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ABSTRACT. We study generalizations of Dodd parameters and establish their
fine structural properties in Jensen extender models with A-indexing. These
properties are one of the key tools in various combinatorial constructions, such

as constructions of square sequences and morasses.
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Typical combinatorial constructions in extender models, such as constructions of
square sequences, build on the analysis of Dodd parameters of certain active levels
of the models. Dodd parameters come into play whenever we try to construct
combinatorial objects that involve some form of “coherency”. The reason why they
have to be considered is that the standard fine structural characteristics of premice
are typically computed relative to a certain additional constant. This impairs the
uniformity of the description of the combinatorial objects we are constructing, and
thereby complicates the verification of the “coherency” conditions.

In this paper we will deal with Jensen extender models with the so-called A-
indexing introduced in [2]. The relevant background and notation can also be
found in [17]. We establish the relationship between the Dodd parameter and the
standard parameter for type B levels of extender models and prove the solidity
theorem for the Dodd parameters. These results are formulated in Theorems 1.1
and 1.2. The actual formulations of both theorems are adjusted so that they can be
immediately applied in [12] and [13], where the facts about the Dodd paremeters
are used as a black box. Dodd parameters were originally introduced in [1] in
connection with constructions of models for strong cardinals. For extender models
of Mitchell-Steel type [7], the Dodd solidity was established by Steel [9, 15], and
was used in a substantial way in combinatorial constructions in [9, 10] and in the
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proof of the weak covering lemma for Steel’s core model [5, 6]. Dodd parameters
were also considered in [4] in constructions of extender models. The results of
the current paper differ from those in [9] and [15] in several respects. The most
obvious difference is that, here we deal with models with A-indexing, which means
that the relationship between the standard paramter and the Dodd parameter is
different from that in models with Mitchell-Steel indexing. In models with A-
indexing, the fact that the Dodd parameter is distinct from the standard parameter
is already a large cardinal axiom beyond a superstrong cardinal. In models with
Mitchell-Steel indexing, it is a relatively modest large cardinal axiom well below
one strong cardinal. We show that, in the models with A-indexing, there is a
canonical uniform way of conversion between the standard parameter and the Dodd
parameter. Moreover, Proposition 1.3 shows that, under a certain relatively modest
smallness condition, this conversion is particularly simple (although Proposition 1.3
does not seem to be relevant if we are interested in combinatorial constructions in
their full generality). Secondly, in this paper we are considering slightly generalized
versions of Dodd parameters; such generalizations are not needed for the basic
construction of a square sequence, but they occur in more delicate constructions of
square sequences with some amount of condensational coherency, and even in the
construction of an ordinary Gap-1 Morass [13].

The only “smallnes condition” used in the fine structure theory of models with
A-indexing is iterability. This means that, modulo iterability, our fine structure
theory is developed for models satisfying any large cardinal axiom that is witnessed
by extenders in the sense of [17]. (That is, extenders whose sup of generators does
not exceed the image of the critical point.) Let us also mention that the strategy
of the proof of our main results is completely different from that used in the proof
of Dodd solidity in Mitchell-Steel models in [15]. This was caused by our effort to
avoid any direct reference to iterability in our arguments by substituting comparison
arguments by applications of the condensation lemma and the solidity theorem for
the standard parameters. However, we did not succeed completely in this effort
and the paper does contain a version of a comparison argument after all.

We briefly recall some notation and terminology from [17]. Given two primitive

recursively closed ordinals k < A, an extender at (k,A) is a map F : V. — P(A)
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with V' C P(x) which preserves primitive recursive definitions; we of course require
that V is closed under such definitions. The ordinal & is called the critical point
of F' and denoted by cr(F'), and A is called the length of F' and denoted by A(F).
If A < X is primitive recursively closed, we define F'| X : V — P(A) to be the map
x — F(x) N ); this map is obviously an extender. Typically, V is a set of the form
P(k) N M where M is some acceptable J-structure. So we can form an ultrapower
Ult(M, F) of M by F. An ordinal X € (s, \) is a cutpoint of F just in case that for
every z € dom(F) that codes a function from « into & (in the obvious way based on
Godel pairing <, =), F(z) N A codes a total function from A into A\. More precisely,
<a, (> € F(z) implies ( < A for every a < A. In the language of ultrapowers this
says that 7(f)(a) < X for every function f : k — & from the model F is applied
to and every a < A; here 7 is the associated ultrapower map. A J-structure M is
coherent just in case that M is of the form (JA, F) and JA = Ult(J;', F) where
k = cr(F) is the largest cardinal in JJ' and A(F) is the image of xk under the
associated ultrapower map, and thus the largest cardinal in J2. The extender F
measures all subsets of & that are in J3', but not necessarily all subsets in P(k)N M,
since the option ¥ < k1™ is allowed. Thus, F need not be weakly amenable with
respect to M, but M is always an amenable structure. If M is a coherent structue,
we often write A(M) for A(F).

If M = (J¥ F) is a potential premouse in the sense of [17], Chapter 9 (see also
[12]), M is of type A if F' has no cutpoints, of type B if the set of all cutpoints
of F' is nonempty and bounded in A(M) déf}\(F), and of type C if the set of all
cutpoints of F' is unbounded in A(M). A premouse is a potential premouse that
satisfies the initial segment condition, which will be discussed in a little while. If M
is a type B potential premice, the largest cutpoint of F' is denoted by A},. Letting
k = cr(F) and 7 = kM the height of Ult(JE F|)3,) is denoted by yp. In
the genaral fine structure theory for premice, the language for coherent structures
contains just predicate symbols denoting E and F, and the language for premice
contains an additional constant symbol denoting F'|A},. In the case of type A
or C premice, there is no difference between the two languages. The initial segment
condition requires that F'|A\ € M whenever X is a cutpoint of F. In the case of

type B premice, this is equivalent to the condition F'|\;, € M. This is in general
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weaker than the requirement that F'| A%, is on the E-sequence, which considerably
simplifies proofs of iterability in the constructions of extender models. However,
if M is weakly iterable in the sense of [17] (see below), then v, is the index of
F|X3;. For the purpose of doing combinatorics, it is more convenient to use yas
instead of F'| A\, as the additional parameter, so our expanded language of premice
will contain a constant symbol 4 denoting «yas. This makes no difference from the
fine structural point of view, since F'| A}, and va are lightface (M )-definable
from each other in the language for coherent structures. For type B premice M, we
shall stick to the following convention. The ¥;-Skolem function computed in the
language for premice will be denoted by hp;. The X;-Skolem function computed
in the language for coherent structures, i.e. in the language with no additional
constants, will be denoted by h%,. For type A and C premice, there is obviously no
difference between hy; and hj,, since the corresponding language for premice does
not have any additional constant symbol. (Or, alternatively, if we want to have a
uniform definition of the language for premice, we might introduce an additional
constant symbol 4 and interpret it always as 0. Obviously, the difference between
the two languages will be merely cosmetic.) Any cutpoint of F' is a limit cardinal in
M; since Jf = VSM for any such cardinal 8, the coherency condition combined with
the initial segment condition guarantee that that F'| A is a superstrong extender in
M whenever X is a cutpoint of F'. Thus, the presence of cutpoints is a very strong
large cardinal hypothesis.

Let us now state the Condensation Lemma from [17] we will refer to throughout
the paper. This lemma is true for weakly iterable premice. Recall that a premouse
M is weakly iterable just in case every countable premouse that is elementarily
embeddable into M is (wy; + 1,w;)-iterable in the sense of [17], Chapter 9. Such

premice are automatically solid.

Lemma 0.1. Let M and M be premice of the same type where M is weakly iterable

and let o : M — M be an embedding which is both cardinal preserving and E((]")—

preserving (with respect to the language of premice!), and such that o | wg}jl = id.
Then M is weakly iterable and, consequently, solid. Furthermore, if o | v = id

and M is sound above v, then one of the following holds:

(a) M is the core of M above v and o is the associated core map.
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(b) M is a proper initial segment of M.

(¢) M =Ult*(M || ¢, EM) for some ¢ and o such that v < ( < ht(M), a < w(
and v = kTMIIC where k = cr(EM); moreover, ¢ is mazimal with these
properties. Also, EM has a single generator k.

(d) M is a proper initial segment of Ult(M, EM).

If M satisfies the assumptions of the Condensation Lemma and is additionally

sound above v, then (a) can be reformulated as follows:
(') M = M and o = id.

Throughout the paper, we will try to avoid any direct reference to iterability
whenever possible and substitute it by an application of the Condensation Lemma.
This approach is useful in many situations, as unlike the weak iterability, solidity

is a first order property of premice.

1. DopD PARAMETERS

We first introduce the parameters df,, which are generalizations of the Dodd
parameters. Our context is adjusted to the needs of combinatorial constructions
of e.g. [12, 13, 14] and [16]. Thus, the traditional notions of the Dodd projectum
and Dodd parameter (for the definitios, see e.g. [12] or [9]) will actually not be
considered. Recall that the canonical well-ordering of all finite sets of ordinals is

denoted by <*.

Definition. Let M be an active premouse and Kk = cr(EA;Ip) and let o be an ordinal
satisfying

+M -

K Q.

The parameter d3, is the <*-least finite set of ordinals d such that M = h}, (aU{d}),

1
if defined. We write dp; for d;‘(f’” whenever K < wo),.

Obviously, d}; need not be defined for each M and «, and its existence guarantees
that wel, < a. However, d$, is defined, granting that we!, < @ and M is 1-sound
above a, which is precisely the situation we are interested in. It is easy to see that
if @ < a and df; is defined then so is d}, and d}; = d%; — a. For l-sound M
with k < wg!,, the Dodd parameter in the traditional sense is just dps. Clearly,

Y = @ if M is a type C premouse. If M is a 1-sound type A premouse then easily
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d%, = p%, — «, and the notions of Dodd solidity and solidity coincide. Thus, the
notion is non-trivial only for type B premice.

Dodd solidity witnesses are defined in the obvious way. Given an ordinal § > «
and a parameter p € [On N M]<%, the standard Dodd solidity witness *Wjﬁv}p for g
with respect to M and p is the transitive collapse of the hull b}, (BU{p— (8+1)}).
Thus, the only difference between the standard solidity witness in the usual sense
W2 and the standard Dodd solidity witness *W %7 is that *W %7 is computed with
no reference to yys. Similarly, a pair (Q),r) is a generalized Dodd solidity witness
for § with respect to M and p just in case that () is transitive, r € (), and for
every Y1-formula in the language for coherent structures p(x,v1,...,v,) and every

517"'75{ <,8We haVe

M |: W(p*(ﬂ-l-l),fl,,fz) — Q |: (p(’ragh"':fl)

The property of being a generalized Dodd solidity witness is II; in the language for
coherent structures. We will often make use of the following fact:

. The existence of generalized witnesses is equivalent to the

W existence of standard witnesses.

This is expressed in a somewhat sloppy way, but the meaning of (1) is obvious. It
says that if 5 € OnN M and p € [On N M|<¥ are arbitrary, then W]ﬁ,’p e M if
and only if M contains some generalized witness for 8 with respect to M and p,
and the corresponding fact is true for Dodd solidity witnesses as well. In [17], this
is formulated as Lemma 1.12.3. The lemma assumes that p is a good parameter
and € p. However, it is easy to see that this assumption is superfluous: Recall
that the heart of the proof of Lemma 1.12.3 is to show the “if” implication. In
that proof, the assumptions on  and p are used to show that M has a cardinal
larger than . It is argued that § is the critical point of the witness map and,
consequently, the image of § under the witness map is a cardinal in M. But if g
and p are arbitrary, then either the witness map has a critical point > £, or it does
not have a critical point at all. In the former case, we still get a cardinal in M
above (3, and exactly as in the proof of Lemma 1.12.3 conclude that Wﬁ’p € M.
In the latter case, Wf/[’p is an initial segment of M. But it must be a proper initial
segment, as Wﬁ’p is embeddable into some generalized witness that is an element

of M.
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Definition. We say that M is Dodd solid above « just in case d$; is defined and
*Wﬁ/",dm € M for every B € d§;. This is equivalent to the requirement that each
B € d§; has a generalized Dodd solidity witness with respect to M and d; that is

an element of M.

The reader familiar with the notion of Dodd solidity in the traditional sense
will immediately notice that the above definition does not contain any requirement
corresponding to the requirement in the traditional definition that the restriction
of Ely, to (aUdf,) — (a+ 1) is an element of M. for any & strictly smaller than
the Dodd projectum. The reason why we do not need this requirement is that we
only need to consider situations where the Dodd projectum agrees with the first
projectum, and so the corresponding clause is automatically satisfied, as follows
from the elementary properties of projecta.

In all relevant cases, the Dodd parameter d$; can be computed from the standard

parameter of M and an additional finite set of ordinals, which we denote by e;.

This is, however, not immediately clear from the definition of e;.

Definition. Let M be a type B potential premouse and a € On. The <*-least
finite set of ordinals e such that vy € b, (U {py — a,e}) is denoted by e$;.

Obviously, e$; is always defined and e, C yar +1. The main result of this paper

is summarized in the following two theorems.

Theorem 1.1. Let M be a weakly iterable type B premouse and let k = cr(E{‘fp).
Assume further that M is sound above o where a > max{s*M wol }. Then d, is

defined and:

(a) d%; = (pm — @) Uefy.
(b) M is Dodd solid above .

Theorem 1.2. Let M be a weakly iterable type B premouse and let o > k™™ where
k= cr(EBM

top)- Assume that d is a parameter satisfying:

e dNa=0.

o M = h},(aU{d}).

e Fvery B € d has a generalized Dodd solidity witness with respect to M and

d that is an element of M.

Then



8 MARTIN ZEMAN

(a) d=djy;
(b) diy = (v — @) Uefy;

(c) M is sound above c.

Under a certain smallness condition, the conversion between dfy, and py —

simplifies as follows.

Proposition 1.3. Assume there is no inner model with a cardinal which is both
subcompact and superstrong. Then (a) in Theorem 1.1 can be reformulated as
follows: d§; = py —a or d§y = (par U{AY}) —a or d%, = (b U {ym}) — a.

Moreover, the second possibility can only occur if N, = max(d%,).

Subcompactness is a large cardinal property slightly stronger than 1-extendibility.
More precisely, if & is subcompact then there are many 1-extendible cardinals below
k, see [11] or [12] or for a definition. It can be shown [18] that either of the three
possibilities named in the above proposition can occur, and actually well below
that smallness condition. We don’t know whether the smallness condition can be
omitted, but we believe it cannot. Let us also note that there are obvious reformu-
lations for type A premice. As has been mentioned above, Theorem 1.1 does not
say anyghing new in this case. In Theorem 1.2, only (a) needs an argument; (b)
and (c) then follow directly from (a). But (a) is nothing else but Lemma 1.12.5
from [17] in this case.

We now turn to the proof of the two theorems; as a by-product we will get a
proof of Proposition 1.3. Throughout the proof of Theorem 1.1, we will assume that
a < A},;. Roughly speaking, we can do this without loss of generality, since there
is less work to be done for larger a. A closer examination of the entire situation
reveals that the only more serious issue connected with this assumption occurs
when vy € e}, but we will explain at the beginning of the proof of Lemma 1.6
why the assumption is harmless.

We fix the following notation. E will be the extender sequence of M, F will
be the top extender of M, k = cr(F) and 7 = k™. Furthermore, if 7 is the
ultrapower map associated with Ult(J¥, F) and f : "k — k or f : "k — P(k) is in
M (here n is a natural number), we will often write F'(f) for 7(f). This is possible,

since f is uniformly recursively encodable into a subset of k in either of these cases.
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Both theorems are proved by induction on the height of M. Thus, our argument
will make use of the following induction hypothesis:
If M* is a weakly iterable premouse with ht(M*) < ht(M)
then Theorems 1.1 and 1.2 hold of M*.

Proof of Theorem 1.1. Since M is sound above «, the following holds of

(pm — @) Uefy:
hy(aU{py —a,ey}) D hy(aU{pnw —a,ym}) = hu(aU{pm —a}) = M.

This computation does not make use of the minimality of e},;. It follows that df,

is defined and d%, <* (pmr — @) Ue},. To see the equality, it suffices to verify:

(3) *W’i,}(pMia)Uej‘} € M whenever 3 € (py — a) Uejy.

*

Indeed, the assumption d; <* (pm — a) U e}, would lead to a contradiction as
follows: Fix § € [(pm —a)Ueq ] —dG, such that [(par—a)UeS,|—(6+1) = d3,—(8+1).
Let W = *Wjﬁv’[(pra)ue?“ and o : W — M be the canonical map; this map is ¥;-
preserving in the language for coherent structures. Obviously a U {d,} C rng(o),
so rng(c) = M. Consequently, W = M and o = id. But (3) guarantees that
W € M, a contradiction.

The verification of (3) will take the most part of the paper. As usual, we will
start with the largest 8 € (pm — @) U e, and gradually move downward. The

assumptions of Theorem 1.1 require merely that M is sound above a. However, we

can without loss of generality assume:
(4) M is fully sound.

Although most of the argument will go through without this assumption, the two
comparison arguments we describe below do make use of it.

To see (4), notice that if M* = core(M), o, : M* — M is the core map and

—1
c

a* = (o

)"a, then o.(ya+) = yu and o(e$,.) = e%,;. This follows from the
preservation properties of o, by a straightforward reflection argument: Obviously
v € B (@U{par, 00(e5r-)}), as yar- € Wiy (a* U{par-, €S- ). So e, <* oe(efy.).

On the other hand, if this inequality were strict, M would satisfy the statement

(3e <* 0.(e57-))(Fz C o(a®))(x is finite & yar = By (€, par Ue)).
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The preservation properties of o, would then yield var» = h3,. (2, pap- U e*) for

*

some e* <* ef,. and some finite x C a*, a contradiction. Once we have proved

that *Wﬁ)}f””iQ Ok e A for B € py- U eﬁ;*, the preservation properties of
(Pars —a™)Uefy

0. will imply that ac(*Wﬁb ) is a generalized Dodd solidity witness for

o.(8) with respect to M and ppr U e%,, and thereby prove Theorem 1.1.
Lemma 1.4. *Wﬁ/",(pra)Ue?‘!” € M whenever € (ppr — ) UeQ, and 5> .

Proof. Since e}, C ym + 1, we have
(par — @) Uelr — (v +1) = pur — (v +1).

Then easily *Wﬁ/}(pra)Uej‘xf = W]@(pra)Uej‘xJ, and this object is an element of M

by the solidity of M. O(Lemma 1.4)

Notice that the above lemma in fact establishes the agreement between d$, and
pur above ypr. We now focus on the interval [A,, vas]. Our next observation is:
Lemma 1.5. If A}, < 8 < M(M) then Xy, € b}, (a U {B}) and b}, (a U{B}) Nym
is cofinal in vy .

Proof. Let M be the transitive collapse of h%,(a U {8}) and ¢ : M — M be the
uncollapsing map. Then Bdéfo’l(ﬁ) < A(M) is an upper bound for (o= 1)"\%,,
SO \* déf(
M. Indeed, if f : K — K is in M and § < A* then o(8) < A%, so a(F(f)(8)) =
F(f)(o(8)) < A%, and, consequently, F(f)(5) is an element of (71)"\3, = A*.

o )"\, < B < A(M). Now A\ is a cutpoint of F, the top extender of

The way we defined A\* also guarantees that Ay < o(\*) < B. The latter inequality
here ensures that o(A*) < A(M). So o(\*) is a cutpoint of M, since being a
cutpoint is a IIj-property. But it cannot be strictly larger than A},, as A}, is the
largest cutpoint of M. So necessarily o(\*) = A3, which proves the first part of
the lemma.

Towards the second part of the lemma, recall that the ultrapower embedding
T JE - JfM associated with Ult(J”, F'| \},) is cofinal and *(z) = F(x) N A},

for every  C k. Thus, the map
x — the least ¢ such that F(z) N A}, € Sf

maps P(k) N M cofinally into yas, and is easily seen to be X1 (M) in the parameter

A3y The rest follows from the facts that « > 7 and A}, € rng(o). O(Lemma 1.5)
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The above lemma, easily yields:
(5) If (pm Ueyy) — (N3 + 1) # @ then e, N[Ny, vm) = @.

To see this, assume for a contradiction that e}, has an element in the interval
[A\h,vm). Let S be the largest one. Then § > A},. To see this, notice that the
hypothesis in (5) implies that, assuming 8 = A},, there is some ' € py U e},
that is strictly larger than A},. By Lemma 1.5, 8 = A}, must be then in the
hull A%, (a U {B'}), so by, (e U {pm Uey}) = hy(aU {ppm U (el — {A}}), and
we have a contradiction with the minimality of ef;. Since 8 > A};, we can find
an ordinal ¢ € h¥,;(a U {A},}) that is larger than 5. Obviously, b}, (U {X%,})
contains a surjective map f : A}, — (, so we can fix a £ < A}, with f(§) = 5.
Thus, 8 € b} (aU{Xy,€}). Let e = (eS, — {B}) U{A}, &} Clearly, e <* e$; and
Wy (U {pm —a,e}) D hy,(aU {pym — a,e%,}) 3 yar. This again contradicts the
minimality of ef;.

Notice also that
(6) If (ppmUeSy) — (A4 +1) =@ then A3, = max(py Ue}y).

Since A%, is a cutpoint of F, the map &k : M || var — M, defined by k(7*(f)(B)) =
w(f)(B) for f € "kN M and g < A}, (here * is as in the proof of Lemma 1.5), has
critical point A}, and k(A3;) = A(M). This map is X;-preserving (with respect to
the language for coherent structures), so yar ¢ h},(aU {d}) for any finite d C A},.
Thus, (pp — @) UeS, € X3y, which immediately yields (6).

So far we have characterized d$; — (yam + 1) and established the Dodd solidity
for this top part of d,;. By the above discussion, the next possible element of df;

is ypr. This happens precisely when vy € e},. Notice that

(7) ey = {ym}

in this case, and we have to establish (3) for 8 = yas. As this requires a nontrivial

amount of effort, we will formulate it as a lemma.
Lemma 1.6. Assume that vy € €4y, Then *W ;""" € M.

Obviously, we can write pys instead of (par —a)Ue}; in the above lemma. Before

going into the proof of this lemma, let us discuss the consequences. For every
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B € (pmr — @) N vy we have *Wﬁ,}(p’”*a)u{’”/'} = WP € M; the membership to

M follows from the solidity of M. Due to (7), we can then conclude:
Lemma 1.7. If yp € €% then dS; = (pm — ) U {ym} and M is Dodd solid.

Proof of Lemma 1.6. The proof is based on a comparison argument. This
paper builds on the theory presented in [17], which uses fully ¥*-iterations in com-
parison arguments, and in this respect it differs from that in [7]. The use of fully
Y *-iterations has an advantage that the general theory becomes very “clean”. Un-
fortunately, there is also one drawback of this approach, namely, that the compar-
ison argument breaks down in certain special cases when we apply a superstrong
extender at the very first step on the “winning” side of the coiteration. Since the
comparison described below does apply a superstrong extender at the first step on
the “winning” side, it is convenient to treat certain situations independently. We
will split the entire argument into two cases. Case 1 will deal with the situations
which give rise to pathologies in the comparison argument; it will turn out that no
comparison argument is needed in this case. In Case 2, we present the comparison
argument itself and no pathologies will occur here. Our strategy is analogous to
that in the proof of the solidity theorem in [17], Section 9.3. However, as the current
situation is somewhat specific, the argument in Case 1 will be shorter than that in
[17].

A simple reflection argument guarantees that we can without loss of generality
assume that M is countable and (w; + 1,ws)-iterable. We fix an enumeration
€= (e;; i € w) of M and the é-minimal (w; + 1, w; )-iteration strategy S guaranteed
by Neeman-Steel [8] (for the version for A-indexing, see also [17], Lemma 9.2.11).

At this point, we should explain one issue. Recall that just before we went into
the proof of Theorem 1.1, we made an assumption a < A},;. We argued that this
assumption is harmless, since there is less work to do for larger a. This is really the
case, since the same argument we used to identify d$, — (ya+1) and prove the Dodd
solidity will also work for a > A%,, granting that vy, ¢ d,. Indeed, the argument
did not require any knowledge of wo}, other than the inequality wo}, < a, which is
always true if df; is defined. However, if vy, € d§; and a > X};, that argument is
not going to work, and the comparison argument we are going to give will make a

substantial use of the fact that wp), < A%,. But this is always the case, as vy € d;
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necessarily implies @ < vps, and there are no M-cardinals in the interval [A},, yas]
other than A},.
Let us now make some settings and also recall some notation that will be used

throughout the rest of the proof. We set

(8) W= WP
S0
(9) cr(BY,) = cr(Bl) =k and 6™ = g™ = 7.

Let
the least ¢ € w such that wg’ﬁ'l <7, if defined,
m =
w otherwise;
M' = Ult"(M,E,,,) and m: M — M’ is the associated ultrapower embedding;
M = Ult™(M, E,,) and 7: M — M is the associated ultrapower embedding.

For basic information on m-ultrapowers see e.g. [17], Section 3.5 or [12]. Denote
the collection of all functions used to build Ult™ (M, E.,,,) by I'""(x, M). Working

in the language for premice, 7 is fully ¥*-preserving and 7 is Eém)—preserving and

cofinal at the level m. We also have the Lo$ theorem for E((]m)—formulae for both

ultrapowers. Moreover, 7 is Egl)—preserving whenever wg}}l > K.

CasE 1: Pyy) N U (M, E,,,) # P(ya) N U(M, E.,,,).

This happens precisely when m € w and wg”]\}“ = 7. We only show that these

two clauses necessarily follow, as only this half of the equivalence is relevant for
the argument below. Notice that if m = w (that is, we%; > 7) or ng\mfl < k then
Ult(H};, B, ) = H}; where Hy} and HJj is the domain of the m-th reduct of
M and M', respectively. So Ult(M, E,,,) and M’ agree up to a common cardinal
that is larger than ) and, consequently, Ult(M, E,,,) and M' contain the same
subsets of ys.

As an immediate consequence we have wgl, > &, so

(10) 7: M — M'is Xs-preserving with respect to the language of premice.
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Let 6 : M — M’ be the canonical embedding defined by

o 7 (f)() = 7(f)()

for f € T™(k,M) and & < A},;. Recall that f need not be an element of M,
(m~—1)

but it has a functionally absolute ¥; -definition in some parameter from M.
More precisely, there is a Egmfl)—formula ©(vo, v1,v2) such that ¢ defines a partial

function by (a1, az2) — biff Q |= ¢(b, a1, as) whenever () is an acceptable J-structure
for the language of premice, and y = f(&) just in case that M |= ¢(y, &, p) for some
parameter p € M. Then 7(f) is the function defined by ¢ over M’ in the parameter
m(p). Standard arguments then yield:

e 5:M— M is E(()m)—preserving with respect to the language for premice;

o (@) = 74"

. sz\mZH < yar and M is sound above ya;.

The first clause follows from the Lo§ theorem for Zém)—formulae by the standard

argument. To see the second clause, notice that & is the identity up to v + 1 by
definition, so cr(6) > WJT/IM- Our assumption guarantees that Ult(M, E,,,) and M’
have different power sets of ypr. Since P(yar) N M = P(yar) N UL(M, E,,,), we
see that M’ has more subsets of v5; than M. Consequently, ’y]T/‘,M < VLMI. Since
&(WLM) = WLM', the conslusion follows. The third clause is a standard consequence
of the soundness of M, the two facts that we};"' = 7 and #(7) = v, and general
properties of m-ultrapowers.

The three clauses established in the previous paragraph enable us to apply the
Condensation Lemma to 6 : M — M’. This is possible, as M’, being a Y*-

ultrapower of M by an internal extender, is itself (w; + 1, w;)-iterable. We want to

infer that the conclusion (b) is the case, that is, we want to show:
(11) M is a proper initial segment of M.

We first focus on ruling out (a). Notice that wgl;i* < vas and M' is sound above
var; this follows similarly as in the case of M above. (a') would then imply that
M = M', which contradicts the assumption that M and M’ have distinct power
sets of var. To see that (c) and (d) in the Condensation Lemma fail is easy, as

both (¢) and (d) would imply that the cardinal predecessor of cr(#) in M is a limit
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cardinal in M. In the present situation, however, this cardinal predecessor is equal

to yas, which is a successor cardinal in M. 0(11)

The induction hypothesis (2) guarantees that the following statement is true:
Let R be a type B proper initial segment of M and ag be
)T wek}. Then

an ordinal such that ag > max{(cr(Ef,

(12)

e R is Dodd solid above ag;

o d% = (pr — agr) Uesg.
By the preservation properties of 7, this statement is true with M’ in place of M.
This combined with (11) implies that M is Dodd solid above & = 7(a). Letting
o = 7(a), general properties of fine ultrapowers easily imply that both M and M’
are type B premice, 7(py — ) = py; — & and w(py — @) = payrr — ' Furthermore,
7(ym) = v and w(ym) = ym; as a consequence we obtain that 65’}4 = {yy} and
€%y = {yam}. Finally (12) implies that = *W;Y\;\[mdfz € M.

Notice also that 6(py; — &) = pmr — @' and 6(y,;) = var; this is an immediate
consequence of the above calculations and the definition of 4. Our next step is to
show that:

In M', there is a generalized Dodd solidity witness for v
(13) with respect to M’ and pp;.

For this, we have to refer to the preservation properties of 3. We show:
& : M — M'is X;-preserving with respect to the language of premice.

This is obvious if m > 0, so it suffices to focus on the case where m = 0. In this
case, M is a result of a coarse ultrapower, so 7 is Yo-preserving and cofinal. M’ is
not a result of a coarse ultrapower, but it is still true that ' is cofinal. To see this,

recall that the assignment,
x — the least ( such that F'(z) € JCE

is ¥4 (M) and maps P(k) N M cofinally into ht(M), and similarly
x > the least ( such that F'(z) € Jf'

is 1 (M") and maps P(k') N M’ cofinally into ht(M') where F' is the top extender

of M' and k" = cr(F'). Now notice that 7' maps 7 cofinally into its image ya,
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which easily yields the cofinality of #’. Once we have established the cofinality of
both m and 7', the cofinality of & follows immediately.
The calculations following (12), together with the preservation properties of &

guarantee that W' = (W) is a generalized Dodd solidity witness for vy with

respect to M' and pp; — ', thus proving (13). Now the statement

(FW") (W' is a generalized Dodd solidity witness for v
with respect to M' and py and M)

is easily Yo, so (10) then immediately yields that M contains some generalized Dodd
solidity witness for ;s with respect to pps and M. This completes the discussion

in Case 1. O(Case 1)

Case 2: P(ym) NUL" (M, E,,,) = P(ym) NULL(M, E,,, ).

Let 0 : W — M be the canonical witness map, that is, the uncollapsing map
associated with k%, (ym U {pm — (ym + 1)}). Then vy = cr(o), so yu = (A3) W
and W is a potential premouse which fails to satisfy the initial segment condition
at Ay = Ay 42 \*. Notice that the coherent structure determined by BNV | Ay is

just M || yar; this follows from the fact that o [ A* = id. Fix the following data:
o m:JE J,‘YEM is the canonical ultrapower embedding by EtVon | A%
o T :JE = wa is the canonical ultrapower embedding by Eg’gp;

e ow : M ||ym — W is the canonical map defined by

ow : mo(f)(C) = mw ()(C)

for f € *JF NJE and ¢ < \*.

Obviously, oy maps JfM cofinally into wa. As \* is a cutpoint of EtVon,

we see
that cr(ow) = A* and ow (A\*) = A(W). Notice also that each { < v is of the form
ow (f)(€) for some f : A* — 7y that is an element of JE , and some & < A(W).
(By the cofinality of my, choose ¢ so that ow (¢) > ¢ and some f € J¥ which
maps & surjectively onto (. Letting f = mo(f), we see that ow (f) = mw (f) is a
surjection of A(W) onto aw ({), so one can find some ¢ as required above.) Letting
H be the extender at (A*, \(W)) derived from oy, the above observations allow us

to conclude that

(14 JEY =

oy Ult(J7EM ,H) and oy is the associated ultrapower embedding,
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soQ = (JE ,H) is a coherent structure (see the introduction). Since vy = (A*)™",
the extender H is weakly amenable with respect to W and it is then easy to ver-
ify that @ is actually a potential premouse. Moreover, @ is a type A potential
premouse: Indeed, the fact that A\* is the largest cutpoint of Efgp guarantees that
there are cofinally many ordinals below A(WW) that are of the form 7w (f)(A*) for
some f € kN .JF. Thus, the ordinals of the form oy (g)(A\*) where g € *"\* N JfM
also constitute a cofinal subset of A(W), since the functions g include all functions

of the form 7o (f) where f is as above. This allows us to conclude:
Q= (JfW,I:D is a type A premouse.

The amenability of both structures (JE | B/ | X\*) and W together with (14) also
yield that W = Ult((.J¥

M

ding. So W is fully determined by (J%

EY | A*), H) and oy is the associated ultrapower embed-

EN|A*) and H. Also, (JI, BN | A*),

Ym? top
. . . E W _ M
being a coherent structure, is fully determined by J and EZ |\ = Ei | \*.

Thus, to prove that W € M, it suffices to verify that both EM |\* and H are

top
elements of M. That EM

top | A" € M is an immediate consequence of the initial

segment condition for M. To see that H € M, we show
(15) Q e M.

Let

o Ty JE = JfM be the canonical ultrapower embedding by Et]‘gp;

e oy M||ym — M be the canonical map defined by

oum : mo(f)(C) = mm () (<)

for f e *JENJE and ¢ < A"
e H be the extender at (A\*, A(M)) derived from op;.

A discussion similar to that above shows that

(16) Q = (JE | H) is a coherent structure

var?
and

(17) M =UW(M || ym, H) and oy is the associated ultrapower embedding.

Since var < (A*)*M | the extender H is not weakly amenable with respect to M.

This means that () is not a potential premouse. Instead, ) is a protomouse in the
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sense of [17, 12] or [13]. The extenders H and H are extracted from E{}, and EJ
respectively, so the structures () and () cannot carry more information than W and
M. (Actually, @ and M carry the same amount of information.) As a consequence

we get the following, with respect to the language for coherent structures:
(18) 0:Q — Q is Yg-preserving and cofinal.

Indeed, o can be viewed as a map from Q to @, since Q has the same domain as
W and @ has the same domain as M. This also guarantees the cofinality of o.
Thus, to see that o is Yg-preserving, it suffices to show that o(H Nz) = H No(x)
for all sufficiently large 2 € Q). By the cofinality of 7y, the set z can be chosen of
the form wa where ¢ = m () for some { < 7. In this case H Nz is of the form
{{ow (9)(§) N A ,ow (g9)(£)); € < A*} for any surjection g : \* — P(A\*)N JCE; that is
an element of M || yar; here 5 = mo({). In particular, g can be chosen of the form

mo(f) where f: k = P(k) N JCE is any surjection that is an element of J¥. Then

ow(g9) = 7w (f), and we have

(19) HOz={{mw(f)E)NA", 7w (f)(&)); £ <A}
The abuse of notation we introduced immediately before the beginning of the proof
of Theorem 1.1 allows us to write Etvgp

as HNa = {(BY ()N EN () € < A*}, and the following calculation

top

(f) instead of mw (f), so (19) can be rewritten

can be easily verified:

o(HNz) = o({{Bie,(N)E) NN, EL(HE): €<
= {0 (B, (N)E) NN, 0(Bee, (£))(€); € < A"}
{(Blop (H(E) N A, B (H(©); € <A}

= HnNo(x).

The second equality here follows from the preservation properties of ¢ and the fact

that cr(o) = ya. To see the third equality, notice that o(E,(f)) = EX (f).

The last clause is a consequence of the fact that E} (f) = ma(f) is a surjection
of A\(M) onto P(A(M)) N Jf(() = P(A(M)) Nno(zx), so it enables us to isolate all
x C AM(M) from o(z) which are in the rangle of H in the same way we did it for H

in (19).
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For the argument we are going to do below, we will need the following fine

structural fact about Q. Let p = 0~ ' (pas — (yar +1)). Then
(20) ho(ym U{PY) = Q, so wog < u-

The proof of (20) contains an ingredient from the proof of (30), namely a construc-
tion of an auxiliary funcion f. Although that proof comes later in this paper, we
still prefer to give the details of the construction of f there rather than here. Recall
that hZ} is the same as hg, since Q is a type A premouse and W = hy, (ypm U{p}). Fix
an ordinal ¢ < vy . As ow is cofinal, the argument from the proof of (30) yields a
function f : 'H1PIX* — ~,; that is an element of J,‘YEM and such that ¢ = ow (f)(§, D)
for some & < ypr. Now f(€) = otp(g(§)) for a suitable g : A* — P(A*) that is an
element of JfM, so our abuse of notation (see the previous paragraph) enables us
to write ¢ = otp(H (g)(&, p)). This tells us that vy = OnNQ C hg(ym U{p}), so
ho(ym U {p}) = Q. 0(20)

The conclusion (18) combined with the fact that ) and M have the same domain
imply that (M,Q,7vas) is a good phalanx in the sense of [17], Section 9.1. Our
strategy now is to compare this phalanx with M and use standard comparison
techniques to infer that Q € M, and thereby complete the proof of Lemma 1.6.
This is not possible verbatim, as it is not clear that the phalanx is embeddedable
into a sufficiently iterable premouse in the manner described in [17], Section 9.2.
For this reason, the entire comparison argument needs certain amendments which
are described below. The first step in our argument is to show that the phalanx is
coiterable with M. In fact, we show that the phalanx is normally (w; + 1)-iterable.
We show this by embedding iterations of (M, Q,yas) into slight modifications of
iterations of M. In order to describe how these modifications will be formed, we
need the following notation.

Given a type B premouse P, we define a protomouse @(P) in the same manner
we defined @ in (16). More precisely, letting op : P||yp — P be the canonical map
defined in an analogous way as o/, the structure Q(P) is of the form (Jf:7Hp)

where vp = ht(P) and Hp is a (A}, A(P))-extender derived from op. The structures

P and Q(P) have the same domain.
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Lemma 1.8. Let P be a type B premouse and Fp be a total extender on P such that
P' = Ult(P, Fp) exists (that is, the corresponding ultrapower is well-founded; P’ is
transitive). Let m: P — P' be the associated ultrapower embedding. Then Q(P') =
Ult(Q(P), Fp) and w : Q(P) — Q(P') is the associated ultrapower embedding.

Proof. Recall also P and Q(P) have the same domain, and the same applies to
P’ and Q(P'). So 7 is clearly an ultrapower map when viewed as a map between
the domains of Q(P) and Q(P'). Thus, it suffices to show that = retains the
preservation properties when viewed as a map between Q(P) and Q(P'). This
amounts to showing that 7#(Hp Nz) = Hp: No(z) for all © € P and can be proved

the same way as (18). O(Lemma 1.8)

Write (Q _1, Qo) for (M, Q), so from now on we can write (Q 1, Qo,vya) instead
of (M,Q,vu). We have seen that @ is embedded into Q(M) via o. Now if Q; is
a model of some iteration of () _1,Qo,yas) that is on the same branch as Qo = Q
and there is no truncation point on this branch, the critical point of the iteration
map 7o, : Q — Q; is strictly above Y, s0 A Q= . If M; is the corresponding
model of the iteration of M that arises in the course of the copying construction
then the critical point of the iteration map 7g; : M — J\;[i is also above vy, but
vm is not a cardinal in M and Z\;[i. The relationship between @Q; and J\;[i resembles
to that between @ and M, and we will embed Q; into Q(AZ;). In all other cases we
can imitate the usual copying construction; the treatment of anomalies, however
requires a bit of extra care, too.

Let us now proceed with the construction. We shall give a recursive definition of
a normal iteration strategy S for (Q_1,Qo, vas). Following the standard approach,
this iteration strategy will be a pullback of S under o, but we have to be a bit careful
about the copy maps (recall that S was fixed at the beginning of this section). Let
3 be a normal iteration of (Q 1, Qo,yar) according to S with iteration indices 7;,
critical points &;, premice ();, iteration maps 7;; and the associated tree ordering
<5. Starting from & and the embeddings id: Q_; — M and o : Q — @, we define
a normal iteration & of M according to S with iteration indices 7;, critical points
&;, premice M;, iteration maps 7ij (so My = M) and the associated tree ordering

5 together with “copy” maps o; such that:

(a) o1 =id: Q1 — My and og = 0 : Qo — Q(MO);
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(b) i : Qi = Q(M;) is Sg-preserving and cofinal whenever 0 <s i and there is
no truncation point on the branch [0, i]5;
(¢) oy : Q; — M; if at least one of the conditions in (b) fails and &;_; # A\*; in
this case, g; is fully X*-preserving;
(d) 05 : Qi — Ny = Ult(My || 7y, EQI ) = 0,y it
(%) 0 <5 i— 1, there is no truncation point on the branch [0, — 1]5 and
vi—1 =ht(Qi_1);
in this case 8;_1 = A* as To;—1 [ (yar + 1) =id, and i is a strong anomaly
in the sense of [17], Section 9.1; it follows that {—1,4¢} is a maximal branch
in . Regarding the equality J\;[i = Mi,l, see below.
(e) i : Qi — 7o.i(M||vnr) is Lo-preserving and cofinal if the following two
conditions are satisfied:
— Ki—1 = A" and
— the condition (*) from (d) fails;

as in (d), i is a strong anomaly, so {—1,4} is a maximal branch in .

Clauses (a), (c) and (e) can be verified similarly as in the case where we have a
standard embedding of a phalanx into a premouse (see [17], Lemma 9.2.9). Clause
(b) is a consequence of Lemma 1.8. Let £;_; be the immediate <g-predecessor of i.
If o, , : Qe,, — Q(Mg,_,) and o, are already given, the lemma allows us to

define the embedding o; : Q; — Q(M;) in the standard way. To see (d), notice

(71541'71) — EQ(M171)

that (%) implies that the extender E? top

is not total on My, and
the result of corresponding ultrapower is just Mi,l; this follows from the fact that

M;_, agrees with Mg up to vy, + 1. Strictly speaking, S is not a normal iteration,
(7];4"’1) is a top extender

as it may contain branches of the form {0, i} whenever E?
of Q(M;_,). But obviously, by removing such branches from 3, we obtain a normal
iteration. All the remaining issues can be handled in the standard way.

The copying construction described above provides us with the obvious definition
of S, namely S(S) = S(S) whenever S is an iteration of limit length. This gives
the normal iterability of the phalanx (M, Q,va), and thereby its coiterability with
M. The coiteration of the phalanx with M terminates in, say, § + 1 < w; steps. To
keep the notation visually consistent with that in the previous paragraph, let & be

R

the iteration on the phalanx side, let S be its copy as described above and let S be
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the iteration on the M-side. Denote the premice in & by M; and the iteration maps
in § by 7;;. Thus, the last models in S, S and S are Qg, Qg and My, respectively.
Also, p; are the indices of the coiteration.

The application of the Neeman-Steel Lemma as described in [17], Lemma 9.2.12,
goes literally through even in the present context; the details are left to the reader.

We thus obtain:

e ( Sg 9;
e () is an initial segment of My;

e [0,0]5 has no truncation points.

Notice that if Qg = Mjy, then [0, f]s necessarily contains a truncation point. This
follows from the fact that if the iteration maps 7o : Qo — Qg and 7 : My — M,
are total, then they preserve the premice type. Now M is a type B premouse, so
Mg would be of type B as well. On the other hand, Qo = M is a type A premouse,
so Qg is of type A. So we have:

Either Qy is a proper initial segment of M, or else

there is a truncation point on the main branch of .

Now we can proceed in the usual way. If Qy is a proper initial segment of My,
then Qg is sound. So the phalanx side of the coiteration is not moved, as otherwise
(20) would imply that Qg fails to be sound. This means that Qg = Qo = Q. Notice
that g = 7y, as E%M #+ O = E?M. Assume there is a disagreement between the
extender sequences of M; and ). Then 7, is strictly larger than ~,, and is a cardinal
in My. Since Q projects to v, we see that @ is actually a proper inital segment of
My ||y, = My ||, a contradiction. So @ must be a proper initial segment of M
and § = 1. By (20), Q can be encoded into a subset b of v, that is 3;(Q), and
therefore into an element of M; = Ult* (M, E.,,, ). Now recall that we are in Case 2,
so b € Ult(M, E,,,). We want to see that b € M, as this will enable us to decode
b inside M and conclude that ) € M. The argument is described in [17], proof of
Theorem 9.3.1, Case 1. The point is that in M, there are sequences (g¢; € < vYamr)
and (ag; € < yum) such that ge : & = 7, ag < Ay, and € = 7(ge)(ae) where 7
is the ultrapower embedding associated with Ult(M, E,,,). Since E,,, € M and

b=7(f)(@) for some f and @& that also are elements of M, the statement “¢ € b”
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can be expressed as 7(ge)(ag) € 7(f)(a). Using the Lo Theorem, this can be
expressed internally in M.

Now assume that Qg = My. Let i > 0 be the least such that Eé\/" is an extender.
Notice that 4 exists, as there must be a truncation point on the main branch of &
(so 6 > 1). Obviously, M; = M; so p; indexes an extender on the M;-sequence
(possibly the top one). Also, let j + 1 be the last truncation point on that branch.
The set b encoding Q is £1(Q), so by standard arguments, b is 1 (M) where M*
is the result of the last truncation on the main branch in 3. So b € M, where
&; is the immediate <g-predecessor of j + 1. Now either {; = 1 or else & > 1, in
which case ; is a cardinal in M¢,. In either case, b is an element of M, due to the

agreement between M; and M¢;. Now apply the assumption of Case 2, and as in

the previous case conclude that b € M and Q € M. O(Lemma 1.6)

From now on we can assume

(21) e #{vm}

By (5), e%; C Ay, + 1.
Lemma 1.9. Assume that X}, € e%,;. Then *Wj‘é/”(pra)Ue?‘!” e M.

Proof. By (6), A}, € e§; just in case that A}, = max(pm U e$;). Letting W =
*Wﬁ“’(pMia)Ue% and o0 : W — M be the canonical witness map, we see that
cr(o) = My, and o(A},) = A(M). This follows from the fact that A%, is the largest
cutpoint of E},. So W is a coherent structure with A(W) = A}, and B} = F| X},
By the initial segment condition, F'| A}, = E,,,,s0 W = M ||yym € M.

O(Lemma 1.9)
This takes care of the top part of the Dodd parameter above A},, and we have:
Y — Ay = (b Uel) — Ay and Wﬁ/‘}dm € M whenever € dy; — Ay

Recall that we are in the process of verifying (3) and that we have already done

the job for 8 > A3},. From now on we will assume:
(22) B <Xy and B € (py —a)Uefy

(23) dy = (B+1) = (pm Uely) — (B+1)

(24) W € M whenever 6 € dy, — (8 +1).
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We will first, discuss the case where 8 € pyr — a.
Lemma 1.10. Assume § € py — a and (22) — (24) hold. Then *WﬁfMuej‘xJ e M.

Proof. Let W = Wf,[’p”’ and let o : W — M be the canonical witness map. Let
further

e1r=ejyy— 0 and ey =ejN}G.

Then o(5) > (. By the definition of e}, there is some finite a C a such that

(25)  (3e)(3)(e € [On]~ & B < 0(B) & yu = hiy(a, {pmr — {B}, B, e, e2});

this is witnessed by e; and . Since o is X1 -preserving with respect to the language
for coherent structures (in fact, with respect to the language for premice) and the
objects vv, pv — {A}, a and es are in the range of o, there is an e € rng(o)

witnessing (25). Assume e is the <*-least such.

CLAIM. e = eq, s0 €%, € rng(o).
Proof. Suppose this is false. There are two possibilities. First consider the

possibility e; <* e. If this happens then (25) can be rewritten as

(3e)(3B)(e <" e & B < a(B) & ym = hiy(a, {pm — {B}, B, € e2}).

It would follow that rng(c) contains some finite set of ordinals e <* e witnessing
(25), which contradicts the minimality of e.

Now consider the case where e <* e¢;. Fix § € e; — e such that e; — (§ + 1) =
e—(0+1). Let "W = *W}S\’fMUE?/’ and o* : *W — M be the canonical witness
map. Since § > [, we can apply (23) and (24) and conclude that W* € M. On
the other hand, the definition of § guarantees that py; Ue C rng(o*). Since o*
is Xp-preserving with respect to the language for coherent structures, we see that
both py and v = ki, (a, {pm — {B}, B, e, es}) are in rng(o*); here 8 < 3 comes
again from (25). But this means that rng(c*) D h%, (e, pm U {ym}) = M. So
W = M, a contradiction again. O(Claim)

Let g be such that o(q) = (pm Ueyy) — (B + 1). The Dodd solidity witness

*Wjﬁv’[pMUEM is the transitive collapse of

Y =hy(BU{(pm Ueyr) — (B+1)}).
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By the preservation properties of o, the structures (Y, €) and (h}, (3U {q}), €) are
isomorphic (this notation suppresses the predicates), so *WﬁfMUE?/’ is the transitive
collapse of hiy, (BU{q}). Since M is solid, we know that W € M. Now M is active,
so its domain is a ZFC™-model. It follows immediately that both A}, (5 U {q}) and

*W@PMUE?\Z are in M. O(Lemma 1.10)

It remains to discuss the case where 8 € e},. This will require some effort.
In a series of lemmata, we first show that the top extender of *Wﬁ,}pMUE?‘YJ can be
factored into two extenders; one of them will be an element of M and the other one
will satisfy the initial segment condition. We then apply a comparison argument
of the same kind we did in Case 2 in the proof of Lemma 1.6 to conclude that this
extender is in M. We will also see that such a factoring implies the existence of a
cardinal in M that is both subcompact and superstrong. Thus, under a suitable
(and relatively modest) anti-large cardinal assumption, we will be able to conclude
that e}, N A}, = @, which will prove Proposition 1.3.

In addition to (21) (24), from now on we assume:

06 pees
(27) W = *va’[pMue?” and o :W — M is the canonical witness map
(28) v= ("""

Obviously, W is a type B potential premouse and a(A}y,) = A},
Lemma 1.11. v < (A5,)*W.

Proof. Obviously, v < (A\3,)*". Assume for a contradiction that v = (A})™W.
Since o maps v cofinally into s, we can apply the Interpolation Lemma ([17],
Lemma 3.6.10) to the embedding ¢ : W — M and find a coherent structure M,

and maps ¢ and ¢’ such that:

e G : W — M is Xg-preserving with respect to the language for coherent
structures and cofinal;

e o' : M — M is Yg-preserving with respect to the language for coherent
structures;

e [wa =0 [J,‘YEW;

o cx(o') = yu and o' (yar) = (A3)
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The definition of o guarantees that (pa U e%,) — {#} is contained in rng(c), and
therefore also in rng(o”’). But since cr(¢') = yu > 8 > a, we also have the inclusion
aU{B} C rng(c’). It follows that a U {pym Ue},;} C rng(o’). Now the fact that
cr(o') > 7 (recall that 7 = k*M where k = cr(F)) implies that o' : M — M
is cofinal, and therefore Xi-preserving with respect to the language for coherent
structures. From this we immediately infer that rng(c’) = b}, (aU{pmUeS,;}) = M,
and obtain a contradiction with the next-to-last clause above, which tells us that

rng(o’) has a critical point. O(Lemma 1.11)

Before proceeding further, we observe:

(29) v ¢ rng(o).

Otherwise vy € hjy(a U {ppm U (e§; — {B}) U e}) for some finite e C S. But

(eqy — {B}) Ue <* e}, which contradicts the minimality of ef;. 0(29)

Let us also point out that (29) implies the failure of the Initial Segment Condition
for W. If W satisfied the Initial Segment Condition then EZOVP |\ € W, and
the preservation properties of o would yield o(E[, [ Xy,) = F|X},. Since JE is
obviously in the range of o, also vy = ht(Ult(J¥, F| \3,)) would end up in rng(o),
which is impossible.

Recall that A, is the largest cardinal in J,‘YEW. Let N be the level of W collapsing
v and n € w be such that wg?\ﬁ'l < Ajy < woRy; these objects exist by Lemma 1.11.
Our observation (29) guarantees that o(y) > yum. Letting N' = o(N), we now
apply the interpolation lemma to the embedding o | N : N — N'. We obtain a

transitive structure N together with maps ¢ and ¢’ satisfying:

e5:N - Nis E((]")—preserving with respect to the language for coherent
structures and cofinal at the level n;
e :N = N'is Z(()")—preserving with respect to the language for coherent

structures;

o vu = (7) = (A%,)"N (this has a meaning also when v = ht(N));

)
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e cr(c') =vyum and o' (ym) = o(7) défv’ whenever v < ht(N).
For n > 0, the cofinality of & at the level n follows from the soundness of N
(soundness with respect to the language for premice, of course), as it implies that
R%, when computed in the language for coherent structures, is nonempty ([17],
Lemma 3.6.3 (h)). The second clause is then an immediate consequence of the
cofinality of & at the level n ([17], Lemma 3.6.10). For n = 0, the cofinality of &
follows directly from the pseudoultrapower construction.

Fix the following notation. Assuming that NV is active, we let

o p=cr(E,) and i = 6(p);

e 0 =ptN ¥ =5(9) and 9 = sup(5"(9));
¢« G=EYN, G=E}, and G' = E..

Lemma 1.12. N is active, ht(N) =, ¥ = and Eg # .

Proof. First observe that § = cr(o). This is standard: If not, then 8 € h}, (8 U
{par U (e — (BN, 50 A5y (BU {par U (e, — BN D Wy (BU {par Uey 1) = M.
We then arrive at a contradiction exactly as in the proof of (29).

We will split the proof into a sequence of claims in which we rule out all possi-

bilities that are incompatible with the statement of the lemma.

CrAIM 1. N is active, n = 0 and " is bounded in ¥’

Proof. Assume for a contradiction that this fails, so either IV is passive or n > 0
or "¢ is cofinal in . We first show that v < ht(/N). This is clear if N is passive,
as JfN is a ZFC™-model. Now suppose that N is active and v = ht(N), that is,
EXV # @. In this case we have n = 0, so our assumption implies that "¢ = "9
is cofinal in ¥'. Recall that W = cf(y) = cf(¥9), that is, in W there is a strictly
monotonic function f : 1 — « that is cofinal in . Then o(f) : ¥ — ' is strictly

monotonic and cofinal in 7', so

7" = sup(a(f)"9') = sup(a(f)"(0"9)) = sup(a” (f"9)) = sup(o"y) = ym

This contradicts the fact that 4" > 5. The second equality here follows from the
cofinality of ¢”¢ in 9. So indeed v < ht(N) and, consequently, vy = cr(o”’).

As a next step we show N is a premouse, and if N is active then N is of the
same type as N and N'. The key point here is to verify that G is a total extender

on N. This is a II,-property. If n > 0 then G is total on N, as &, being a fine
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pseudoultrapower embedding, is ¥y-preserving ([17], Lemma 3.6.3 (d)). If 6" is

cofinal in ', a standard argument yields

dom(G) = | J{o(x); z € I} & @ C P(w)} = P(A) N N.

So far we have seen that N is a potential premouse. That N is a premouse of
the same type as N and N' (this includes the verification of the initial segment
condition) follows from the preservation properties of & with respect to the language
for coherent structures established above and from [17], Lemma 9.1.7. It also follows
that the preservation properties of maps ¢ and ¢’ stated above hold with respect
to the language of premice.

The soundness of N and our choice of n guarantee that N = i’y (A%, U {pn'}).
This together with the solidity of IV, the fact that N is a result of a fine pseudoul-

trapower of N by o | JfN, and the preservation properties of the maps & and o’
yields:

e N = h;‘vﬂ()\jw U {p}) where p = 6(pn);

o wo <Ay

N is solid;

each § € p has a generalized witness with respect to p and N, that is an
element of N.

e p=pg— A}y, SO N is sound above AN

The first clause here follows from the construction of fine pseudoultrapowers (note
that py N A}y = @, as woR = Aly), and immediately yields the second clause.
The third clause follows from the second clause and from the first part of the
Condensation Lemma applied to the embedding o' : N — N. The fourth clause
is a consequence of the preservation properties of & and the solidity of N. Finally,
the last clause is a consequence of the previous two ([17], Lemma 1.12.5).

We now apply the second part of the Condensation Lemma to the embedding
o' : N = N'. There are four possibilities to be discussed, and we show that each
of them yields a contradiction. This will complete the proof of Claim 1. Clause
(a’) in the Condensation Lemma is clearly false, as o’ # id. (We are allowed to use

(a'), as N' is sound.) To see that clause (b) fails, recall that s, being the critical

point of ¢’, is a cardinal in N, so EfYVM = @. On the other hand, N’ is an initial
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segment of M, so Efyvﬂ; = E,,, = F| X}, by the initial segment condition. Clause
(c) is false, as NV is sound above A%, but the fine ultrapower from (c) fails to be.
Finally, clause (d) fails, as it would imply that woy > Y, and we have seen that

N projects to Ay - O(Claim 1)

CLAIM 2. p < .
Proof. Notice first that g < Aj,. Otherwise ¥ > A}, so "9 would be cofinal in
(1), as follows from general properties of pseudoultrapowers (by Claim 1, N is the
result of a coarse ultrapower in this case). This would contradict Claim 1. Assume
for a contradiction that g > 5. Then 8 < 9 < Ajy,. Since A}y, is a cardinal in W, so
is 9, as follows from the acceptability of W and the fact that 9 is a cardinal in N.
The agreement between ¢ and & below A}, together with Claim 1 guarantee that
"9 = "9 is bounded in ¥ = o () = ().

Now argue as in the proof of Lemma 1.11. We apply the Interpolation Lemma
to the embedding o : W — M; this time we form a pseudoultrapower of W by
o | wa. We obtain an acceptable structure W together with maps ¢ and o3

satisfying:

e 0o : W — W is Xg-preserving with respect to the language for coherent
structures and cofinal,

e oy : W — M is Yy-preserving with respect to the language for coherent
structures;

® 01009 =0;

ooy | JE =0 k",

e cr(oy) =9 and o, () = 0.

Exactly as in the proof of Lemma 1.11 we observe that o; is X;-preserving with
respect to the language for coherent structures and (payr U e%,) — {8} € rng(o1).
Since ¥ > 3, we have cr(o1) = 9 > . Tt follows that aU{A3} C rng(o:), so actually
aU{pm Ue$,} Crng(o1). Thus, rng(o1) = M, which contradicts the fact that o4

has a critical point. O(Claim 2)

CrLAMm 3. ¥ = §.
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Proof. By Claim 2, u < 8, so ¥ < 8 (recall that 3, being a critical point of o, is a
cardinal in W). If ¢ < 8, we would have ¢ = o(1) = ¢ and "9 = ¢"9 =, which

would yield an immediate contradiction with Claim 1. O(Claim 3)

CrLamm 4. Eg # @.

Proof. Building on the previous claims, we conclude:

¢ 5:N — Nando' : N — N are both Yg-preserving with respect to the
language for coherent structures, and ¢ is cofinal;

o (@) = p;

o dom(G) = P(u)NJY G P(p) N N;

e N is a coherent structure that is not a potential premouse.

Let N* be the level of N collapsing 8. Obviously, § = ptN" and dom(G) =
P(u) N N*. By the agreement between N and M, the premouse N* is the level
of M collapsing 3, so N* is a proper initial segment of JE?, where ' = o(8). Let
7' be the ultrapower embedding associated with Ult(JéE,,G’) and let R' = n(N*).
Let further R = Ult*(N*,G) with the associated map #. Then R’ is a level of N',
and thus a level of M. To see that R exists (that is, the corresponding ultrapower
is well-founded), notice that the assignment [d, f] — 7'(f)(0'(9)) is To-preserving;
here (4, f) appears in the construction of the fine ultrapower, so § < A(N) and
f € T(u, N*). This assignment gives rise to the embedding k : R — R'.

The map 7' | N*: N* — R’ is fully elementary in the language for premice, and
N* and R’ are of the same type. We would like to obtain an analogous conclusion
with R and 7 in place of R’ and «' | N*. This is, however, not possible in general.
Let m be such that weRt" < pu < weR.. Notice that, in fact, wols' = p = woe%. .

Now we apply our induction hypothesis (2) to the premouse N’, which is a proper
initial segment of M. We obtain that dy» = dj\v*"f is defined and N' is Dodd solid.
Since fine structural properties of N’ are first-order expressible over N', they are
preserved under ¢. Thus, dy = d]}‘V;V is defined and N is Dodd solid. The general
properties of fine pseudoultrapowers yield:

o hy(\y, U{d}) = N where d = ¢(dy);
. Wg’d_ € N whenever 8 € d.
In the latter case, of course, we first conclude that each § € d has a generalized

Dodd solidity witness with respect to d and N that is in N, and then use the
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generalized witness to obtain the standard Dodd solidity witness by applying (1).
(Recall: now we work in the language for coherent structures.)
Assume for a contradiction that Eg = @. Then obviously 8 < ht(N*), and,

moreover,

A(N*) > p whenever N* is active.

It follows that R is either passive or is a premouse of the same type as N*, and 7 is
Eém)—preserving with respect to the language for premice and cofinal at the level m.

The verification of this, as well as that of the following clauses, is standard:

o k(7(f)(©8)) = '(f)(0"(8)) for f € T(p,N*) and § < A(N);

o k| JEY =o' where # = ht(N);

o k[ ym =id;

e k:R— R'is Eém)—preserving with respect to the language for premice;
R AN U {7 (on-)}) = R

every 6 € 7(py-) has a generalized witness with respect to R and 7 (py-),

that is an element of R.

Our next task is to show that wgg“ < A%, and R is sound above \%,. This
together with the middle two clauses on the above list will enable us to apply the
Condensation Lemma and derive a contradiction the same way we did in the proof

of Claim 1. Toward the soundness of R above \%,, we first show:

(30) AG) € hpt (A U{dU 7 (pn-)})

(31) W;’Ju;r(p”*) € R whenever 6 € d

The former together with the next-to-last clause on the list in the previous para-

graph will imply

(32) R (A U{d U R (pn-)}) = R,

and, consequently, that wggH < A}, This inequality together with the middle two
clauses from that list guarantee the solidity of R. Finally (32) combined with (31),
the last clause on the above list, and the solidity of R yield dU 7(pn+) = v — Ay
and thereby the soundness of N above \%,. (That d N A3, = @, follows from the

fact that dy N AYy = 2.)
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Clauses (30) and (31) follow from lemmata established in [12], Section 2, where
a more general theory is developed. The proof of (31) makes use of the induction
hypothesis (2). In order to show how (2) is used, and also to make this paper
self-contained, we give the proof of both.

First focus on (30). Given a ¢ < A(N), we have seen above (proof of the current
claim, the fourth paragraph) that ¢ = h (&, d) for some ¢ < Ay- Let H(z,z,y,w)

be a Xo(N)-relation that determines the Skolem function hg, i.e. such that for

every ,y,w € Jfﬁ we have
y=hg(z,w) «— (F2)H(z,y,z,w).

We stress that now we work in the language for coherent structures, as N is a
coherent structure that is not a potential premouse. Fix 3 < 3 such that, letting
v = 7(B), there is a z € Jfé = Jfﬁ satisfying H(z,(, &, d). This is possible, since
# maps 8 cofinally into #(8) = 7. Define a function f : '*14\(N) — A(N) by
(€ w) = the unique ¢’ < A(N) with (3z € JfR)H(AC’@’,w), if defined;
0, otherwise.

Obviously, ¢ = f(&,d). The function f is Yg-definable over (Jfé,é’ N Jfé). Now
J,;ER is in the range of 7, and therefore is an element of ﬁg“(ﬂ U {7 (pn+)}). The
predicate GﬂJfé can be expressed as {(7(g)(n) N, 7(9)(n)); n < p} where g € N*
is a surjection of p onto P(u) N JE‘?, so G N Jfé € ﬁ"ﬁgﬂ(u U{7(pn~),p}). Taken
together, f € ﬁg“(u U {7(pn=),u}), so ¢ € iL"R‘H(u U {u,f,JU w(pn+)}). This
completes the proof of (30) 0(30)

Now turn to the proof of (31). Let § € d, let Wy = W]‘i-,"i and let o5 : W5 — N be
the canonical witness map. W is computed in the language for coherent structures.
(Obviously, Wi fails to be a potential premouse for the same reason N fails to be.)
This map is X;-preserving with respect to the language for coherent structures and
its range is precisely hg(d U {d — (6 + 1)}). Thus, W = by, (6 U {ds}) where
o5(ds) = d — (6 + 1). Denote the top extender of W5 by Gs. Since o5 | § = id,
the domain of G is exactly P(u) N N* = dom(G). Let W5 = Ult*(N*,G5) and let
75« N* — Wjs be the associated ultrapower map. The existence of Wy follows from

the preservation properties of the assignment [¢, f] = 7 (f)(05(€)) where & < A(G5)
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and f € ['(u, N*). This assignment gives rise to a map &5 : Wy — R. We show:
(33) W = Wg,ciu%(pm)_

We have seen above that R is a premouse of the same typeas N*and 7 : N* — Ris
E((]m)—preserving with respect to the language for premice and cofinal at the level m.
The same argument yields the same conclusion for Ws and 715 : N* — Wy. The map
os : Ws — Ris E(()m)—preserving with respect to the language for premice, as follows
by the standard argument based on the Lo$ Theorem. We also obtain the cofinality
of g5 at the level m; this is a consequence of the cofinality of both 7 and 75 the
level m. So &5 is EYn)—preserving with respect to the language for premice. The
definition of G5 guarantees that G5 (7s(pn-)) = 7#(pn+) and &5 | A(G) = o5 | MG);
the latter implies that 65(d;) = d — (6 + 1). Now since W; = by (6 U {ds})

we can imitate the proof of (32) and infer Bg;jl((s U {#s(pn-),ds}) = Ws. This

3

together with the preservation properties of G5 just established guarantees that
rng(ds) = Eg“(é U{@(pn-),d — (0 +1)}), which completes the proof of (33).
Recall that we proved that W5 € N. We also know that W5 can be encoded
into a 3;(N) set b C §. Since § < S\d:ef)\(é), we see that b € Jfﬁ = Jfé. Now
JSIER is a ZFC™ model, so inside this structure we can both recover Wy and form

Ult(N*,Gs). It follows that ngu’?(”*) € R 0(31)

Finally we obtained the soundness of R above A%, which allows us to turn to the
application of the Condensation Lemma. The embedding in question is & : R— R
and, as we have already indicated above, we can then proceed exactly as in the

proof of Claim 1, with k in place of o'. O(Claim 4)

Cramm 5. ht(N) = +.
Proof. Assume for a contradiction that the claim is false, that is, ht(N) > +.
Define R', 7', R, @ and k as in the proof of Claim 4. The structure R is an active
potential premouse. The map k : R — R’ is Yo-preserving with respect to the
language for coherent structures and cofinal. The cofinality of k follows from the
fact that EF and EE

top top

in both R' and R and k | g = id. Claim 4 implies that N* = N || = M||§,

have the same critical point that is below u, p is a cardinal

so M(R) = 7(u) = AG). Since v is the cardinal successor of A%, in the sense
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of N, our assumption ht(N) > ~ implies that A(N) > A}, and, consequently,
MR) = M(N) > X%,
Working in the language for coherent structures, we argue similarly as in the

proof of Claim 4 to get the following analogues to (30) and (31).

(34) AG) € (A3 U {d})
(35) W%J € R whenever ¢ € d.

As before, the proof of the latter uses the Dodd solidity of N, and thus makes use

of the induction hypothesis (2). The inclusion (34) immediately implies
(36) Wp(\ U{d}) = R,

which tells us that d;‘;” is defined and wg}-% < M, < A(R). It follows that R cannot
be a type C potential premouse (see the introduction). In fact, R must be a type B
premouse, as u is easily seen to be a cutpoint of E{zp.

We claim that R is a premouse, that is, it satisfies the initial segment condition.
Consider two cases. If d # @, let § = max(d). Then § > A% (to see this, recall that
an argument similar to the proof of (30) shows that A ¢ h%(A) for any cutpoint
X of EE

top)- S0 05 | A% = id where o5 : *W%d — R is the canonical witness map.
From this and (35) we immediately get

oy 8.d B
YE 1AL e R,

R
E R

top

[\ =F

R — Ttop

which tells us that R satisfies the initial segment condition. Now assume d = &.
This means that no A > A}, can be a cutpoint of Etlzp. Consequently, /\}‘:_f < A}, But
we know that &k | yps = id, and using this it is easy to see that Eﬁp | A = E{ZIP | A%

By the initial segment condition for R’, the extender ER

.
top | A%, 15 an element of

R'. But R' agrees with R up to Ay and A}, is a cardinal in both structures, so
Et’zp | /\}f € R. This proves that R is a premouse.

Our aim is to apply the Condensation Lemma and obtain a contradiction in the
same way as in the proof of Claim 4. Since the Condensation Lemma is formulated
in the language for premice, we have to replace k by a suitable X1 -preserving map
(with respect to the language for coherent structures) k : R — R where where R is
a type B premouse and ];(VR) = 74- The Condensation Lemma cannot be applied

to k directly, as R’ is a type C premouse. This follows from the elementarity of
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7' and the fact that N* = M ||§ is a type C premouse; the latter, in turn, is a

consequence of the fact that A(E) = pu is inaccessible in M. Let \* = k(A%) and

A =sup(k”"A(R)). We show:

(37) A is the least cutpoint of BE

op

larger than A\*.

To see that A is a cutpoint of Eﬁ)’p, it suffices to show that Eﬁ)’p(g)(é) <A
whenever § < A and g : i — [ is a monotonic function that is an element of N*;

here i = cr(Eﬁ‘ ) = cr(BE

fop top)- (It is enough to consider just monotonic functions,

as every g’ : i — i is majorized by such a function.) Now if § < A(R) is such that

0 < k(9), we have:

Ef5,(9)(0) < L (9)(k(9)) = K(EL, (9)(8)) < A
Now focus on the proof that no cutpoint of Ef)’p lies in the interval (A*, ). Since

A% is the largest cutpoint of E{ZP, there are cofinally many ordinals in A(R) that

are of the form Etlzp

§,o 6 <A (here <&, ..., & is the Godel f-tuple). By the preservation prop-

(9)(&) for some g as above and some & = <&, ...,&> where

erties of k, there are cofinally many ordinals in A that are of the form Ef)’p (9)(&"

where g is as above and &' = <¢&;,. .., &> where &,...,& < \*. 0(37)

Let R be the initial segment of R’ whose top extender is E{ZIP | \. By the above

discussion, Risa type B premouse and )\} = \*. Let k: R — R’ be the canonical

(9)(&") = B,

factor map, so k. ER top

fop (9)(8") whenever g : p — P(f1) is an element
of JF and ¢' < A. (This again involves our abuse of notation.) We define the map

k:R— Rbyk=k 'ok. It is easy to check that

k(B (9)(9) = Bty (9)(k())
for g as above and & < A(R) = A(G). That k is Yo-preserving with respect to the

language for coherent structures and cofinal follows from the fact that both k and k

have these properties. As an immediate consequence of the definition of k we have
(38) kETAMR) =k [ MR) =0 | \R),

o tion. BR — ER |-
so k(A}) = A} Since R satisfies the initial segment condition, E}' = Eg | A%.
R

Using the preservation properties of k we obtain Efc(v-)
R

= Ef)'p | /\*R, which proves
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that ];(7135) = 74 This means that k: R — Ris ¥y-preserving with respect to the
language for premice.

We know that wg}EB < A}y as this follws from (36). We also have k| vm =id, as
this follows from (38). These two facts combined with the preservation properties of
k established in the previous paragraph and with the first part of the Condensation
Lemma yield the weak iterability of R (in fact they yield (wi,w; + 1)-iterability
of R, as we are assuming that M is countable). In order to be able to apply the
second part of the Condensation Lemma and obtain the desired contradiction, we
need to show that R is sound above Ay Now R, being a proper initial segment
of R', is a proper initial segment of M. Since R is embeddable into R, we have
ht(R) < ht(R) < ht(M). By the induction hypothesis (2), Theorem 1.2 holds of R.
We have just shown that R is weakly iterable; that the rest of the assumptions of
Theorem 1.2 is satisfied follows from (35) and (36). This guarantees the soundness
of R above A% Now we can proceed exactly as in the proof of Claim 4 and get a

contradiction. O(Claim 5)

It is now obvious that the proof of Lemma 1.12 is merely a direct combination

of the five claims we have just established. O(Lemma 1.12)

In view of Lemma 1.12, we can summarize the current state of affairs as follows.

o F = Et"\é’p and FdéfEthp;
e 7' =o(y) and N’ = o(N);
« G=E),=EY. G =EN,=E, andG=G'nJE ;

o j=cr(@) = (@), as o(n) = i

e B =ptN =W is the critical point of o and /' d:efa(ﬂ).

Since Egs is a total extender in M and # = cr(o), an easy argument shows that,
in the sense of M, there are stationarily many ordinals 8 C A’ with E; # 2.
This means that p is subcompact in M (see [12]). Also, E,,, witnesses that p
is superstrong in M (see the introduction). These observations give a proof of
Proposition 1.3: Under the assumption that no cardinal is both subcompact and
superstrong in an inner model, we immediately obtain that 8 as above cannot exist,

so ey N Ay = @.
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Now focus on the general case. The structure (J,‘YEW , F'| X}y,) is a potential pre-
mouse. If F| Ay were an element of W, it would be equal to E,‘Y’V Consequently,
a(F | Xyy) would be equal to F'| A}, = E,,,. So yum € rng(o), contradicting (29).
It follows that F'| Ay, ¢ W, so W fails to satisfy the initial segment condition. The
structure (wa ; E,‘Y’V, F| X}y looks like a bicephalus, and it is not difficult to prove
that it is iterable. Because of this, one might attempt to apply the bicephalus
lemma to conclude that F | A}, = E;’V, and thereby obtain a contradiction. This
contradiction would show that 3 as above does not exist, that is, it would enable us
to remove the smallness condition from the assumptions of Proposition 1.3. How-
ever, the bicephalus argument is not going to work here, as we will see in a little
while that (Jva , F'| Xyy) fails to satisfy the initial segment condition.

Let 7 = ht(W) and

o 7:J¥ o JE" be the ultrapower embedding associated with Ult(J¥, F);
o 7 JE - wa be the ultrapower embedding coming from Ult(JZ, F | A}y,);
o k:J"" — JP" be the canonical map defined by k : 7*(f)(€) = 7(f)(€)
for f € "kNJF and € < \jy; so k [ Ay =id and T = ko 7*;
e K be the extender derived from k.
Using standard arguments we infer that cr(k) = Aly, k(Ay) = A(W) and K has no
cutpoints (see the proof of Lemma 1.6, the discussion at the beginning of Case 2).

Since k is a cofinal map, there is a unique predicate H on wa such that
k: (JfW,G) — (JfW,H) is Yg-preserving.
The cofinality of k guarantees that
Q= (17" H)

is a coherent structure, and since cr(k) = A}y, H is an extender with critical
point u, A}, is a cutpoint of H and A(H) = A(W). It also follows that H is a total
extender on wa, so () is a potential premouse. And since K has no cutpoints (any
cutpoint of K would be a cutpoint of F' larger than A}y ), there are no cutpoints of
H above A}, so A}y is the largest cutpoint of H. The definition of H guarantees
that H |}, =G = EL’V, so () satisfies the initial segment condition. It follows that
Q is a type B premouse and /\Z? = Ajy-

Lemma 1.13. Ho Ez = F.
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Proof. We first show that F'|\}, factors in a similar way and then use this
information to get the desired conslusion about F.

Cramm 1. Go Es = E,,,. Hence cr(Eg) = cr(F) = & < p. Moreover, p is a
cutpoint of both F and F.

Proof. We use the notation from the proof of Claim 4 in Lemma 1.12. Notice
that N* = M || 8 in our case. We have the maps 7 : N* — R, 7' [ N* : N* = R
and k : R — R'. Both R and R’ are coherent structures whose top extenders have
critical points equal to cr(Es) < p. Furthermore, A(R) = A(G) = M(G') = A\(R')
and this value is A},. It is now easy to see that k [ (A}, + 1) = id, so in fact
k =id and R’ = R. But ht(R) = ht(N) = vy and R’ is an initial segment of M,
= E,,,. It follows that cr(Eg) = cr(Ef)'p) = cr(E,,,) = ct(F) = k, which

R

proves the second part of the lemma. It also follows that u is a cutpoint of Egf

R
so Eig,

which yields the last sentence in the lemma. Regarding the first part of the lemma,

for x € P(cr(Eg)) N N* we have:
(G o Bs)(x) = G(Ep(z)) = 7 (Es(x)) = B, (7(2)) = B, (2),
which completes the proof. O(Claim 1)

CLAM 2. Go Eg = F|)\}y,.

Proof. Given any z € P(k) N W, we have

o((Go Bs)(z)) = o(G(Es(2))) = G'(Bs(x)) = G(Es(2))

= (GoEs)) = By, (1) = Fx) N Ay = o(F(x) N Ay):

The third equality here follows from the fact that G and G’ agree on P(u) N JBE
and the fifth one follows from Claim 1. O(Claim 2)

The following computation then completes the proof of the lemma:
F=Ko(F|\y)=KoGoEs=HoEFE;s.

The equality on the left follows from the fact that 7@ = k o 7*; this fact also implies
H(z) = k(G(z)) = K(G(z)) for all z € P(k) N W, which yields the equality on the
right. The middle equality comes from Claim 2. O(Lemma 1.13)
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Our aim is to prove that W € M, and since W is a coherent structure, this
amounts to showing that £ € M. By Lemma 1.13, it suffices to establish the

following.
Lemma 1.14. H € M.

Proof. We generalize the argument from the proof of Lemma 1.6. As before, the
argument splits into two cases. In the present situation, 3 plays the role ~y,; played
in that proof. The case where P(8) N Ult*(M, Eg) # P(8) N Ult(M, Es) can be
handled in the same way as before, and we will leave the details to the reader.

Thus, for the rest of the argument we will assume
(39) P(B) NULt* (M, Eg) = P(8) N Ult(M, Eg).

We have already constructed @Q; this structure which will play an analogous role
as @ constructed in the proof of Lemma 1.6. One major difference between the two
situations is that in the present case, ) is a type B premouse. The next step is to
define the structure ). We have seen in Case 1 in the proof of Lemma 1.13 that
i is a cutpoint of F'. This enables us to repeat the construction described in (16),

this time with p in place of A}, and set

where, given an active premouse P and a cutpoint v of E{;W

Q(P,v) = (JE"  Hp,).

Here vp = ht(P) and, letting ¢, be the index of E{; | v and vp, : P||{, — P be
the canonical factoring map, Hp,, is the extender derived from vp,. (Precisely:
vpw TP (f)(€) — wp(f)(E) for f e P with dom(f) = cr(Ef)) and & < v;
here mp,, and 7p are the ultrapower maps associated with Ult(JEP EP

Tp ? ~top
Ult(Jf;P,Etlzp )TF).) The proof of (18) can be

|v) and
), respectively, and 7p = (cr(EL,
literally repeated with present structures @ and @, and the ordinal p in place of
Ass so we have

o:Q = Q is Yy-preserving and cofinal.
Again, here we work in the language for coherent structures. As before, we see that

(M,Q, B) is a good phalanx and that the pair of maps (id, ) is an embedding of

this phalanx into the pair (M, () in the sense described in the proof of Lemma 1.6.
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We again write Qo for Q and @ _; for M and compare (M, Q, 3) with M. This
gives rise to iterations ¥, § and § where S and § constitute the coiteration in
question and S is the “copy” of S in the sense described in the proof of Lemma 1.6.
This works in the present situation, since the obvious generalization of Lemma 1.8
goes through  this time for extenders with critical points above p (actually, this
is true for arbitrary extenders that are weakly amenable with respect to Q). More
precisely, we have:
If Fp is a total extender on P with cr(Fp) > pand @ : P — P’ is the
ultrapower map associated with Ult(P, Fp), then Q(P’, u) = Ult(Q(P), Fp)
and 7 : Q(P, ) — Q(P', u) is the associated ultrapower map.
Clauses (a) (e) concerning the “copying” construction from the proof of Lemma 1.6

hold with:

e the current versions of Qo and Q_q;

e Q(M;, p) in place of Q(M;);

e (3 in place of vy ;

e 1 in place of A*.
Our notation is consistent with that in the proof of Lemma 1.6, so for instance the
models of 3, S and S are denoted by Qs, M; and M;, respectively. The application

of the Neeman-Steel Lemma can be carried out exactly as before, so we conclude:

e The coiteration of (M, Q, 3) with M terminates at some 6§ + 1 < w;;

e 0<5¥;

e There is no truncation point on the branch [0, 0]5;
e )y is an initial segment of My.

The next step in the argument is showing that M wins the coiteration, which is

formulated rigorously as the next claim. This was easy to see in the situation from

the proof of Lemma 1.6, but requires an argument in the present case.

CrAIM. Either there is a truncation on the main branch of & or else Qg is a proper

initial segment of Mj.

Proof. Assume this fails, so Qy = My and both iteration maps 7 : Q — My and

7 : M — My along the main branches in & and & are total. The existence of 7

guarantees that @ is (w; + 1,w;)-iterable. Notice that the coiteration begins with

no action on the phalanx side and with the ultrapower by Eg on the M-side.
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SuBcLAIM 1. hg (B U {d}) = Q where o(d) = (pp Ue%;) — (B + 1). Consequently,
wog, < B.

Proof. Choose any ordinal ¢ < v; we will show that € h’fQ(ﬁ U {d}). Since W =
3, (B U {d}), the proof of (30) gives us a function f : '+l — P(x), f € JF such
that ¢ = otp(F(f)(&,d)) for some & < 3 (again, with a slight abuse of notation). By
Lemma 1.13, the right side here is equal to otp(H (f')(,d)) where f' = Es(f) € Jg.

So ¢ is ¥y (M)-definable from d and elements of J5. O(Subclaim 1)

SUBCLAIM 2. wo}, < 7.

Proof. Let i + 1 be the immediate successor of 0 on the main branch of &. Recall
the v; are the indices in the coiteration and «; are the critical points in §. As we
have mentioned above, vy = 3, that is, the first extender applied on the M-side of
the coiteration is Eg. It follows that v; > f and &; < u = A(Ej).

Assume that woe}, > 7. This means that cug}MHrl > mo,i+1(7) = B. Since the
iteration map w1, : M; 41 — My is T*-preserving, wg}v‘,g > wg}v‘,“rl > 3. On the
other hand, all extenders applied on the main branch of the phalanx side of the
coiteration have critical points at least 3, so wg),, = wgé—) < f3; the inequality on

the right here comes from Subclaim 1. Contradiction. O(Subclaim 2)

SuBcrLAM 3. The option we}, < k is impossible.

Proof. Assume wg), < k. Then both sides of the coiteration are above the first
projectum on their main branches. This is clear in the case of $, as we have seen
in the proof of Subclaim 2. Let ¢ be as in that claim. If the main branch of < failed
to be above the first projectum, then necessarily x; < wo},, as the critical points
ascend along the branches, and the projecta, that are below the critical points, are
preserved. Consequently, x; < &, so i > 0. But then WQ}WHI > )\(E,ﬂ\/f) > f3, so
wg}v‘,g > (. As in Subclaim 2, this yields a contradiction.

Since we are assuming that M is sound (see (4)), the conclusion fom the previous
paragraph implies that M = core(Q). Let & : M — @ be the associated core map,
d= (pmyUe%y) — (B+1) and d' = 5(d). Recall that o(d) = d. We have already
proved that *W}s\’; € M for all § € d. Tt follows that for every §' € d', there is a
generalized Dodd solidity witness with respect to Q and d', that is an element of
Q, namely 6(*W}S\;[d) where §' = 5(d). This together with Subclaim 1 yields the

middle inequality in the following formula; the other two inequalities follow from



42 MARTIN ZEMAN

the monotonicity of both & and o:
d<*d <*d<*d.

It follows that d' = d, so hz?(ﬁ U{d'}) = Q. In particular, 6(yn) € hé(ﬁ u{d'}).
Consequently, var € hi,((67")"8U{d}) C h%,(8U{d}). Thus, there is a finite
e C [ such that vy € b3, (aU {pp U (e}, — (B + 1)) Ue}). This contradicts the

minimality of e}, as (e§;, — (6+ 1)) Ue <* ;. O(Subclaim 3)

SuBcLAIM 4. The option wg}, = 7 is impossible.
Proof. The proof is an elaboration on that of Subclaim 3. Assume that wel, =7
and seek for a contradiction. Let 7 be as in Subclaim 2; we first observe that i = 0.

Indeed, if i > 0, then
1 1 _ _ M;
Wop, > WON,,, = To,i+1(T) > moit1 (ki) = A(E,*) > B,

which yields a contradiction as in the proof of Subclaim 3. So M; is on the main
branch of & and wg}wl = . Also, M; is sound above 3, as follows from the
soundness of M. Since both branches [1,6]s and [0,6]5 are above 3, we conclude
that M; = cores(Q). Let 6 : M; — @ be the associated core map.

This time set d' = 7 o g 1(d) (d was defined in the proof of Subclaim 3). We
now see that every ¢’ € d' has a generalized Dodd solidity witness with respect to
@ and d', that is an element of ). Using Subclaim 1, we argue as in the proof

of Subclaim 3 and conclude that d' = d. So hé(ﬁ U{d'}) = Q. In particular,
gom1(ym) € hé(ﬁ U {d'}). Tt follows that

v € (7 0mo1) )" BUA{d}) C My (BU{d}),
which yields a contradiction with the minimality of e}, as before. O(Subclaim 4)

By Subclaim 2, either wo}, = 7 or we), < k. Subclaims 3 and 4 guarentee
that neither of these options can occur, which yields a contradiction and thereby

completes the proof of the Claim. O(Claim)

The rest of the proof of Lemma 1.14 is standard. By Subclaim 1 above, Q can
be encoded into some X (Q)) subset b of 3. As in the proof of Lemma 1.6 we show
that b € My, so b € Ult(M, Eg) by (39). Then we apply the argument from the
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end of the proof of Lemma 1.6 to conclude that b € M. Using the fact that JZ is
a ZFC -model, we decode b inside M, so Q € M. O(Lemma 1.14)

This also completes the proof of Theorem 1.1. O(Theorem 1.1)

Proof of Theorem 1.2. We verify (a) first. The assumptions of the theorem
imply that d, is defined and d$, <* d. Assuming that d§, <* d, we have an
ordinal 5 € d —d$, such that d — (8 +1) = d$; — (6+1). Then d%, € rng(o) where
o: *Wﬁ/",d — M is the witness map. This implies that h}, (e U {d$,}) C rng(o), so
rng(o) = M. On the other hand, we are assuming that M contains a generalized
Dodd solidity witness for 8 with respect to M and d. Remark (1) guarantees that
*Wﬁ/}d € M, so rng(o) # M, a contradiction. It follows that d = d;. O(a)

We next prove that M is sound above «, that is, hy (e U {pm}) = M. Since
hy (U {d}) = M, it suffices to show that d € h;(a U {ym,pm}). Assume this
is false and denote the largest element of d that is not in h%, (@ U {ya,pam}) by
B. Let ' be the least ordinal that is in h}, (o U {var,par}) — 5. Then 5 > § and
dN (B + 1) witnesses the following statement in M:

(Fz)(z € BT & pu U{ym} = hiy(y,(d - (B + 1)) Ua))

where y € [a]<“ is such that pps U{vam} = b3, (y,d). It follows that this statement
is witnessed by some d* € b, (U {yar,pam}); here d* is a finite subset of 5. Thus,
we have py U {ym} = b3y, (d — (B + 1)) Ud*). Let o : *W5? = M be the
canonical witness map. Then {y,d'} C rng(c) where d' = (d — (8 + 1)) Ud*, and
therefore ppr U {var} € rng(o) as well. Let o(p) = pap U {yar}. Since pys is a
good parameter for M with respect to the language for premice, we have a set
A that is (M) in py U {ym} such that A Nwpl, ¢ M; here ;(M) is meant
with respect to the language for coherent strutures. The map o is X;-preserving
with respect to the language for coherent structures and o | wol, = id, so letting
A be the El(*Wﬁ,}d)—set by the same definition as A in the parameter p, we have
ANwel, = ANwgl, ¢ M. Now by the assumptions of the theorem, *W>* € M,
so ANwgl, € M after all. This contradiction shows that d € h%,(a U {ya,pm})

and thereby completes the proof. O(c)
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Clauses (a) and (c) together with our assumption that M is weakly iterable now

allow to apply Theorem 1.1 (actually, just (b) of Theorem 1.1) and obtain (b).

O(Theorem 1.2)

Let us finally remark that although we did apply Theorem 1.1 to M at the end

of the above proof, such an application does not make the proof of the two main

theorems as a whole circular. This is the case, because the proof of Theorem 1.1

does not make any use of an application of Theorem 1.2 to M — the only application

of Theorem 1.2 in that proof occurs at the end of the proof of Claim 5 in the proof of

Lemma 1.12, where Theorem 1.2 is applied to a premouse of height strictly smaller

than ht(M).
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