � P(�)g = P(~�) \ ~N:So far we have seen that ~N is a potential premouse. That ~N is a premouse ofthe same type as N and N 0 (this in
ludes the veri�
ation of the initial segment
ondition) follows from the preservation properties of ~� with respe
t to the languagefor 
oherent stru
tures established above and from [17℄, Lemma 9.1.7. It also followsthat the preservation properties of maps ~� and �0 stated above hold with respe
tto the language of premi
e.The soundness of N and our 
hoi
e of n guarantee that N = ~hn+1N (��W [ fpNg).This together with the solidity of N , the fa
t that ~N is a result of a �ne pseudoul-trapower of N by � � JEN
 , and the preservation properties of the maps ~� and �0yields:� ~N = ~hn+1~N (��M [ f~pg) where ~p = ~�(pN );� !%n+1~N � ��M ;� ~N is solid;� ea
h Æ 2 ~p has a generalized witness with respe
t to ~p and ~N , that is anelement of ~N .� ~p = p ~N � ��M , so ~N is sound above ��M .The �rst 
lause here follows from the 
onstru
tion of �ne pseudoultrapowers (notethat pN \ ��W = ?, as !%!N = ��W ), and immediately yields the se
ond 
lause.The third 
lause follows from the se
ond 
lause and from the �rst part of theCondensation Lemma applied to the embedding �0 : ~N ! N . The fourth 
lauseis a 
onsequen
e of the preservation properties of ~� and the solidity of N . Finally,the last 
lause is a 
onsequen
e of the previous two ([17℄, Lemma 1.12.5).We now apply the se
ond part of the Condensation Lemma to the embedding�0 : ~N ! N 0. There are four possibilities to be dis
ussed, and we show that ea
hof them yields a 
ontradi
tion. This will 
omplete the proof of Claim 1. Clause(a0) in the Condensation Lemma is 
learly false, as �0 6= id. (We are allowed to use(a0), as N 0 is sound.) To see that 
lause (b) fails, re
all that 
M , being the 
riti
alpoint of �0, is a 
ardinal in ~N , so E ~N
M = ?. On the other hand, N 0 is an initial
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M = E
M = F j��M by the initial segment 
ondition. Clause(
) is false, as ~N is sound above ��M , but the �ne ultrapower from (
) fails to be.Finally, 
lause (d) fails, as it would imply that !%!~N � 
M , and we have seen that~N proje
ts to ��M . ut(Claim 1)Claim 2. � < �.Proof. Noti
e �rst that � < ��W . Otherwise # > ��W , so ~�00# would be 
o�nal in~�(#), as follows from general properties of pseudoultrapowers (by Claim 1, ~N is theresult of a 
oarse ultrapower in this 
ase). This would 
ontradi
t Claim 1. Assumefor a 
ontradi
tion that � � �. Then � < # < ��W . Sin
e ��W is a 
ardinal in W , sois #, as follows from the a

eptability of W and the fa
t that # is a 
ardinal in N .The agreement between � and ~� below ��W together with Claim 1 guarantee that�00# = ~�00# is bounded in #0 = �(#) = ~�(#).Now argue as in the proof of Lemma 1.11. We apply the Interpolation Lemmato the embedding � : W ! M ; this time we form a pseudoultrapower of W by� � JEW# . We obtain an a

eptable stru
ture ~W together with maps �0 and �1satisfying:� �0 : W ! ~W is �0-preserving with respe
t to the language for 
oherentstru
tures and 
o�nal;� �1 : ~W ! M is �0-preserving with respe
t to the language for 
oherentstru
tures;� �1 Æ �0 = �;� �0 � JEW# = � � JEW# ;� 
r(�1) = ~# and �1(~#) = #0.Exa
tly as in the proof of Lemma 1.11 we observe that �1 is �1-preserving withrespe
t to the language for 
oherent stru
tures and (pM [ e�M ) � f�g 2 rng(�1).Sin
e # > �, we have 
r(�1) = ~# > �. It follows that �[f�g � rng(�1), so a
tually� [ fpM [ e�Mg � rng(�1). Thus, rng(�1) = M , whi
h 
ontradi
ts the fa
t that �1has a 
riti
al point. ut(Claim 2)Claim 3. # = �.



30 MARTIN ZEMANProof. By Claim 2, � < �, so # � � (re
all that �, being a 
riti
al point of �, is a
ardinal in W ). If # < �, we would have #0 = �(#) = # and ~�00# = �00# = #, whi
hwould yield an immediate 
ontradi
tion with Claim 1. ut(Claim 3)Claim 4. E� 6= ?.Proof. Building on the previous 
laims, we 
on
lude:� ~� : N ! ~N and �0 : ~N ! N are both �0-preserving with respe
t to thelanguage for 
oherent stru
tures, and ~� is 
o�nal;� 
r( ~G) = �;� dom( ~G) = P(�) \ JE� $ P(�) \ ~N ;� ~N is a 
oherent stru
ture that is not a potential premouse.Let N� be the level of ~N 
ollapsing �. Obviously, � = �+N� and dom( ~G) =P(�) \ N�. By the agreement between ~N and M , the premouse N� is the levelof M 
ollapsing �, so N� is a proper initial segment of JE�0 where �0 = �(�). Let�0 be the ultrapower embedding asso
iated with Ult(JE�0 ; G0) and let R0 = �(N�).Let further ~R = Ult�(N�; ~G) with the asso
iated map ~�. Then R0 is a level of N 0,and thus a level of M . To see that ~R exists (that is, the 
orresponding ultrapoweris well-founded), noti
e that the assignment [Æ; f ℄ 7! �0(f)(�0(Æ)) is �0-preserving;here hÆ; fi appears in the 
onstru
tion of the �ne ultrapower, so Æ < �( ~N) andf 2 �(�;N�). This assignment gives rise to the embedding k : ~R! R0.The map �0 � N� : N� ! R0 is fully elementary in the language for premi
e, andN� and R0 are of the same type. We would like to obtain an analogous 
on
lusionwith ~R and ~� in pla
e of R0 and �0 � N�. This is, however, not possible in general.Let m be su
h that !%m+1N� � � < !%mN� . Noti
e that, in fa
t, !%m+1N� = � = !%!N� .Now we apply our indu
tion hypothesis (2) to the premouse N 0, whi
h is a properinitial segment of M . We obtain that dN 0 = d��MN 0 is de�ned and N 0 is Dodd solid.Sin
e �ne stru
tural properties of N 0 are �rst-order expressible over N 0, they arepreserved under �. Thus, dN = d��WN is de�ned and N is Dodd solid. The generalproperties of �ne pseudoultrapowers yield:� h ~N (��M [ f ~dg) = ~N where ~d = ~�(dN );� W Æ; ~d~N 2 ~N whenever � 2 ~d.In the latter 
ase, of 
ourse, we �rst 
on
lude that ea
h Æ 2 ~d has a generalizedDodd solidity witness with respe
t to ~d and ~N that is in ~N , and then use the



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 31generalized witness to obtain the standard Dodd solidity witness by applying (1).(Re
all: now we work in the language for 
oherent stru
tures.)Assume for a 
ontradi
tion that E� = ?. Then obviously � < ht(N�), and,moreover, �(N�) > � whenever N� is a
tive.It follows that ~R is either passive or is a premouse of the same type as N�, and ~� is�(m)0 -preserving with respe
t to the language for premi
e and 
o�nal at the level m.The veri�
ation of this, as well as that of the following 
lauses, is standard:� k(~�(f)(Æ)) = �0(f)(�0(Æ)) for f 2 �(�;N�) and Æ < �( ~N );� k � JE ~N~� = �0 where ~� = ht( ~N);� k � 
M = id;� k : ~R! R0 is �(m)0 -preserving with respe
t to the language for premi
e;� ~hm+1~R (�( ~N ) [ f~�(pN�)g) = ~R;� every Æ 2 ~�(pN�) has a generalized witness with respe
t to ~R and ~�(pN�),that is an element of ~R.Our next task is to show that !%m+1~R � ��M and ~R is sound above ��M . Thistogether with the middle two 
lauses on the above list will enable us to apply theCondensation Lemma and derive a 
ontradi
tion the same way we did in the proofof Claim 1. Toward the soundness of ~R above ��M , we �rst show:�( ~G) � ~hm+1~R (��M [ f ~d [ ~�(pN�)g)(30) W Æ; ~d[~�(pN� )~R 2 ~R whenever Æ 2 ~d(31)The former together with the next-to-last 
lause on the list in the previous para-graph will imply(32) ~hm+1~R (��M [ f ~d [ ~�(pN�)g) = ~R;and, 
onsequently, that !%m+1~R � ��M . This inequality together with the middle two
lauses from that list guarantee the solidity of ~R. Finally (32) 
ombined with (31),the last 
lause on the above list, and the solidity of ~R yield ~d[ ~�(pN�) = p ~R���M ,and thereby the soundness of ~N above ��M . (That ~d \ ��M = ?, follows from thefa
t that dN \ ��W = ?.)



32 MARTIN ZEMANClauses (30) and (31) follow from lemmata established in [12℄, Se
tion 2, wherea more general theory is developed. The proof of (31) makes use of the indu
tionhypothesis (2). In order to show how (2) is used, and also to make this paperself-
ontained, we give the proof of both.First fo
us on (30). Given a � < �( ~N), we have seen above (proof of the 
urrent
laim, the fourth paragraph) that � = h ~N(�; ~d) for some � < ��M . Let H(z; x; y; w)be a �0( ~N)-relation that determines the Skolem fun
tion h ~N , i.e. su
h that forevery x; y; w 2 JE ~N~� we havey = h ~N (x;w)  ! (9z)H(z; y; x; w):We stress that now we work in the language for 
oherent stru
tures, as ~N is a
oherent stru
ture that is not a potential premouse. Fix �� < � su
h that, letting�� = ~�( ��), there is a z 2 JE ~R�� = JE ~N�� satisfying H(z; �; �; ~d). This is possible, sin
e~� maps � 
o�nally into ~�(�) = ~�. De�ne a fun
tion ~f : 1+j ~dj�( ~N)! �( ~N) by~f(�0; w) = 8<: the unique � 0 < �( ~N ) with (9z 2 JE ~R�� )H(z; � 0; �0; w), if de�ned;0, otherwise.Obviously, � = ~f(�; ~d). The fun
tion ~f is �0-de�nable over hJE ~R�� ; ~G \ JE ~R�� i. NowJE ~R�� is in the range of ~�, and therefore is an element of ~hm+1~R (~� [ f~�(pN�)g). Thepredi
ate ~G\JE ~R�� 
an be expressed as fh~�(g)(�)\�; ~�(g)(�)i; � < �g where g 2 N�is a surje
tion of � onto P(�) \ JE�� , so ~G \ JE ~R�� 2 ~hm+1~R (� [ f~�(pN�); �g). Takentogether, ~f 2 ~hm+1~R (� [ f~�(pN�); �g), so � 2 ~hm+1~R (� [ f�; �; ~d [ ~�(pN�)g). This
ompletes the proof of (30) ut(30)Now turn to the proof of (31). Let Æ 2 ~d, let ~WÆ = W Æ;~q~N and let �Æ : ~WÆ ! ~N bethe 
anoni
al witness map. ~WÆ is 
omputed in the language for 
oherent stru
tures.(Obviously, ~WÆ fails to be a potential premouse for the same reason ~N fails to be.)This map is �1-preserving with respe
t to the language for 
oherent stru
tures andits range is pre
isely h ~N (Æ [ f ~d � (Æ + 1)g). Thus, ~WÆ = h ~WÆ (Æ [ f ~dÆg) where�Æ( ~dÆ) = ~d � (Æ + 1). Denote the top extender of ~WÆ by ~GÆ . Sin
e �Æ � Æ = id,the domain of ~GÆ is exa
tly P(�) \N� = dom( ~G). Let WÆ = Ult�(N�; ~GÆ) and let~�Æ : N� !WÆ be the asso
iated ultrapower map. The existen
e of WÆ follows fromthe preservation properties of the assignment [�; f ℄ 7! ~�(f)(�Æ(�)) where � < �( ~GÆ)



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 33and f 2 �(�;N�). This assignment gives rise to a map ~�Æ : WÆ ! ~R. We show:(33) WÆ = W Æ; ~d[~�(pN� )~R :We have seen above that ~R is a premouse of the same type as N� and ~� : N� ! ~R is�(m)0 -preserving with respe
t to the language for premi
e and 
o�nal at the level m.The same argument yields the same 
on
lusion for WÆ and ~�Æ : N� !WÆ . The map�Æ : WÆ ! ~R is �(m)0 -preserving with respe
t to the language for premi
e, as followsby the standard argument based on the  Lo�s Theorem. We also obtain the 
o�nalityof ~�Æ at the level m; this is a 
onsequen
e of the 
o�nality of both ~� and ~�Æ thelevel m. So ~�Æ is �(m)1 -preserving with respe
t to the language for premi
e. Thede�nition of ~�Æ guarantees that ~�Æ(~�Æ(pN�)) = ~�(pN�) and ~�Æ � �( ~G) = �Æ � �( ~G);the latter implies that ~�Æ( ~dÆ) = ~d � (Æ + 1). Now sin
e ~WÆ = h ~WÆ (Æ [ f ~dÆg),we 
an imitate the proof of (32) and infer ~hm+1WÆ (Æ [ f~�Æ(pN�); ~dÆg) = WÆ . Thistogether with the preservation properties of ~�Æ just established guarantees thatrng(~�Æ) = ~hm+1~R (Æ [ f~�(pN�); ~d� (Æ + 1)g), whi
h 
ompletes the proof of (33).Re
all that we proved that ~WÆ 2 ~N . We also know that ~WÆ 
an be en
odedinto a �1( ~N) set b � Æ. Sin
e Æ < ~� def= �( ~G), we see that b 2 JE ~N~� = JE ~R~� . NowJE ~R~� is a ZFC� model, so inside this stru
ture we 
an both re
over ~WÆ and formUlt(N�; ~GÆ). It follows that W Æ; ~d[~�(pN�)~R 2 ~R. ut(31)Finally we obtained the soundness of ~R above ��M , whi
h allows us to turn to theappli
ation of the Condensation Lemma. The embedding in question is k : ~R! R0and, as we have already indi
ated above, we 
an then pro
eed exa
tly as in theproof of Claim 1, with k in pla
e of �0. ut(Claim 4)Claim 5. ht(N) = 
.Proof. Assume for a 
ontradi
tion that the 
laim is false, that is, ht(N) > 
.De�ne R0, �0, ~R, ~� and k as in the proof of Claim 4. The stru
ture ~R is an a
tivepotential premouse. The map k : ~R ! R0 is �0-preserving with respe
t to thelanguage for 
oherent stru
tures and 
o�nal. The 
o�nality of k follows from thefa
t that ER0top and E ~Rtop have the same 
riti
al point that is below �, � is a 
ardinalin both R0 and ~R and k � � = id. Claim 4 implies that N� = ~N jj� = M jj�,so �( ~R) = ~�(�) = �( ~G). Sin
e 
 is the 
ardinal su

essor of ��W in the sense



34 MARTIN ZEMANof N , our assumption ht(N) > 
 implies that �(N) > ��W , and, 
onsequently,�( ~R) = �( ~N) > ��M .Working in the language for 
oherent stru
tures, we argue similarly as in theproof of Claim 4 to get the following analogues to (30) and (31).�( ~G) � h�~R(��M [ f ~dg)(34) �W Æ; ~d~R 2 ~R whenever Æ 2 ~d:(35)As before, the proof of the latter uses the Dodd solidity of N , and thus makes useof the indu
tion hypothesis (2). The in
lusion (34) immediately implies(36) h�~R(��M [ f ~dg) = ~R;whi
h tells us that d��M~R is de�ned and !%1~R � ��M < �( ~R). It follows that ~R 
annotbe a type C potential premouse (see the introdu
tion). In fa
t, ~R must be a type Bpremouse, as � is easily seen to be a 
utpoint of E ~Rtop.We 
laim that ~R is a premouse, that is, it satis�es the initial segment 
ondition.Consider two 
ases. If ~d 6= ?, let ~Æ = max( ~d). Then ~Æ � ��~R (to see this, re
all thatan argument similar to the proof of (30) shows that � =2 h�~R(�) for any 
utpoint� of E ~Rtop). So �~Æ � ��~R = id where �~Æ : �W ~Æ; ~d~R ! ~R is the 
anoni
al witness map.From this and (35) we immediately getE ~Rtop � ��~R = E�W ~Æ; ~d~Rtop � ��~R 2 ~R;whi
h tells us that ~R satis�es the initial segment 
ondition. Now assume ~d = ?.This means that no � � ��M 
an be a 
utpoint of E ~Rtop. Consequently, ��~R < ��M . Butwe know that k � 
M = id, and using this it is easy to see that E ~Rtop j��~R = ER0top j��~R.By the initial segment 
ondition for R0, the extender ER0top j��~R is an element ofR0. But R0 agrees with ~R up to ��M and ��M is a 
ardinal in both stru
tures, soE ~Rtop j��~R 2 ~R. This proves that ~R is a premouse.Our aim is to apply the Condensation Lemma and obtain a 
ontradi
tion in thesame way as in the proof of Claim 4. Sin
e the Condensation Lemma is formulatedin the language for premi
e, we have to repla
e k by a suitable �1-preserving map(with respe
t to the language for 
oherent stru
tures) ~k : ~R! R̂ where where R̂ isa type B premouse and ~k(
 ~R) = 
R̂. The Condensation Lemma 
annot be appliedto k dire
tly, as R0 is a type C premouse. This follows from the elementarity of
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t that N� = M jj� is a type C premouse; the latter, in turn, is a
onsequen
e of the fa
t that �(E�) = � is ina

essible in M . Let �� = k(��~R) and�̂ = sup(k00�( ~R)). We show:(37) �̂ is the least 
utpoint of ER0top larger than ��.To see that �̂ is a 
utpoint of ER0top, it suÆ
es to show that ER0top(g)(Æ) < �̂whenever Æ < �̂ and g : �� ! �� is a monotoni
 fun
tion that is an element of N�;here �� = 
r(E ~Rtop) = 
r(ER0top). (It is enough to 
onsider just monotoni
 fun
tions,as every g0 : ��! �� is majorized by su
h a fun
tion.) Now if ~Æ < �( ~R) is su
h thatÆ � k(~Æ), we have:ER0top(g)(Æ) � ER0top(g)(k(~Æ)) = k(E ~Rtop(g)(~Æ)) < �̂:Now fo
us on the proof that no 
utpoint of ER0top lies in the interval (��; �̂). Sin
e��~R is the largest 
utpoint of E ~Rtop, there are 
o�nally many ordinals in �( ~R) thatare of the form E ~Rtop(g)(�) for some g as above and some � = ��1; : : : ; �`� where�1; : : : ; �` � ��~R (here ��1; : : : ; �`� is the G�odel `-tuple). By the preservation prop-erties of k, there are 
o�nally many ordinals in �̂ that are of the form ER0top(g)(�0)where g is as above and �0 = ��01; : : : ; � 0̀� where �01; : : : ; � 0̀ � ��. ut(37)Let R̂ be the initial segment of R0 whose top extender is ER0top j �̂. By the abovedis
ussion, R̂ is a type B premouse and ��̂R = ��. Let k̂ : R̂! R0 be the 
anoni
alfa
tor map, so k̂ : ER̂top(g)(Æ0) 7! ER0top(g)(Æ0) whenever g : �� ! P(��) is an elementof JE� and Æ0 < �̂. (This again involves our abuse of notation.) We de�ne the map~k : ~R! R̂ by ~k = k̂�1 Æ k. It is easy to 
he
k that~k(E ~Rtop(g)(Æ)) = ER̂top(g)(k(Æ))for g as above and Æ < �( ~R) = �( ~G). That ~k is �0-preserving with respe
t to thelanguage for 
oherent stru
tures and 
o�nal follows from the fa
t that both k̂ and khave these properties. As an immediate 
onsequen
e of the de�nition of ~k we have(38) ~k � �( ~R) = k � �( ~R) = �0 � �( ~R);so ~k(��~R) = ��̂R. Sin
e ~R satis�es the initial segment 
ondition, E ~R
 ~R = E ~Rtop j��~R.Using the preservation properties of ~k we obtain ER̂~k(
 ~R) = ER̂top j��̂R, whi
h proves



36 MARTIN ZEMANthat ~k(
 ~R) = 
R̂. This means that ~k : ~R ! R̂ is �1-preserving with respe
t to thelanguage for premi
e.We know that !%1~R � ��M , as this follws from (36). We also have ~k � 
M = id, asthis follows from (38). These two fa
ts 
ombined with the preservation properties of~k established in the previous paragraph and with the �rst part of the CondensationLemma yield the weak iterability of ~R (in fa
t they yield (!1; !1 + 1)-iterabilityof ~R, as we are assuming that M is 
ountable). In order to be able to apply these
ond part of the Condensation Lemma and obtain the desired 
ontradi
tion, weneed to show that ~R is sound above ��M . Now R̂, being a proper initial segmentof R0, is a proper initial segment of M . Sin
e ~R is embeddable into R̂, we haveht( ~R) � ht(R̂) < ht(M). By the indu
tion hypothesis (2), Theorem 1.2 holds of ~R.We have just shown that ~R is weakly iterable; that the rest of the assumptions ofTheorem 1.2 is satis�ed follows from (35) and (36). This guarantees the soundnessof ~R above ��~R. Now we 
an pro
eed exa
tly as in the proof of Claim 4 and get a
ontradi
tion. ut(Claim 5)It is now obvious that the proof of Lemma 1.12 is merely a dire
t 
ombinationof the �ve 
laims we have just established. ut(Lemma 1.12)In view of Lemma 1.12, we 
an summarize the 
urrent state of a�airs as follows.� F = EMtop and �F def= EWtop;� 
0 = �(
) and N 0 = �(N);� G = ENtop = EW
 , G0 = EN 0top = E
0 and ~G = G0 \ JE
M ;� � = 
r(G) = 
r(G0), as �(�) = �;� � = �+N = �+W is the 
riti
al point of � and �0 def= �(�).Sin
e E� is a total extender in M and � = 
r(�), an easy argument shows that,in the sense of M , there are stationarily many ordinals �� � �0 with E�� 6= ?.This means that � is sub
ompa
t in M (see [12℄). Also, E
M witnesses that �is superstrong in M (see the introdu
tion). These observations give a proof ofProposition 1.3: Under the assumption that no 
ardinal is both sub
ompa
t andsuperstrong in an inner model, we immediately obtain that � as above 
annot exist,so e�M \ ��M = ?.
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us on the general 
ase. The stru
ture hJEW
 ; �F j��W i is a potential pre-mouse. If �F j��W were an element of W , it would be equal to EW
 . Consequently,�( �F j��W ) would be equal to F j��W = E
M . So 
M 2 rng(�), 
ontradi
ting (29).It follows that �F j��W =2W , so W fails to satisfy the initial segment 
ondition. Thestru
ture hJEW
 ; EW
 ; �F j��W i looks like a bi
ephalus, and it is not diÆ
ult to provethat it is iterable. Be
ause of this, one might attempt to apply the bi
ephaluslemma to 
on
lude that �F j��W = EW
 , and thereby obtain a 
ontradi
tion. This
ontradi
tion would show that � as above does not exist, that is, it would enable usto remove the smallness 
ondition from the assumptions of Proposition 1.3. How-ever, the bi
ephalus argument is not going to work here, as we will see in a littlewhile that hJEW
 ; �F j��W i fails to satisfy the initial segment 
ondition.Let �� = ht(W ) and� �� : JE� ! JEW�� be the ultrapower embedding asso
iated with Ult(JE� ; �F );� ��� : JE� ! JEW
 be the ultrapower embedding 
oming from Ult(JE� ; �F j��W );� �k : JEW
 ! JEW�� be the 
anoni
al map de�ned by �k : ���(f)(�) 7! ��(f)(�)for f 2 �� \ JE� and � < ��W ; so �k � ��W = id and �� = �k Æ ���;� �K be the extender derived from �k.Using standard arguments we infer that 
r(�k) = ��W , �k(��W ) = �(W ) and �K has no
utpoints (see the proof of Lemma 1.6, the dis
ussion at the beginning of Case 2).Sin
e �k is a 
o�nal map, there is a unique predi
ate �H on JEW�� su
h that�k : hJEW
 ; Gi ! hJEW�� ; �Hi is �0-preserving.The 
o�nality of �k guarantees that�Q = hJEW�� ; �Hiis a 
oherent stru
ture, and sin
e 
r(�k) = ��W , �H is an extender with 
riti
alpoint �, ��W is a 
utpoint of �H and �( �H) = �(W ). It also follows that �H is a totalextender on JEW�� , so �Q is a potential premouse. And sin
e �K has no 
utpoints (any
utpoint of �K would be a 
utpoint of �F larger than ��W ), there are no 
utpoints of�H above ��W , so ��W is the largest 
utpoint of �H . The de�nition of �H guaranteesthat �H j��W = G = EW
 , so �Q satis�es the initial segment 
ondition. It follows that�Q is a type B premouse and ���Q = ��W .Lemma 1.13. �H ÆE� = �F .



38 MARTIN ZEMANProof. We �rst show that �F j��W fa
tors in a similar way and then use thisinformation to get the desired 
onslusion about �F .Claim 1. ~G Æ E� = E
M . Hen
e 
r(E�) = 
r(F ) = � < �. Moreover, � is a
utpoint of both F and �F .Proof. We use the notation from the proof of Claim 4 in Lemma 1.12. Noti
ethat N� = M jj� in our 
ase. We have the maps ~� : N� ! ~R, �0 � N� : N� ! R0and k : ~R! R0. Both ~R and R0 are 
oherent stru
tures whose top extenders have
riti
al points equal to 
r(E�) < �. Furthermore, �( ~R) = �( ~G) = �(G0) = �(R0)and this value is ��M . It is now easy to see that k � (��M + 1) = id, so in fa
tk = id and R0 = ~R. But ht( ~R) = ht( ~N) = 
M and R0 is an initial segment of M ,so E ~Rtop = E
M . It follows that 
r(E�) = 
r(E ~Rtop) = 
r(E
M ) = 
r(F ) = �, whi
hproves the se
ond part of the lemma. It also follows that � is a 
utpoint of E ~Rtop,whi
h yields the last senten
e in the lemma. Regarding the �rst part of the lemma,for x 2 P(
r(E�)) \N� we have:( ~G ÆE�)(x) = ~G(E�(x)) = ~�(E�(x)) = E ~R
M (~�(x)) = E
M (x);whi
h 
ompletes the proof. ut(Claim 1)Claim 2. G ÆE� = �F j��W .Proof. Given any x 2 P(�) \W , we have�((G ÆE�)(x)) = �(G(E�(x))) = G0(E�(x)) = ~G(E�(x))= ( ~G ÆE�)(x) = E
M (x) = F (x) \ ��M = �( �F (x) \ ��W ):The third equality here follows from the fa
t that ~G and G0 agree on P(�) \ JE�and the �fth one follows from Claim 1. ut(Claim 2)The following 
omputation then 
ompletes the proof of the lemma:�F = �K Æ ( �F j��W ) = �K ÆG ÆE� = �H ÆE� :The equality on the left follows from the fa
t that �� = �k Æ ���; this fa
t also implies�H(x) = �k(G(x)) = �K(G(x)) for all x 2 P(�) \W , whi
h yields the equality on theright. The middle equality 
omes from Claim 2. ut(Lemma 1.13)



DODD PARAMETERS AND �-INDEXING OF EXTENDERS 39Our aim is to prove that W 2 M , and sin
e W is a 
oherent stru
ture, thisamounts to showing that �F 2 M . By Lemma 1.13, it suÆ
es to establish thefollowing.Lemma 1.14. �H 2M .Proof. We generalize the argument from the proof of Lemma 1.6. As before, theargument splits into two 
ases. In the present situation, � plays the role 
M playedin that proof. The 
ase where P(�) \ Ult�(M;E�) 6= P(�) \ Ult(M;E�) 
an behandled in the same way as before, and we will leave the details to the reader.Thus, for the rest of the argument we will assume(39) P(�) \ Ult�(M;E�) = P(�) \ Ult(M;E�):We have already 
onstru
ted �Q; this stru
ture whi
h will play an analogous roleas �Q 
onstru
ted in the proof of Lemma 1.6. One major di�eren
e between the twosituations is that in the present 
ase, �Q is a type B premouse. The next step is tode�ne the stru
ture Q. We have seen in Case 1 in the proof of Lemma 1.13 that� is a 
utpoint of F . This enables us to repeat the 
onstru
tion des
ribed in (16),this time with � in pla
e of ��M and setQ = Q(M;�)where, given an a
tive premouse P and a 
utpoint � of EPtop,Q(P; �) = hJEP�P ; HP;�i:Here �P = ht(P ) and, letting �� be the index of EPtop j � and �P;� : P jj �� ! P bethe 
anoni
al fa
toring map, HP;� is the extender derived from �P;�. (Pre
isely:�P;� : �P;�(f)(�) 7! �P (f)(�) for f 2 P with dom(f) = 
r(EPtop) and � < �;here �P;� and �P are the ultrapower maps asso
iated with Ult(JEP�P ; EPtop j �) andUlt(JEP�P ; EPtop), respe
tively, and �P = (
r(EPtop)+P ).) The proof of (18) 
an beliterally repeated with present stru
tures �Q and Q, and the ordinal � in pla
e of��M , so we have � : �Q! Q is �0-preserving and 
o�nal.Again, here we work in the language for 
oherent stru
tures. As before, we see thathM; �Q; �i is a good phalanx and that the pair of maps hid; �i is an embedding ofthis phalanx into the pair hM;Qi in the sense des
ribed in the proof of Lemma 1.6.



40 MARTIN ZEMANWe again write �Q0 for �Q and �Q�1 for M and 
ompare hM; �Q; �i with M . Thisgives rise to iterations �=, ~= and = where �= and = 
onstitute the 
oiteration inquestion and ~= is the \
opy" of �= in the sense des
ribed in the proof of Lemma 1.6.This works in the present situation, sin
e the obvious generalization of Lemma 1.8goes through | this time for extenders with 
riti
al points above � (a
tually, thisis true for arbitrary extenders that are weakly amenable with respe
t to Q). Morepre
isely, we have:If FP is a total extender on P with 
r(FP ) > � and � : P ! P 0 is theultrapower map asso
iated with Ult(P; FP ), then Q(P 0; �) = Ult(Q(P ); FP )and � : Q(P; �)! Q(P 0; �) is the asso
iated ultrapower map.Clauses (a) { (e) 
on
erning the \
opying" 
onstru
tion from the proof of Lemma 1.6hold with:� the 
urrent versions of �Q0 and �Q�1;� Q( ~Mi; �) in pla
e of Q( ~Mi);� � in pla
e of 
 ~M0 ;� � in pla
e of ��.Our notation is 
onsistent with that in the proof of Lemma 1.6, so for instan
e themodels of �=, ~= and = are denoted by �Qi, ~Mi and Mi, respe
tively. The appli
ationof the Neeman-Steel Lemma 
an be 
arried out exa
tly as before, so we 
on
lude:� The 
oiteration of hM; �Q; �i with M terminates at some � + 1 < !1;� 0 ��= �;� There is no trun
ation point on the bran
h [0; �℄�=;� �Q� is an initial segment of M�.The next step in the argument is showing that M wins the 
oiteration, whi
h isformulated rigorously as the next 
laim. This was easy to see in the situation fromthe proof of Lemma 1.6, but requires an argument in the present 
ase.Claim. Either there is a trun
ation on the main bran
h of = or else �Q� is a properinitial segment of M�.Proof. Assume this fails, so �Q� = M� and both iteration maps �� : �Q ! M� and� : M ! M� along the main bran
hes in �= and = are total. The existen
e of ��guarantees that �Q is (!1 + 1; !1)-iterable. Noti
e that the 
oiteration begins withno a
tion on the phalanx side and with the ultrapower by E� on the M -side.
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laim 1. h��Q(� [ f �dg) = �Q where �( �d) = (pM [ e�M )� (� + 1). Consequently,!%1�Q � �.Proof. Choose any ordinal � < �; we will show that � 2 h��Q(� [ f �dg). Sin
e W =h�W (� [ f �dg), the proof of (30) gives us a fun
tion f : 1+j �dj� ! P(�), f 2 JE� su
hthat � = otp( �F (f)(�; �d)) for some � < � (again, with a slight abuse of notation). ByLemma 1.13, the right side here is equal to otp( �H(f 0)(�; �d)) where f 0 = E�(f) 2 JE� .So � is �1(M)-de�nable from �d and elements of JE� . ut(Sub
laim 1)Sub
laim 2. !%1M � � .Proof. Let i+ 1 be the immediate su

essor of 0 on the main bran
h of =. Re
allthe �i are the indi
es in the 
oiteration and �i are the 
riti
al points in =. As wehave mentioned above, �0 = �, that is, the �rst extender applied on the M -side ofthe 
oiteration is E� . It follows that �i � � and �i < � = �(E�).Assume that !%1M > � . This means that !%1Mi+1 > �0;i+1(�) = �. Sin
e theiteration map �i+1;� : Mi+1 ! M� is ��-preserving, !%1M� � !%1Mi+1 > �. On theother hand, all extenders applied on the main bran
h of the phalanx side of the
oiteration have 
riti
al points at least �, so !%1M� = !%1�Q � �; the inequality onthe right here 
omes from Sub
laim 1. Contradi
tion. ut(Sub
laim 2)Sub
laim 3. The option !%1M � � is impossible.Proof. Assume !%1M � �. Then both sides of the 
oiteration are above the �rstproje
tum on their main bran
hes. This is 
lear in the 
ase of �=, as we have seenin the proof of Sub
laim 2. Let i be as in that 
laim. If the main bran
h of = failedto be above the �rst proje
tum, then ne
essarily �i < !%1M , as the 
riti
al pointsas
end along the bran
hes, and the proje
ta, that are below the 
riti
al points, arepreserved. Consequently, �i < �, so i > 0. But then !%1Mi+1 > �(EMi�i ) > �, so!%1M� > �. As in Sub
laim 2, this yields a 
ontradi
tion.Sin
e we are assuming that M is sound (see (4)), the 
on
lusion fom the previousparagraph implies that M = 
ore( �Q). Let �� : M ! �Q be the asso
iated 
ore map,d = (pM [ e�M ) � (� + 1) and d0 = ��(d). Re
all that �( �d) = d. We have alreadyproved that �W Æ;dM 2 M for all Æ 2 d. It follows that for every Æ0 2 d0, there is ageneralized Dodd solidity witness with respe
t to �Q and d0, that is an element of�Q, namely ��(�W Æ;dM ) where Æ0 = ��(Æ). This together with Sub
laim 1 yields themiddle inequality in the following formula; the other two inequalities follow from
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ity of both �� and �:d �� d0 �� �d �� d:It follows that d0 = �d, so h��Q(� [ fd0g) = �Q. In parti
ular, ��(
M ) 2 h��Q(� [ fd0g).Consequently, 
M 2 h�M ((���1)00� [ fdg) � h�M (� [ fdg). Thus, there is a �nitee � � su
h that 
M 2 h�M (� [ fpM [ (e�M � (� + 1)) [ eg). This 
ontradi
ts theminimality of e�M , as (e�M � (� + 1)) [ e <� e�M . ut(Sub
laim 3)Sub
laim 4. The option !%1M = � is impossible.Proof. The proof is an elaboration on that of Sub
laim 3. Assume that !%1M = �and seek for a 
ontradi
tion. Let i be as in Sub
laim 2; we �rst observe that i = 0.Indeed, if i > 0, then!%1M� � !%1Mi+1 = �0;i+1(�) > �0;i+1(�i) = �(EMi�i ) > �;whi
h yields a 
ontradi
tion as in the proof of Sub
laim 3. So M1 is on the mainbran
h of = and !%1M1 = �. Also, M1 is sound above �, as follows from thesoundness of M . Sin
e both bran
hes [1; �℄= and [0; �℄�= are above �, we 
on
ludethat M1 = 
ore�( �Q). Let �� : M1 ! �Q be the asso
iated 
ore map.This time set d0 = �� Æ �0;1(d) (d was de�ned in the proof of Sub
laim 3). Wenow see that every Æ0 2 d0 has a generalized Dodd solidity witness with respe
t to�Q and d0, that is an element of �Q. Using Sub
laim 1, we argue as in the proofof Sub
laim 3 and 
on
lude that d0 = �d. So h��Q(� [ fd0g) = �Q. In parti
ular,�� Æ �0;1(
M ) 2 h��Q(� [ fd0g). It follows that
M 2 h�M (((�� Æ �0;1)�1)00� [ fdg) � h�M (� [ fdg);whi
h yields a 
ontradi
tion with the minimality of e�M as before. ut(Sub
laim 4)By Sub
laim 2, either !%1M = � or !%1M � �. Sub
laims 3 and 4 guarenteethat neither of these options 
an o

ur, whi
h yields a 
ontradi
tion and thereby
ompletes the proof of the Claim. ut(Claim)The rest of the proof of Lemma 1.14 is standard. By Sub
laim 1 above, �Q 
anbe en
oded into some �1( �Q) subset b of �. As in the proof of Lemma 1.6 we showthat b 2 M1, so b 2 Ult(M;E�) by (39). Then we apply the argument from the
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on
lude that b 2 M . Using the fa
t that JE� isa ZFC�-model, we de
ode b inside M , so �Q 2M . ut(Lemma 1.14)This also 
ompletes the proof of Theorem 1.1. ut(Theorem 1.1)Proof of Theorem 1.2. We verify (a) �rst. The assumptions of the theoremimply that d�M is de�ned and d�M �� d. Assuming that d�M <� d, we have anordinal � 2 d� d�M su
h that d� (�+ 1) = d�M � (�+ 1). Then d�M 2 rng(�) where� : �W �;dM ! M is the witness map. This implies that h�M (� [ fd�Mg) � rng(�), sorng(�) = M . On the other hand, we are assuming that M 
ontains a generalizedDodd solidity witness for � with respe
t to M and d. Remark (1) guarantees that�W �;dM 2M , so rng(�) 6= M , a 
ontradi
tion. It follows that d = d�M . ut(a)We next prove that M is sound above �, that is, hM (� [ fpMg) = M . Sin
eh�M (� [ fdg) = M , it suÆ
es to show that d 2 h�M (� [ f
M ; pMg). Assume thisis false and denote the largest element of d that is not in h�M (� [ f
M ; pMg) by�. Let �0 be the least ordinal that is in h�M (� [ f
M ; pMg)� �. Then �0 > � andd \ (� + 1) witnesses the following statement in M :(9x)�x 2 [�0℄<! & pM [ f
Mg = h�M (y; (d� (� + 1)) [ x)�where y 2 [�℄<! is su
h that pM [ f
Mg = h�M (y; d). It follows that this statementis witnessed by some d� 2 h�M (�[ f
M ; pMg); here d� is a �nite subset of �. Thus,we have pM [ f
Mg = h�M (y; (d � (� + 1)) [ d�). Let � : �W �;dM ! M be the
anoni
al witness map. Then fy; d0g � rng(�) where d0 = (d � (� + 1)) [ d�, andtherefore pM [ f
Mg 2 rng(�) as well. Let �(�p) = pM [ f
Mg. Sin
e pM is agood parameter for M with respe
t to the language for premi
e, we have a setA that is �1(M) in pM [ f
Mg su
h that A \ !%1M =2 M ; here �1(M) is meantwith respe
t to the language for 
oherent strutures. The map � is �1-preservingwith respe
t to the language for 
oherent stru
tures and � � !%1M = id, so letting�A be the �1(�W �;dM )-set by the same de�nition as A in the parameter �p, we have�A \ !%1M = A \ !%1M =2 M . Now by the assumptions of the theorem, �W �;dM 2 M ,so �A \ !%1M 2 M after all. This 
ontradi
tion shows that d 2 h�M (� [ f
M ; pMg)and thereby 
ompletes the proof. ut(
)



44 MARTIN ZEMANClauses (a) and (
) together with our assumption that M is weakly iterable nowallow to apply Theorem 1.1 (a
tually, just (b) of Theorem 1.1) and obtain (b).ut(Theorem 1.2)Let us �nally remark that although we did apply Theorem 1.1 to M at the endof the above proof, su
h an appli
ation does not make the proof of the two maintheorems as a whole 
ir
ular. This is the 
ase, be
ause the proof of Theorem 1.1does not make any use of an appli
ation of Theorem 1.2 to M | the only appli
ationof Theorem 1.2 in that proof o

urs at the end of the proof of Claim 5 in the proof ofLemma 1.12, where Theorem 1.2 is applied to a premouse of height stri
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