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MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES

MARTIN ZEMAN

ABSTRACT. We extend the construction of a global square sequence in exten-
der models from [8] to a construction of coherent non-threadable sequences
and give a characterization of stationary reflection at inaccessibles similar to
Jensen’s characterization in L.
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This note presents a fine structural construction of a so-called O(k, A) sequence
for certain stationary subsets A of an inaccessible cardinal k as well as a charac-
terization of weakly compact cardinals in fine structural extender models in terms
of stationary reflection. These results extend analogous results of Jensen for the
constructible universe that originate in [3] and are described in more detail in [1].
Although the characterization of weakly compact cardinals in an extender model
turns out to be exactly the same as in L, the proof requires a significant amount
of extra work. Also, the author believes that the proof presented in this paper is
more straightforward than that described in [3] and [1].

The exposition in this paper is based on extender models with Jensen’s A-
indexing of extenders introduced in [4]; see [7] as a reference. The paper builds
on previous work on fine structural square sequences in extender models, in par-
ticulsr on [5, 6] and [8]. We will frequently refer to [8]. However, no detailed
knowledge of arguments in [8] is necessary, as we will only need certain lemmata
from that paper which can be used as black boxes. In particular, all references
concerning protomice will be hidden in black boxes.

Theorem 0.1 (Main Theorem). Working in a fine-structural Jensen-style extender
model L[E], assume k is an inaccessible cardinal that is not weakly compact and
A C k is stationary. Then there is a stationary A’ C A and a sequence (C; | T < K)
satisfying the following conditions.

(a) C is a closed unbounded subset of T.
(b) Cz = C. NT whenever T € lim(C).
(c) A'Nlim(C;) = @.

A sequence satisfying (a) — (c) in the above theorem is called a O(k, A’)-sequence.
Any such sequence is a O(k)-sequence, that is, it cannot be threaded: If C C & is
a closed unbounded set then C' N« # C, for some limit point o of C. From the
above theorem we obtain the following corollaries, the first of which is immediate.
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2 MARTIN ZEMAN

Corollary 0.2. Let L[E] be a Jensen-style extender model. The following di-
chotomy is true in L[E] of any inaccessible cardinal k.

o x is weakly compact = every stationary subset of k reflects at some k < k.
e & is not weakly compact = nonreflecting stationary subsets of k are dense.

In particular, an inaccessible cardinal k is weakly compact just in case that every
stationary subset of k reflects at some Rk < K.

The first clause in the above corollary is, of course, a ZFC consequence. It should
be noted that reflection points of stationary subsets whose existence is guaranteed
by weak compactness are regular. Not only the argument that is used to obtain
reflection points produces regular (in fact inaccessible) reflection points; the fact
that we have a global square sequence on singular cardinals in L[E] guarantees that
any reflection point of any stationary subset of an inaccessible cardinal k must be
regular. The property that every stationary subset of k reflects at some singular
ordinal ¥ < k or at an ordinal of fixed uncountable cofinality, if consistent with ZFC,
must have high consistency strength; however the exact result here is not known.
Even at small regular cardinals, the requirement that every stationary set reflects
at some ordinal of small cofinality implies the consistency of measurable cardinals
of high Mitchell order; see [2].

Corollary 0.3. Let V = L[E] be a Jensen-style extender model. Then for any
reqular cardinal k that is not weakly compact there is a Suslin k-tree.

This follows from Jensen’s construction of higher Suslin trees in [3]. For successor
cardinals k = u* where u is not subcompact one uses ¢ (A) and O(k, A) for a suit-
able stationary A C k; here the O(k, A)-sequence is obtained from a O,-sequence
whose existence is guaranteed by [6]. If u is subcompact then p is inaccessible,
so GCH in L[E] makes it possible to construct a Suslin k-tree “naively” by using
only a <>,{(S:)—sequence1 to seal off large antichains at limit stages of cofinality
in the construction, and adding all possible branches at limit stages of cofinality
smaller than x. For inaccessible k one constructs a Suslin s-tree using 0, (A) and
O(k, A) as above; this time the existence of a O(k, A)-sequence is guaranteed by
Theorem 0.1.

1. THE CONSTRUCTION

We will work in a fixed model L[E] where E is a Jensen-style extender sequence,
that is, an extender sequence with A-indexing of extenders. The predicate E is thus
also fixed. Throughout the construction we will use the Condensation Lemma for
premice; this is Lemma 2.2 in [8] or Lemma 9 in [7]. We will often make use of the
following simple consequence of the Condensation Lemma.

Proposition 1.1. Assume that o : M — M be a Sg-preserving embedding where
M is an L[E]-level and M = (JE E,.) is an acceptable J-structure. Let T = cr(o)
and § = 7M™ ; here we allow the option that § = ht(M) if T is the largest cardinal
in M. If T is a limit cardinal in M then E 6§ =E | 6.

From now on assume that  is an inaccessible cardinal that is not weakly com-
pact. As it is typical with constructions of O-like principles, we begin with identi-
fying canonical structures assigned to ordinals 7 < k. As & is not weakly compact,

Lor = (e <k |cf(€) = p}
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MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 3

there is a k-tree on k without cofinal branch; we fix the <g-least one. Thus
(1) T = the <p-least k-tree on k without cofinal branch.

Obviously, T € Jf+ and (1) defines T inside Jf+. We will write T' [ 7 to denote the
restriction of T' to 7, that is, T' [ 7 is the tree on 7 with tree ordering <, N(7 x 7).

Lemma 1.2. There is a closed unbounded set of cardinals C C k and a map
T+ 0, < 71 such that for every 7 € C we have
o 7 s the largest cardinal in Jf: and is inaccessible in Jf:.
o T |7 is art-tree in JE with no cofinal branch in Jf:.
o T | 7 is an initial segment of T', that is, for all € € T | 7 and all { € T we
hawve ( <r & = (€T |T.

Proof. Let (X¢ | £ < k) be a continuous chain of elementary substuctures of J%,
such that each X¢ is of size 7z = X¢ Nk € k. Clearly T € X¢ for all { < k, as T

is definable in J}i. By Proposition 1.1, each X collapses to some Jﬁg)- The fact

that X¢ < Jﬂ guarantees that 7¢ is the largest cardinal in sz&), is inaccessible in

Jﬁg) and the tree T' collapses to T' | 1¢ € Jf(g) that has no cofinal branch in Jf(g).

So we can let € = {7¢ | { < K} and ., = 6(¢).

To see that T' | 7¢ is an initial segment of 7' it suffices to show that the a-th
level of T' | 7¢ agrees with the a-th level of T" for all @ < 7¢. Fix such an a. By
elementarity, there is a bijection f, : 8, = T, in X¢ where T}, is the a-th level of T
and 6, is its size. Since T is a s-tree, 84 < & 50 0, < 7¢. Then T, = rng(fa) C X¢,
as 0, C Xg. m]

Let 7 € €. Since T | 7 is an initial segment of T" and T has height &, the tree
T | 7 has a cofinal branch in L[E]. For 7 € C we let

8! = the maximal § such that 7' | 7 has no cofinal branch in J£.

By the above proposition, §. > §,. We would like to pick L{E]|| 4. as our canonical
structure, but the fact that 7 may be collapsed inside L[E] || §. or even definably
collapsed over L[E]||d. does not allow to make this choice for each 7 € €. If a
cofinal branch of T' | 7 is introduced later or at the same time when 7 is singularized,
7 will be treated the same way as in the construction of a global square sequence.
This motivates our choice of the canonical structure. We define

e @Y = the set of all 7 € € such that 7 is singular in JfH.
el =e-¢ ’
and
e N, = the singularizing level of L[E] for 7 if 7 € €.
o N, =L[E]||8, = (Jf  E.s) if T € €.
Notice that even if 7 € €° we have ht(N;) > d,,s0T [ 7 € N, for all 7 € C.
We first define the sets C, witnessing Theorem 0.1 for 7 € lim(€). We will treat
the cases 7 € €', i = 0,1 separately and show that the two constructions do not
interfere. We begin with ©%, as here we can use the global square sequence of [8].

Let (CL | 7 € 8 N k) denote the global square sequence from [8]? where § is the
class of all singular cardinals. So each C. is a closed subset of 7 that is unbounded

2This is the sequence which is denoted by (Cr | 7 € 8) in [8]; here we write C!. instead of C,
as C; will be the final sequence produced in this paper.
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4 MARTIN ZEMAN

whenever 7 has uncountable cofinality, the sequence of sets CL is fully coherent and
otp(C) < 7 for each 7 € 8. The class § is divided into two disjoint classes 8° and
8! and the sets C". satisfy the inclusions C.. C 8" whenever 7 € 8 for i = 0,1. We
first make the following observation.

Lemma 1.3. If 7 € lim(€) N €% and cf(r) > w then there is some v < T such that
Cc.ne—~cel.

Proof. Obviously, C’ N € is unbounded in 7. As 7 € €°, the canonical structure
N, is the singularizing L[E]-level for 7. Let 7 € C. and N be the singularizing
L[E]-level for 7. By the construction in [8], there is a Xo- preservmg map oz,
such that o7 ; : N > N, ifr e 8% and Oz r M —> M, ifr e st : here M and
M., are the canonical protomice assigned to 7 and 7. In our 51tuat10n we have
T |7é€eN,, as T € C. First assume 7 € 8°. If 7 € C. N C is large enough that
T|7emglo-,)thenT | 7€ N, 0-,.(T | 7) =T | 7 and T | 7 has no cofinal
branch in N:. These conclusions are consequences of the Yj-elementarity of the
map; the former two follow by an argument similar to that in proof of Lemma 1.2
and the latter one follows from the fact that the nonexistence of a cofinal branch can
be expressed as a II; -statement, so it is preserved backward under o> . Hence that
T | 7 has no cofinal branch in the singularizing structure for 7, and consequently
N: = N. Now assume 7 € 8'. The conclusion then follows from the fact that M,

and N, compute the cardinal successor of 7 the same way and they agree below this
common successor, and the same is true of the structures M and N and cardinal
7 to which they are assigned. The same argument as above can be then used with
the map oz, which is now a map between two protomice. As before we conclude
that N = N;. It follows that 7 € €° and the same conclusion can be made for any
7' such that 7 < 7' < 7, so it suffices to let v = 7. |

For 7 € lim(€) N €% we let
v, = the least v < 7 such that C. N€ —~ C €°

and define C7 as follows.

e If CL. NC — 7, is unbounded in 7 we let CF = CL. NEC — v,
o otherwise C7 is the <pg-least sequence of order type w converging to 7.

Lemma 1.3 together with the properties of the sets C. guarantee that this definition
makes sense, each C7 is a closed unbounded subset of 7 and C* = C* N7 whenever
7 € lim(C*). Thus, for 7 € lim(€) N €°, (a) and (b) in Theorem 0.1 hold with C*
in place of C;.

We next define sets C* for 7 € lim(€) N€'. The definition of the sets C* is based
on the following observation, which is a direct consequence of the fact that 7 € @'.

(2) TN ﬁ’](,tl(a U {pn.}) is bounded in 7 whenever a < 7 and n € w.

The sets C are defined as follows.

o Cristhesetofall 7 €N @' satisfying: N; is a premouse of the same type
as N, and there is a ¥*-preserving embedding o » such that:
(i) 7 =cr(r) and o7 . (T) = 7.
(ii) o7, (pN,) = PN, -
(i) o7, (T17)=T|T.
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MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 5

Clause (iii) in the above definition is superfluous, as it is easy to see that (ii) holds
even if we drop it. We include it as a part of the definition in order to simplify
the matters. Clearly, the map oz, is the unique ¥ *-preserving map o : N = N,
satisfying (i) and (ii).

Lemma 1.4. If 7 € lim(€) N €" and cf(1) > w then C* is unbounded in 7.

Proof. Given some 7" < 7 we find 7 € C¥ such that 7* < 7. As is typical for
constructions of square sequences, we will look for the right kind of hulls. Let

e n € w be such that wg?vtl <7 <wop,;
Such an n exists, as there is a cofinal branch through 7' | 7 in in:+1 — Jﬁ: and such
a branch, being a subset of 7, is X*-definable over Jﬁ:+1 || 6, = N;. Let © € [7]<%
be such that T' | T € E’&tl(mu{pm}), Wy e iL’]{,tl(mU{pNT}) whenever v € py_,

and some cofinal branch through T' | 7 is E§n) (N, )-definable from = and py,. Such
an x exists, as these tasks require only finite amount of information. Define a
sequence (1, Xy, | k € w) of ordinals below 7 and hulls as follows.

7o = max(zU{r"})+1
Xe = Uhdmuiond)
lew
Tepr = sup(r7NXy)
Tegr = min(C—7 ) +1

By (2), each Tﬂﬁfvtl («U{pn, }) is smaller than 7, granting that 7, < 7. Since 7 has
uncountable cofinality, also 7,41 < 7, which enables us to run induction on k and
then conclude that also 7 = sup({7. | k € w}) is below 7. Letting X = [J, o, X&
we have 7N X = 7. In the following we show that 7 € C}.

Notice first that since the ordinals 7 are strictly increasing and each interval
(Tk, Tk+1) has nonempty intersection with €, the supremum 7 is a limit point of €,
so 7 € C. We next observe:

(3) X =hy (T u{pn}).

By construction, each z € X is of the form ﬁfvtl (i,(z,pn,)) for some £ > n,i € w
and z € [7]<¥. Assume £ > n. The function lNLthl (u, {(v,pn,)) can be expressed as a
composition iz?vi'l((u)%7 (h((u)?,v),pn,)) where h:w x JE — JE is a partial good
Eg“l)—function; see [7], Section 1.8 for details. If z € [r]<“ then h((i)},2) € JTE;C7
and since there is a uniformly ¥,-definable surjection of 7, onto JTE, we can replace

k

the above value of h with some finite 2’ € [;]<. So there is some j < w such that
z= h;{,tl(j, (z',pn.)). This proves (3).

Let N be the transitive collapse of X and ¢ : N — N, be the inverse to the
Mostowski collapsing isomorphism. Then 7 = cr(¢) and o(7) = 7. Moreover, it
follows from (3) and the construction of X that
(4) X = izf\,tl (tU{pn.}) whenever ¢ > n,
so the map o is de):preserving for all such £ hence X*-preserving. As z, T [ 7 € X,
we have z,T | T € Nand o(z,T | 7) = (x,T | 7). For x this is immediate, for T' [ 7
this follows from the fact that 7' [ 7 € rng(o) by an argument similar to that in the
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6 MARTIN ZEMAN

proof of Lemma 1.2. Since p, € X we have some p € N such that o(p) = p,. From
(3) we obtain N = ﬁ%“(i’ U {p}) which implies that wg”N+1 <7 andpE€ R%“?
By construction 7 is a limit cardinal in L[E], so actually we% = wg”N+1 = T.
The structure N is a premouse of the same type as N; this follows from the X*-
elementarity of o.

An application of the Condensation Lemma to the map o : N — N, then
yields that N is a solid premouse. The choice of the set z at the beginning of
the construction guarantees that for each v € p, the standard witness W]'\',’f* is an
element of X, so its preimage ), under o is a generalized witness for v = o~ '(v) € p
with respect to M and p. * So p = py and N is sound above 7 by [7], Lemma 1.12.5.
One more application of the Condensation Lemma to the map o : N — N then
gives us the following options: (a) N = core(N), (b) N is a proper initial segment

3

of N, (c) N is an ultrapower of an initial segment N’ of N with critical point
equal to the cardinal predecessor of 7 in N’ and (d) N is a proper initial segment
of Ult(N, E-). Here option (a) is impossible as N and N have different ultimate
projecta and options (c) and (d) are impossible as 7 is a limit cardinal in N. Thus,
N is a proper initial segment of N, and thereby an initial segment of L[E].

So far we have obtained an initial segment N of L[E] and a ¥*-preserving map
o : N — N, such that 7* < 7 = cr(o) is inaccessible in N and o(7,py,T | 7) =
(1,p+,T | 7). Obviously, T | 7 has no cofinal branch in N, as T | 7 has no cofinal
branch in N, and o is sufficiently elementary. In order to verify that 7 € C*
we have to verify that 7 € @' which amounts to showing that N = N. This is
equivalent to saying that 7 is regular in JBE+1 and T' [ 7 has a cofinal branch in
JBE+1 where 8 = ht(N:). The former follows immediately from the construction of
X, as the ¥*-elementarity of o implies that B?’l(m U{pxn}) is bounded in 7 for all
k, ¢ € w. As any function f :7 — 7 that is an element of JBE+1 is definable over N

and therefore can be expressed in the form lNLfol(— U{qUpgx}) for some £ € w and
q € [T]<¥, such function cannot singularize 7.

To see that JﬁE+1 contains a cofinal branch through T | 7 it suffices to show that
such a branch is X*-definable over N. Let b € J£+l be a cofinal branch through

T | 7. Similarly as with f above, it follows that b is Egz)(NT)—deﬁnable from pn_

and some g € [7]<¥ for some £ € w. Let ¢(u,v) be a E§Z)—formula that defines b,
that is, for each ¢ < 7 we have

£€b <= N: EFp(&qUpn,).

We first observe that g can be taken from [7]<*. This is the case, as the statement
“the set of all & < 7 satisfying N, | ¢(£,q U pn.) determines a cofinal branch
through T' | 7”7 can be expressed in a H§Z+2)—manner, namely as the conjunction of
(Vf£+1, C£+1)
[(p(E " qUpn,) & (¢ qUpn,)) — (E57" <p ¢FF1 v (1 <p €51

and
(VEF) BN (¢ > €2 & o(¢2, qUpn,)).

3See [7], Section 1.5
4See ([7], Section 1.12 or ([8])
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MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 7

The former expresses that b determines a branch through 7' | 7 and the latter
expresses that the branch is cofinal. This conjunction is a statement about ¢ and
pn,; denote it by ¢(q,pn,). As ¢ witnesses that N, = (32¢73)y(2,pn,) and X is
closed under good E£*-functions, there also must be a witness ¢ € X. Then g € [7]<¥
and N = (¢, py)- Tt follows that {£ <7 | N |= ¢(§,§Upy)} determines a cofinal
branch through 7' [ 7. Such branch is Zg)—deﬁnable over N in parameters. This
completes the proof of the fact that 7 € @ and thereby the proof of the lemma. O

Lemma 1.5. If 7 € lim(€) N €' then CF is closed.

Proof. Let 7 be a limit point of C¥. We show that 7 € C}. As in the previous
lemma, let

e n be such that wg?vtl <7 <woy, -

We first observe that if 7* € C? then wg”N+*1 < T < wgR .. The inequality on

the right follows from the fact that N, satisfies the Eg")—statement (FE™) (T < &™)
and this statement is preserved under o. The inequality on the left follows from
the fact that ﬁ?vtl(r U{pn.}) = N, and o preserves Egn)—statements. Consider
the diagram (N;«,0.+« | 7 < 7' € TN CE); let (N,o.« | 7™ € 7 € C?) be its
direct limit with the direct limit maps o« : N.» — N and let 6 : N — N, be
the canonical embedding of the direct limit N into N, satisfying & o g« = Or r-
Standard considerations yield that N can be viewed as a premouse of the same type
as N, and all N, all maps o,+ and & are ¥*-preserving and wg”N+1 <T <wok. If
P is the common value of o« (pn,.) then obviously 6(p) = pn.. By the properties
of n recorded above, E?th(r U{pn.}) = N; so iL;{,H(? U{p}) = N, as follows from
preservation properties of 6. An application of the Condensation Lemma to the map
o : N = N, yields that N is solid. Since each N,-, being a proper initial segment
of L[E], is sound, for each v € px_, the standard witness W]'\/,’TP*N** is an element of

N, and its image under o, is a generalized witness for o, (v) with respect to N
and p, as 0.+ is sufficiently elementary. This way we conclude that for each element
of p there is in N a generalized witness with respect to N and p, and exactly as
in the proof of Lemma 1.4 then conclude that N is sound and p = pg. One more
application of the Condensation Lemma then yields, exactly as in Lemma 1.4 that
N is an initial segment of N,. Obviously 7 = cr(c), o(7,p5) = 7, DN, , the cardinal
7 is inaccessible in N and N, being a limit point of C*, is a limit point of € hence
7 € C. Tt remains to prove that 7 € €'. As o is ©*-preserving, this follows exactly
as in the proof of Lemma 1.4.° ad

Lemma 1.6. If 7 € lim(€) N C' and 7 € lim(C*) then 7 € lim(€) N " and
C:=0Crnrt.

Proof. Since 7 € lim(C) N €', the condition 7 € lim(C*) implies 7 € lim(C) N €,
so C* and C# are defined in the same way. If 7* € C> then 7* € €' and we have
the map o,+ 7 : N;» = N- witnessing the memebership of 7% to CZ. But then
Oz © 0+ 7 : Npx» — N, witnesses the membership of 7* to C.. Conversely, if

5Alternatively, one can consider a definition of a cofinal branch of T | 7* over N,« from
parameters py_, and ¢ € [7*]<% for some/any 7* € C* N7 and show that the same definition
over N defines a cofinal branch through 7' | 7 from py and g. This works, as o« is X*-preserving.



17
18

19
20
21
22
23

24

25

26

27

28

29

30

31

32
33

34

35

36
37
38

8 MARTIN ZEMAN

™ € CXNT then 7 € €' and there is a map 0, ; Witnessing the membership of
T7* to C-. Since both o« ; and o7 ; are ¥*-preserving and 7* < 7 we have

mg(o--) = |J B (7 U{pn. }) € | AN (7 U {pn, }) = mg(o- ),
lew lew

s0 (077) "0 0.+ ;: Noo — N; witnesses the membership of 7% to C%. m|

So far we have constructred sets C* for 7 € lim(€) such that (a) and (b) in
Theorem 0.1 hold with C* in place of C,. Given stationary set A C &, we find
stationary A’ C A and refine CF into C, that will satisfy all conclusions of the
theorem. We let

e A' = the set of all 7 € € for which there are an L[E]-level P = Jg and a
parameter ¢ € P such that:
(a) P = ZFC, 7 is the largest cardinal in P, is inaccessible in P and
T | T has no cofinal branch in P.
(b) For every X < P satisfying X N7 € 7 and p € X we have X N7 ¢ A.

The same proof as that of [8], Theorem 3.21 shows that the set A’ is stationary
in k. Notice that the only difference between A’ in this paper and A’ in [§] is the
additional requirement in (a) above that T [ 7 has no cofinal branch in P and the
restriction of the set A’ to elements of the closed unbounded set €.

Lemma 1.7. Let 7 € lim(C). If 7 € lim(C*) N A’ then there is some 7" € CXNT
such that A is disjoint with C* N (7*,7).

Proof. For 7 € €° this was proved in [8], Lemma 3.22. For 7 € €' the same
argument goes through. If there is a pair (P,a) € N> witnessing the membership
of 7 to A’ the argument can be literally repeated: Given 7' € C* N T large enough
that (P,a) is in the range of o,/ 7, let P’ € N,/ be such that o, z(P') = P; then
X =007[P] <Pandae€ X,s07 =XNT7T ¢ A In the remaining case we
conclude that P = J;i; where recall that 62 = ht(N;). This is the case, as T [ 7 has

a cofinal branch in J% . As P = ZFC™ and N projects to 7, necessarily E{X}’) is an
741

. N - . . N . .
extender with A(E,) = 7. Since o/ - is X*-preserving, E;, is an extender with

/\(Eg;') = 7' and the two extenders have the same critical point p < 7'. Moreover,
since both 7' and 7 are limit cardinals, both N, and N compute the cardinal
successor of u the same way as L[E]; denote this common successor by 9. As both
these premice are coherent structures, J‘?I = Ult(Jf,Eﬁ;’), J]?: = Ult(Jf,Eﬁ;)
and it follows immediately that o 7 : W’Ef)(a) — 7(f)(0. 7(a)) and therefore is
fully elementary. Hence if a € rng(o,/ 7) then X = rng(o, ) < P. It follows that
T=XnN7¢A O

For 7 € lim(€) we can now define sets C, as in [8]. We first let
0, = the least § < 7 such that ANC* — 6 = @.
We then let
C, =C;— [ J{(6-,7) | 7 € lim(Cy) N A'}.

Then the sets C, are obviously closed. If A’ Nlim(C?*) is bounded in 7 then C; is
clearly unbounded; otherwise C; is unbounded because it follows from its definition
that A’ N lim(C¥) C C,. The coherency of sets C, follows from the coherency of
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sets CF and the uniformity of the definition of C,. Finally lim(C,) N A" = @, as
every element of A’ is a successor point of C..

It remains to define the sets C; for 7 ¢ lim(€). Notice that A’ C €, which
simplifies the matters. The complement of lim(€) can be written as the union of
disjoint open intervals that are bounded in k. We assume that these intervals are
maximal. Let (a, ) be such an interval. Then «, € lim(€) by maximality. The
set Cj is defined above, and it has no limit points in the interval (a, 8). For each
7 € (a, ) we can thus let C; = 7 — (a + 1). Obviously, this definition does not
collide with the definition in the case where 7 € 1lim(€) and satisfies (a) — (c) in
Theorem 0.1. This completes the entire construction.
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