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t. We extend the 
onstru
tion of a global square sequen
e in exten-der models from [8℄ to a 
onstru
tion of 
oherent non-threadable sequen
esand give a 
hara
terization of stationary re
e
tion at ina

essibles similar toJensen's 
hara
terization in L.AMS Subje
t Classi�
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e
tion. February 16, 2009This note presents a �ne stru
tural 
onstru
tion of a so-
alled �(�;A) sequen
e1 for 
ertain stationary subsets A of an ina

essible 
ardinal � as well as a 
hara
-2 terization of weakly 
ompa
t 
ardinals in �ne stru
tural extender models in terms3 of stationary re
e
tion. These results extend analogous results of Jensen for the4 
onstru
tible universe that originate in [3℄ and are des
ribed in more detail in [1℄.5 Although the 
hara
terization of weakly 
ompa
t 
ardinals in an extender model6 turns out to be exa
tly the same as in L, the proof requires a signi�
ant amount7 of extra work. Also, the author believes that the proof presented in this paper is8 more straightforward than that des
ribed in [3℄ and [1℄.9 The exposition in this paper is based on extender models with Jensen's �-10 indexing of extenders introdu
ed in [4℄; see [7℄ as a referen
e. The paper builds11 on previous work on �ne stru
tural square sequen
es in extender models, in par-12 ti
ulsr on [5, 6℄ and [8℄. We will frequently refer to [8℄. However, no detailed13 knowledge of arguments in [8℄ is ne
essary, as we will only need 
ertain lemmata14 from that paper whi
h 
an be used as bla
k boxes. In parti
ular, all referen
es15 
on
erning protomi
e will be hidden in bla
k boxes.16 Theorem 0.1 (Main Theorem). Working in a �ne-stru
tural Jensen-style extender17 model L[E℄, assume � is an ina

essible 
ardinal that is not weakly 
ompa
t and18 A � � is stationary. Then there is a stationary A0 � A and a sequen
e hC� j � < �i19 satisfying the following 
onditions.20 (a) C� is a 
losed unbounded subset of � .21 (b) C�� = C� \ �� whenever �� 2 lim(C� ).22 (
) A0 \ lim(C� ) = ?.23 A sequen
e satisfying (a) { (
) in the above theorem is 
alled a �(�;A0)-sequen
e.24 Any su
h sequen
e is a �(�)-sequen
e, that is, it 
annot be threaded: If C � � is25 a 
losed unbounded set then C \ � 6= C� for some limit point � of C. From the26 above theorem we obtain the following 
orollaries, the �rst of whi
h is immediate.27 Resear
h partially supported by NSF grant DMS-0500799.1



2 MARTIN ZEMANCorollary 0.2. Let L[E℄ be a Jensen-style extender model. The following di-1 
hotomy is true in L[E℄ of any ina

essible 
ardinal �.2 � � is weakly 
ompa
t =) every stationary subset of � re
e
ts at some �� < �.3 � � is not weakly 
ompa
t =) nonre
e
ting stationary subsets of � are dense.4 In parti
ular, an ina

essible 
ardinal � is weakly 
ompa
t just in 
ase that every5 stationary subset of � re
e
ts at some �� < �.6 The �rst 
lause in the above 
orollary is, of 
ourse, a ZFC 
onsequen
e. It should7 be noted that re
e
tion points of stationary subsets whose existen
e is guaranteed8 by weak 
ompa
tness are regular. Not only the argument that is used to obtain9 re
e
tion points produ
es regular (in fa
t ina

essible) re
e
tion points; the fa
t10 that we have a global square sequen
e on singular 
ardinals in L[E℄ guarantees that11 any re
e
tion point of any stationary subset of an ina

essible 
ardinal � must be12 regular. The property that every stationary subset of � re
e
ts at some singular13 ordinal �� < � or at an ordinal of �xed un
ountable 
o�nality, if 
onsistent with ZFC,14 must have high 
onsisten
y strength; however the exa
t result here is not known.15 Even at small regular 
ardinals, the requirement that every stationary set re
e
ts16 at some ordinal of small 
o�nality implies the 
onsisten
y of measurable 
ardinals17 of high Mit
hell order; see [2℄.18 Corollary 0.3. Let V = L[E℄ be a Jensen-style extender model. Then for any19 regular 
ardinal � that is not weakly 
ompa
t there is a Suslin �-tree.20 This follows from Jensen's 
onstru
tion of higher Suslin trees in [3℄. For su

essor21 
ardinals � = �+ where � is not sub
ompa
t one uses ��(A) and �(�;A) for a suit-22 able stationary A � �; here the �(�;A)-sequen
e is obtained from a ��-sequen
e23 whose existen
e is guaranteed by [6℄. If � is sub
ompa
t then � is ina

essible,24 so GCH in L[E℄ makes it possible to 
onstru
t a Suslin �-tree \naively" by using25 only a ��(S��)-sequen
e1 to seal o� large anti
hains at limit stages of 
o�nality �26 in the 
onstru
tion, and adding all possible bran
hes at limit stages of 
o�nality27 smaller than �. For ina

essible � one 
onstru
ts a Suslin �-tree using ��(A) and28 �(�;A) as above; this time the existen
e of a �(�;A)-sequen
e is guaranteed by29 Theorem 0.1.30 1. The 
onstru
tion31 We will work in a �xed model L[E℄ where E is a Jensen-style extender sequen
e,32 that is, an extender sequen
e with �-indexing of extenders. The predi
ate E is thus33 also �xed. Throughout the 
onstru
tion we will use the Condensation Lemma for34 premi
e; this is Lemma 2.2 in [8℄ or Lemma 9 in [7℄. We will often make use of the35 following simple 
onsequen
e of the Condensation Lemma.36 Proposition 1.1. Assume that � : �M ! M be a �0-preserving embedding where37 M is an L[E℄-level and �M = hJ �E�� ; �E!�i is an a

eptable J-stru
ture. Let � = 
r(�)38 and Æ = �+ �M ; here we allow the option that Æ = ht( �M) if � is the largest 
ardinal39 in �M . If � is a limit 
ardinal in �M then �E � Æ = E � Æ.40 From now on assume that � is an ina

essible 
ardinal that is not weakly 
om-41 pa
t. As it is typi
al with 
onstru
tions of �-like prin
iples, we begin with identi-42 fying 
anoni
al stru
tures assigned to ordinals � < �. As � is not weakly 
ompa
t,43 1S�� = f� < � j 
f(�) = �g



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 3there is a �-tree on � without 
o�nal bran
h; we �x the <E-least one. Thus1 (1) T = the <E-least �-tree on � without 
o�nal bran
h.Obviously, T 2 JE�+ and (1) de�nes T inside JE�+ . We will write T � � to denote the2 restri
tion of T to � , that is, T � � is the tree on � with tree ordering <T \(� � �).3 Lemma 1.2. There is a 
losed unbounded set of 
ardinals C � � and a map4 � 7! Æ� < �+ su
h that for every � 2 C we have5 � � is the largest 
ardinal in JEÆ� and is ina

essible in JEÆ� .6 � T � � is a �-tree in JE� with no 
o�nal bran
h in JEÆ� .7 � T � � is an initial segment of T , that is, for all � 2 T � � and all � 2 T we8 have � <T � ) � 2 T � � .9 Proof. Let hX� j � < �i be a 
ontinuous 
hain of elementary substu
tures of JE�+10 su
h that ea
h X� is of size �� = X� \ � 2 �. Clearly T 2 X� for all � < �, as T11 is de�nable in JE�+ . By Proposition 1.1, ea
h X� 
ollapses to some JEÆ(�). The fa
t12 that X� � JE�+ guarantees that �� is the largest 
ardinal in JEÆ(�), is ina

essible in13 JEÆ(�) and the tree T 
ollapses to T � �� 2 JEÆ(�) that has no 
o�nal bran
h in JEÆ(�).14 So we 
an let C = f�� j � < �g and Æ�� = Æ(�).15 To see that T � �� is an initial segment of T it suÆ
es to show that the �-th16 level of T � �� agrees with the �-th level of T for all � < �� . Fix su
h an �. By17 elementarity, there is a bije
tion f� : �� ! T� in X� where T� is the �-th level of T18 and �� is its size. Sin
e T is a �-tree, �� < � so �� < ��. Then T� = rng(f�) � X�,19 as �� � X�. ut20 Let � 2 C. Sin
e T � � is an initial segment of T and T has height �, the tree21 T � � has a 
o�nal bran
h in L[E℄. For � 2 C we let22 Æ0� = the maximal Æ su
h that T � � has no 
o�nal bran
h in JEÆ .By the above proposition, Æ0� � Æ� . We would like to pi
k L[E℄ jj Æ0� as our 
anoni
al23 stru
ture, but the fa
t that � may be 
ollapsed inside L[E℄ jj Æ0� or even de�nably24 
ollapsed over L[E℄ jj Æ0� does not allow to make this 
hoi
e for ea
h � 2 C. If a25 
o�nal bran
h of T � � is introdu
ed later or at the same time when � is singularized,26 � will be treated the same way as in the 
onstru
tion of a global square sequen
e.27 This motivates our 
hoi
e of the 
anoni
al stru
ture. We de�ne28 � C0 = the set of all � 2 C su
h that � is singular in JEÆ0�+1.29 � C1 = C� C0.30 and31 � N� = the singularizing level of L[E℄ for � if � 2 C0.32 � N� = L[E℄ jj Æ0� = hJEÆ0� ; E!Æ0� i if � 2 C1.33 Noti
e that even if � 2 C0 we have ht(N� ) � Æ� , so T � � 2 N� for all � 2 C.34 We �rst de�ne the sets C� witnessing Theorem 0.1 for � 2 lim(C). We will treat35 the 
ases � 2 Ci, i = 0; 1 separately and show that the two 
onstru
tions do not36 interfere. We begin with C0, as here we 
an use the global square sequen
e of [8℄.37 Let hC 0� j � 2 S \ �i denote the global square sequen
e from [8℄2 where S is the38 
lass of all singular 
ardinals. So ea
h C 0� is a 
losed subset of � that is unbounded39 2This is the sequen
e whi
h is denoted by hC� j � 2 Si in [8℄; here we write C0� instead of C� ,as C� will be the �nal sequen
e produ
ed in this paper.



4 MARTIN ZEMANwhenever � has un
ountable 
o�nality, the sequen
e of sets C 0� is fully 
oherent and1 otp(C 0� ) < � for ea
h � 2 S. The 
lass S is divided into two disjoint 
lasses S0 and2 S1 and the sets C 0� satisfy the in
lusions C 0� � Si whenever � 2 Si for i = 0; 1. We3 �rst make the following observation.4 Lemma 1.3. If � 2 lim(C) \ C0 and 
f(�) > ! then there is some 
 < � su
h that5 C 0� \ C� 
 � C0.6 Proof. Obviously, C 0� \ C is unbounded in � . As � 2 C0, the 
anoni
al stru
ture7 N� is the singularizing L[E℄-level for � . Let �� 2 C 0� and �N be the singularizing8 L[E℄-level for �� . By the 
onstru
tion in [8℄, there is a �0-preserving map ���;�9 su
h that ���;� : �N ! N� if � 2 S0 and ���;� : �M ! M� if � 2 S1; here �M and10 M� are the 
anoni
al protomi
e assigned to �� and � . In our situation we have11 T � � 2 N� , as � 2 C. First assume � 2 S0. If �� 2 C 0� \ C is large enough that12 T � � 2 rng(���;� ) then T � �� 2 �N , ���;� (T � ��) = T � � and T � �� has no 
o�nal13 bran
h in N�� . These 
on
lusions are 
onsequen
es of the �0-elementarity of the14 map; the former two follow by an argument similar to that in proof of Lemma 1.215 and the latter one follows from the fa
t that the nonexisten
e of a 
o�nal bran
h 
an16 be expressed as a �1-statement, so it is preserved ba
kward under ���;� . Hen
e that17 T � �� has no 
o�nal bran
h in the singularizing stru
ture for �� , and 
onsequently18 N�� = �N . Now assume � 2 S1. The 
on
lusion then follows from the fa
t that M�19 and N� 
ompute the 
ardinal su

essor of � the same way and they agree below this20 
ommon su

essor, and the same is true of the stru
tures �M and �N and 
ardinal21 �� to whi
h they are assigned. The same argument as above 
an be then used with22 the map ���;� whi
h is now a map between two protomi
e. As before we 
on
lude23 that �N = N�� . It follows that �� 2 C0 and the same 
on
lusion 
an be made for any24 � 0 su
h that �� � � 0 < � , so it suÆ
es to let 
 = �� . ut25 For � 2 lim(C) \ C0 we let
� = the least 
 � � su
h that C 0� \ C� 
 � C0and de�ne C�� as follows.26 � If C 0� \ C� 
� is unbounded in � we let C�� = C 0� \ C� 
� ;27 � otherwise C�� is the <E-least sequen
e of order type ! 
onverging to � .28 Lemma 1.3 together with the properties of the sets C 0� guarantee that this de�nition29 makes sense, ea
h C�� is a 
losed unbounded subset of � and C��� = C�� \ �� whenever30 �� 2 lim(C�� ). Thus, for � 2 lim(C) \ C0, (a) and (b) in Theorem 0.1 hold with C��31 in pla
e of C� .32 We next de�ne sets C�� for � 2 lim(C)\C1. The de�nition of the sets C�� is based33 on the following observation, whi
h is a dire
t 
onsequen
e of the fa
t that � 2 C1.34 (2) � \ ~hn+1N� (� [ fpN� g) is bounded in � whenever � < � and n 2 !.The sets C�� are de�ned as follows.35 � C�� is the set of all �� 2 � \C1 satisfying: N�� is a premouse of the same type36 as N� and there is a ��-preserving embedding ���;� su
h that:37 (i) �� = 
r(�) and ���;� (�� ) = � .38 (ii) ���;� (pN�� ) = pN� .39 (iii) ���;� (T � ��) = T � � .40



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 5Clause (iii) in the above de�nition is super
uous, as it is easy to see that (ii) holds1 even if we drop it. We in
lude it as a part of the de�nition in order to simplify2 the matters. Clearly, the map ���;� is the unique ��-preserving map � : N�� ! N�3 satisfying (i) and (ii).4 Lemma 1.4. If � 2 lim(C) \ C1 and 
f(�) > ! then C�� is unbounded in � .5 Proof. Given some �� < � we �nd �� 2 C�� su
h that �� � �� . As is typi
al for6 
onstru
tions of square sequen
es, we will look for the right kind of hulls. Let7 � n 2 ! be su
h that !%n+1N� � � < !%nN� ;8 Su
h an n exists, as there is a 
o�nal bran
h through T � � in JEÆ0�+1�JEÆ0� and su
h9 a bran
h, being a subset of � , is ��-de�nable over JEÆ0�+1 jj Æ0� = N� . Let x 2 [� ℄<!10 be su
h that T � � 2 ~hn+1N� (x[fpN� g), W �;p�N� 2 ~hn+1N� (x[fpN� g) whenever � 2 pN� ,11 and some 
o�nal bran
h through T � � is �(n)1 (N� )-de�nable from x and pN� . Su
h12 an x exists, as these tasks require only �nite amount of information. De�ne a13 sequen
e h�k; Xk j k 2 !i of ordinals below � and hulls as follows.14 �0 = max(x [ f��g) + 1Xk = [̀2! ~h`+1N� (�k [ fpN� g)� 0k+1 = sup(� \Xk)�k+1 = min(C� � 0k+1) + 1By (2), ea
h �\~h`+1N� (��[fpN� g) is smaller than � , granting that �k < � . Sin
e � has15 un
ountable 
o�nality, also �k+1 < � , whi
h enables us to run indu
tion on k and16 then 
on
lude that also �� = sup(f�k j k 2 !g) is below � . Letting X = Sk2! Xk17 we have � \X = �� . In the following we show that �� 2 C�� .18 Noti
e �rst that sin
e the ordinals �k are stri
tly in
reasing and ea
h interval19 (�k; �k+1) has nonempty interse
tion with C, the supremum �� is a limit point of C,20 so �� 2 C. We next observe:21 (3) X = ~hn+1N� (�� [ fpN�g):By 
onstru
tion, ea
h z 2 X is of the form ~h`+1N� (i; h�z; pN� i) for some ` � n, i 2 !22 and �z 2 [�� ℄<!. Assume ` > n. The fun
tion ~h`+1N� (u; hv; pN� i) 
an be expressed as a23 
omposition ~hn+1N� ((u)20; hh((u)21; v); pN� i) where h : ! � JE� ! JE� is a partial good24 �(`+1)1 -fun
tion; see [7℄, Se
tion 1.8 for details. If �z 2 [�k℄<! then h((i)21; �z) 2 JE� 0k ,25 and sin
e there is a uniformly �1-de�nable surje
tion of � 0k onto JE� 0k we 
an repla
e26 the above value of h with some �nite z0 2 [� 0k℄<!. So there is some j < ! su
h that27 z = ~hn+1N� (j; hz0; pN� i). This proves (3).28 Let �N be the transitive 
ollapse of X and � : �N ! N� be the inverse to the29 Mostowski 
ollapsing isomorphism. Then �� = 
r(�) and �(�� ) = � . Moreover, it30 follows from (3) and the 
onstru
tion of X that31 (4) X = ~h`+1N� (�� [ fpN�g) whenever ` � n,so the map � is �(`)1 -preserving for all su
h ` hen
e ��-preserving. As x; T � � 2 X ,32 we have x; T � �� 2 �N and �(x; T � �� ) = (x; T � �). For x this is immediate, for T � �33 this follows from the fa
t that T � � 2 rng(�) by an argument similar to that in the34



6 MARTIN ZEMANproof of Lemma 1.2. Sin
e p� 2 X we have some �p 2 �N su
h that �(�p) = p� . From1 (3) we obtain �N = ~hn+1�N (�� [ f�pg) whi
h implies that !%n+1�N � �� and �p 2 Rn+1�N .32 By 
onstru
tion �� is a limit 
ardinal in L[E℄, so a
tually !%!�N = !%n+1�N = � .3 The stru
ture �N is a premouse of the same type as N ; this follows from the ��-4 elementarity of �.5 An appli
ation of the Condensation Lemma to the map � : �N ! N� then6 yields that �N is a solid premouse. The 
hoi
e of the set x at the beginning of7 the 
onstru
tion guarantees that for ea
h � 2 p� the standard witness W �;p�N� is an8 element ofX , so its preimageQ� under � is a generalized witness for �� = ��1(�) 2 �p9 with respe
t toM and �p. 4 So �p = p �N and �N is sound above �� by [7℄, Lemma 1.12.5.10 One more appli
ation of the Condensation Lemma to the map � : �N ! N then11 gives us the following options: (a) �N = 
ore(N), (b) �N is a proper initial segment12 of N , (
) �N is an ultrapower of an initial segment N 0 of N with 
riti
al point13 equal to the 
ardinal prede
essor of �� in N 0 and (d) �N is a proper initial segment14 of Ult(N;E�� ). Here option (a) is impossible as �N and N have di�erent ultimate15 proje
ta and options (
) and (d) are impossible as �� is a limit 
ardinal in �N . Thus,16 �N is a proper initial segment of N� and thereby an initial segment of L[E℄.17 So far we have obtained an initial segment �N of L[E℄ and a ��-preserving map18 � : �N ! N� su
h that �� < �� = 
r(�) is ina

essible in �N and �(�� ; p �N ; T � �� ) =19 (�; p� ; T � �). Obviously, T � �� has no 
o�nal bran
h in �N , as T � � has no 
o�nal20 bran
h in N� and � is suÆ
iently elementary. In order to verify that �� 2 C��21 we have to verify that �� 2 C1 whi
h amounts to showing that �N = N�� . This is22 equivalent to saying that �� is regular in JE�+1 and T � �� has a 
o�nal bran
h in23 JE�+1 where � = ht(N�� ). The former follows immediately from the 
onstru
tion of24 X , as the ��-elementarity of � implies that ~h`+1�N (�k [fp �Ng) is bounded in �� for all25 k; ` 2 !. As any fun
tion f : �� ! �� that is an element of JE�+1 is de�nable over �N26 and therefore 
an be expressed in the form ~h`+1�N (�[ fq [ p �Ng) for some ` 2 ! and27 q 2 [�� ℄<!, su
h fun
tion 
annot singularize �� .28 To see that JE�+1 
ontains a 
o�nal bran
h through T � �� it suÆ
es to show that29 su
h a bran
h is ��-de�nable over �N . Let b 2 JEÆ0�+1 be a 
o�nal bran
h through30 T � � . Similarly as with f above, it follows that b is �(`)1 (N� )-de�nable from pN�31 and some q 2 [� ℄<! for some ` 2 !. Let '(u; v) be a �(`)1 -formula that de�nes b,32 that is, for ea
h � < � we have33 � 2 b () N� j= '(�; q [ pN� ):We �rst observe that q 
an be taken from [�� ℄<!. This is the 
ase, as the statement34 \the set of all � < � satisfying N� j= '(�; q [ pN� ) determines a 
o�nal bran
h35 through T � �" 
an be expressed in a �(`+2)1 -manner, namely as the 
onjun
tion of36 (8�`+1; �`+1)[('(�`+1; q [ pN� ) & '(�`+1; q [ pN� )) �! (�`+1 <T �`+1 _ �`+1 <T �`+1)℄and37 (8�`+2)(9�`+1)(�`+1 > �`+2 & '(�`+2; q [ pN� )):3See [7℄, Se
tion 1.54See ([7℄, Se
tion 1.12 or ([8℄)



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 7The former expresses that b determines a bran
h through T � � and the latter1 expresses that the bran
h is 
o�nal. This 
onjun
tion is a statement about q and2 pN� ; denote it by  (q; pN� ). As q witnesses that N� j= (9z`+3) (z; pN� ) and X is3 
losed under good ��-fun
tions, there also must be a witness �q 2 X . Then �q 2 [�� ℄<!4 and �N j=  (�q; p �N). It follows that f� < �� j �N j= '(�; �q [ p �N )g determines a 
o�nal5 bran
h through T � �� . Su
h bran
h is �(`)1 -de�nable over �N in parameters. This6 
ompletes the proof of the fa
t that �� 2 C1 and thereby the proof of the lemma. ut7 Lemma 1.5. If � 2 lim(C) \ C1 then C�� is 
losed.8 Proof. Let �� be a limit point of C�� . We show that �� 2 C�� . As in the previous9 lemma, let10 � n be su
h that !%n+1N� � � < !%nN� .11 We �rst observe that if �� 2 C�� then !%n+1N�� � �� < !%nN�� . The inequality on12 the right follows from the fa
t that N� satis�es the �(n)1 -statement (9�n)(� < �n)13 and this statement is preserved under �. The inequality on the left follows from14 the fa
t that ~hn+1N� (� [ fpN�g) = N� and � preserves �(n)1 -statements. Consider15 the diagram hN�� ; ���;� 0 j �� � � 0 2 �� \ C�� i; let h �N; ��� j �� 2 �� 2 C�� i be its16 dire
t limit with the dire
t limit maps ��� : N�� ! �N and let �� : �N ! N� be17 the 
anoni
al embedding of the dire
t limit �N into N� satisfying �� Æ ��� = ���;� .18 Standard 
onsiderations yield that �N 
an be viewed as a premouse of the same type19 as N� and all N�� , all maps ��� and �� are ��-preserving and !%n+1�N � �� < !%n�N . If20 �p is the 
ommon value of ���(pN�� ) then obviously ��(�p) = pN� . By the properties21 of n re
orded above, ~hn+1N� (� [ fpN�g) = N� so ~hn+1�N (�� [ f�pg) = �N , as follows from22 preservation properties of ��. An appli
ation of the Condensation Lemma to the map23 �� : �N ! N� yields that �N is solid. Sin
e ea
h N�� , being a proper initial segment24 of L[E℄, is sound, for ea
h � 2 pN�� the standard witness W �;pN��N�� is an element of25 N�� and its image under ��� is a generalized witness for ���(�) with respe
t to �N26 and �p, as ��� is suÆ
iently elementary. This way we 
on
lude that for ea
h element27 of �p there is in �N a generalized witness with respe
t to �N and �p, and exa
tly as28 in the proof of Lemma 1.4 then 
on
lude that �N is sound and �p = p �N . One more29 appli
ation of the Condensation Lemma then yields, exa
tly as in Lemma 1.4 that30 �N is an initial segment of N� . Obviously �� = 
r(�), �(�� ; p �N ) = �; pN� , the 
ardinal31 �� is ina

essible in �N and �N , being a limit point of C�� , is a limit point of C hen
e32 �� 2 C. It remains to prove that �� 2 C1. As � is ��-preserving, this follows exa
tly33 as in the proof of Lemma 1.4.5 ut34 Lemma 1.6. If � 2 lim(C) \ C1 and �� 2 lim(C�� ) then �� 2 lim(C) \ C1 and35 C��� = C�� \ �� .36 Proof. Sin
e � 2 lim(C) \ C1, the 
ondition �� 2 lim(C�� ) implies �� 2 lim(C) \ C1,37 so C�� and C��� are de�ned in the same way. If �� 2 C�� then �� 2 C1 and we have38 the map ���;�� : N�� ! N�� witnessing the memebership of �� to C��� . But then39 ���;� Æ ���;�� : N�� ! N� witnesses the membership of �� to C� . Conversely, if40 5Alternatively, one 
an 
onsider a de�nition of a 
o�nal bran
h of T � �� over N�� fromparameters pN�� and q 2 [��℄<! for some/any �� 2 C�� \ �� and show that the same de�nitionover �N de�nes a 
o�nal bran
h through T � �� from p �N and q. This works, as ��� is ��-preserving.



8 MARTIN ZEMAN�� 2 C�� \ �� then �� 2 C1 and there is a map ���;� witnessing the membership of1 �� to C� . Sin
e both ���;� and ���;� are ��-preserving and �� < �� we have2 rng(���;� ) = [̀2! ~h`+1N� (�� [ fpN� g) � [̀2! ~h`+1N� (�� [ fpN�g) = rng(���;� );so (���;� )�1 Æ ���;� : N�� ! N�� witnesses the membership of �� to C��� . ut3 So far we have 
onstru
tred sets C�� for � 2 lim(C) su
h that (a) and (b) in4 Theorem 0.1 hold with C�� in pla
e of C� . Given stationary set A � �, we �nd5 stationary A0 � A and re�ne C�� into C� that will satisfy all 
on
lusions of the6 theorem. We let7 � A0 = the set of all � 2 C for whi
h there are an L[E℄-level P = JE� and a8 parameter a 2 P su
h that:9 (a) P j= ZFC�, � is the largest 
ardinal in P , is ina

essible in P and10 T � � has no 
o�nal bran
h in P .11 (b) For every X � P satisfying X \ � 2 � and p 2 X we have X \ � =2 A.12 The same proof as that of [8℄, Theorem 3.21 shows that the set A0 is stationary13 in �. Noti
e that the only di�eren
e between A0 in this paper and A0 in [8℄ is the14 additional requirement in (a) above that T � � has no 
o�nal bran
h in P and the15 restri
tion of the set A0 to elements of the 
losed unbounded set C.16 Lemma 1.7. Let � 2 lim(C). If �� 2 lim(C�� ) \ A0 then there is some �� 2 C�� \ ��17 su
h that A is disjoint with C�� \ (��; ��).18 Proof. For � 2 C0 this was proved in [8℄, Lemma 3.22. For � 2 C1 the same19 argument goes through. If there is a pair (P; a) 2 N�� witnessing the membership20 of �� to A0 the argument 
an be literally repeated: Given � 0 2 C�� \ �� large enough21 that (P; a) is in the range of �� 0;�� , let P 0 2 N� 0 be su
h that �� 0;�� (P 0) = P ; then22 X = �� 0;�� [P 0℄ � P and a 2 X , so � 0 = X \ �� =2 A. In the remaining 
ase we23 
on
lude that P = JEÆ0�� where re
all that Æ0�� = ht(N�� ). This is the 
ase, as T � �� has24 a 
o�nal bran
h in JEÆ0��+1 . As P j= ZFC� and N�� proje
ts to �� , ne
essarily EN��top is an25 extender with �(EN��top) = �� . Sin
e �� 0;�� is ��-preserving, EN�0top is an extender with26 �(EN�0top ) = � 0 and the two extenders have the same 
riti
al point � < � 0. Moreover,27 sin
e both � 0 and �� are limit 
ardinals, both N� 0 and N�� 
ompute the 
ardinal28 su

essor of � the same way as L[E℄; denote this 
ommon su

essor by #. As both29 these premi
e are 
oherent stru
tures, JEÆ0�0 = Ult(JE# ; EN�0top ), JEÆ0�� = Ult(JE# ; EN��top)30 and it follows immediately that �� 0;�� : �0(f)(�) 7! ��(f)(�� 0;�� (�)) and therefore is31 fully elementary. Hen
e if a 2 rng(�� 0;�� ) then X = rng(�� 0;�� ) � P . It follows that32 � 0 = X \ �� =2 A. ut33 For � 2 lim(C) we 
an now de�ne sets C� as in [8℄. We �rst let34 Æ� = the least Æ � � su
h that A \ C�� � Æ = ?.We then let35 C� = C�� �[f(Æ�� ; �� ) j �� 2 lim(C�� ) \ A0g:Then the sets C� are obviously 
losed. If A0 \ lim(C�� ) is bounded in � then C� is36 
learly unbounded; otherwise C� is unbounded be
ause it follows from its de�nition37 that A0 \ lim(C�� ) � C� . The 
oheren
y of sets C� follows from the 
oheren
y of38



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 9sets C�� and the uniformity of the de�nition of C� . Finally lim(C� ) \ A0 = ?, as1 every element of A0 is a su

essor point of C� .2 It remains to de�ne the sets C� for � =2 lim(C). Noti
e that A0 � C, whi
h3 simpli�es the matters. The 
omplement of lim(C) 
an be written as the union of4 disjoint open intervals that are bounded in �. We assume that these intervals are5 maximal. Let (�; �) be su
h an interval. Then �; � 2 lim(C) by maximality. The6 set C� is de�ned above, and it has no limit points in the interval (�; �). For ea
h7 � 2 (�; �) we 
an thus let C� = � � (� + 1). Obviously, this de�nition does not8 
ollide with the de�nition in the 
ase where � 2 lim(C) and satis�es (a) { (
) in9 Theorem 0.1. This 
ompletes the entire 
onstru
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