
MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCESMARTIN ZEMANAbstrat. We extend the onstrution of a global square sequene in exten-der models from [8℄ to a onstrution of oherent non-threadable sequenesand give a haraterization of stationary reetion at inaessibles similar toJensen's haraterization in L.AMS Subjet Classi�ation: 03E05, 03E45, 03E55Keywords: Global quare sequene, �ne struture, extender model, weakly ompatardinal, stationary reetion. February 16, 2009This note presents a �ne strutural onstrution of a so-alled �(�;A) sequene1 for ertain stationary subsets A of an inaessible ardinal � as well as a hara-2 terization of weakly ompat ardinals in �ne strutural extender models in terms3 of stationary reetion. These results extend analogous results of Jensen for the4 onstrutible universe that originate in [3℄ and are desribed in more detail in [1℄.5 Although the haraterization of weakly ompat ardinals in an extender model6 turns out to be exatly the same as in L, the proof requires a signi�ant amount7 of extra work. Also, the author believes that the proof presented in this paper is8 more straightforward than that desribed in [3℄ and [1℄.9 The exposition in this paper is based on extender models with Jensen's �-10 indexing of extenders introdued in [4℄; see [7℄ as a referene. The paper builds11 on previous work on �ne strutural square sequenes in extender models, in par-12 tiulsr on [5, 6℄ and [8℄. We will frequently refer to [8℄. However, no detailed13 knowledge of arguments in [8℄ is neessary, as we will only need ertain lemmata14 from that paper whih an be used as blak boxes. In partiular, all referenes15 onerning protomie will be hidden in blak boxes.16 Theorem 0.1 (Main Theorem). Working in a �ne-strutural Jensen-style extender17 model L[E℄, assume � is an inaessible ardinal that is not weakly ompat and18 A � � is stationary. Then there is a stationary A0 � A and a sequene hC� j � < �i19 satisfying the following onditions.20 (a) C� is a losed unbounded subset of � .21 (b) C�� = C� \ �� whenever �� 2 lim(C� ).22 () A0 \ lim(C� ) = ?.23 A sequene satisfying (a) { () in the above theorem is alled a �(�;A0)-sequene.24 Any suh sequene is a �(�)-sequene, that is, it annot be threaded: If C � � is25 a losed unbounded set then C \ � 6= C� for some limit point � of C. From the26 above theorem we obtain the following orollaries, the �rst of whih is immediate.27 Researh partially supported by NSF grant DMS-0500799.1



2 MARTIN ZEMANCorollary 0.2. Let L[E℄ be a Jensen-style extender model. The following di-1 hotomy is true in L[E℄ of any inaessible ardinal �.2 � � is weakly ompat =) every stationary subset of � reets at some �� < �.3 � � is not weakly ompat =) nonreeting stationary subsets of � are dense.4 In partiular, an inaessible ardinal � is weakly ompat just in ase that every5 stationary subset of � reets at some �� < �.6 The �rst lause in the above orollary is, of ourse, a ZFC onsequene. It should7 be noted that reetion points of stationary subsets whose existene is guaranteed8 by weak ompatness are regular. Not only the argument that is used to obtain9 reetion points produes regular (in fat inaessible) reetion points; the fat10 that we have a global square sequene on singular ardinals in L[E℄ guarantees that11 any reetion point of any stationary subset of an inaessible ardinal � must be12 regular. The property that every stationary subset of � reets at some singular13 ordinal �� < � or at an ordinal of �xed unountable o�nality, if onsistent with ZFC,14 must have high onsisteny strength; however the exat result here is not known.15 Even at small regular ardinals, the requirement that every stationary set reets16 at some ordinal of small o�nality implies the onsisteny of measurable ardinals17 of high Mithell order; see [2℄.18 Corollary 0.3. Let V = L[E℄ be a Jensen-style extender model. Then for any19 regular ardinal � that is not weakly ompat there is a Suslin �-tree.20 This follows from Jensen's onstrution of higher Suslin trees in [3℄. For suessor21 ardinals � = �+ where � is not subompat one uses ��(A) and �(�;A) for a suit-22 able stationary A � �; here the �(�;A)-sequene is obtained from a ��-sequene23 whose existene is guaranteed by [6℄. If � is subompat then � is inaessible,24 so GCH in L[E℄ makes it possible to onstrut a Suslin �-tree \naively" by using25 only a ��(S��)-sequene1 to seal o� large antihains at limit stages of o�nality �26 in the onstrution, and adding all possible branhes at limit stages of o�nality27 smaller than �. For inaessible � one onstruts a Suslin �-tree using ��(A) and28 �(�;A) as above; this time the existene of a �(�;A)-sequene is guaranteed by29 Theorem 0.1.30 1. The onstrution31 We will work in a �xed model L[E℄ where E is a Jensen-style extender sequene,32 that is, an extender sequene with �-indexing of extenders. The prediate E is thus33 also �xed. Throughout the onstrution we will use the Condensation Lemma for34 premie; this is Lemma 2.2 in [8℄ or Lemma 9 in [7℄. We will often make use of the35 following simple onsequene of the Condensation Lemma.36 Proposition 1.1. Assume that � : �M ! M be a �0-preserving embedding where37 M is an L[E℄-level and �M = hJ �E�� ; �E!�i is an aeptable J-struture. Let � = r(�)38 and Æ = �+ �M ; here we allow the option that Æ = ht( �M) if � is the largest ardinal39 in �M . If � is a limit ardinal in �M then �E � Æ = E � Æ.40 From now on assume that � is an inaessible ardinal that is not weakly om-41 pat. As it is typial with onstrutions of �-like priniples, we begin with identi-42 fying anonial strutures assigned to ordinals � < �. As � is not weakly ompat,43 1S�� = f� < � j f(�) = �g



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 3there is a �-tree on � without o�nal branh; we �x the <E-least one. Thus1 (1) T = the <E-least �-tree on � without o�nal branh.Obviously, T 2 JE�+ and (1) de�nes T inside JE�+ . We will write T � � to denote the2 restrition of T to � , that is, T � � is the tree on � with tree ordering <T \(� � �).3 Lemma 1.2. There is a losed unbounded set of ardinals C � � and a map4 � 7! Æ� < �+ suh that for every � 2 C we have5 � � is the largest ardinal in JEÆ� and is inaessible in JEÆ� .6 � T � � is a �-tree in JE� with no o�nal branh in JEÆ� .7 � T � � is an initial segment of T , that is, for all � 2 T � � and all � 2 T we8 have � <T � ) � 2 T � � .9 Proof. Let hX� j � < �i be a ontinuous hain of elementary substutures of JE�+10 suh that eah X� is of size �� = X� \ � 2 �. Clearly T 2 X� for all � < �, as T11 is de�nable in JE�+ . By Proposition 1.1, eah X� ollapses to some JEÆ(�). The fat12 that X� � JE�+ guarantees that �� is the largest ardinal in JEÆ(�), is inaessible in13 JEÆ(�) and the tree T ollapses to T � �� 2 JEÆ(�) that has no o�nal branh in JEÆ(�).14 So we an let C = f�� j � < �g and Æ�� = Æ(�).15 To see that T � �� is an initial segment of T it suÆes to show that the �-th16 level of T � �� agrees with the �-th level of T for all � < �� . Fix suh an �. By17 elementarity, there is a bijetion f� : �� ! T� in X� where T� is the �-th level of T18 and �� is its size. Sine T is a �-tree, �� < � so �� < ��. Then T� = rng(f�) � X�,19 as �� � X�. ut20 Let � 2 C. Sine T � � is an initial segment of T and T has height �, the tree21 T � � has a o�nal branh in L[E℄. For � 2 C we let22 Æ0� = the maximal Æ suh that T � � has no o�nal branh in JEÆ .By the above proposition, Æ0� � Æ� . We would like to pik L[E℄ jj Æ0� as our anonial23 struture, but the fat that � may be ollapsed inside L[E℄ jj Æ0� or even de�nably24 ollapsed over L[E℄ jj Æ0� does not allow to make this hoie for eah � 2 C. If a25 o�nal branh of T � � is introdued later or at the same time when � is singularized,26 � will be treated the same way as in the onstrution of a global square sequene.27 This motivates our hoie of the anonial struture. We de�ne28 � C0 = the set of all � 2 C suh that � is singular in JEÆ0�+1.29 � C1 = C� C0.30 and31 � N� = the singularizing level of L[E℄ for � if � 2 C0.32 � N� = L[E℄ jj Æ0� = hJEÆ0� ; E!Æ0� i if � 2 C1.33 Notie that even if � 2 C0 we have ht(N� ) � Æ� , so T � � 2 N� for all � 2 C.34 We �rst de�ne the sets C� witnessing Theorem 0.1 for � 2 lim(C). We will treat35 the ases � 2 Ci, i = 0; 1 separately and show that the two onstrutions do not36 interfere. We begin with C0, as here we an use the global square sequene of [8℄.37 Let hC 0� j � 2 S \ �i denote the global square sequene from [8℄2 where S is the38 lass of all singular ardinals. So eah C 0� is a losed subset of � that is unbounded39 2This is the sequene whih is denoted by hC� j � 2 Si in [8℄; here we write C0� instead of C� ,as C� will be the �nal sequene produed in this paper.



4 MARTIN ZEMANwhenever � has unountable o�nality, the sequene of sets C 0� is fully oherent and1 otp(C 0� ) < � for eah � 2 S. The lass S is divided into two disjoint lasses S0 and2 S1 and the sets C 0� satisfy the inlusions C 0� � Si whenever � 2 Si for i = 0; 1. We3 �rst make the following observation.4 Lemma 1.3. If � 2 lim(C) \ C0 and f(�) > ! then there is some  < � suh that5 C 0� \ C�  � C0.6 Proof. Obviously, C 0� \ C is unbounded in � . As � 2 C0, the anonial struture7 N� is the singularizing L[E℄-level for � . Let �� 2 C 0� and �N be the singularizing8 L[E℄-level for �� . By the onstrution in [8℄, there is a �0-preserving map ���;�9 suh that ���;� : �N ! N� if � 2 S0 and ���;� : �M ! M� if � 2 S1; here �M and10 M� are the anonial protomie assigned to �� and � . In our situation we have11 T � � 2 N� , as � 2 C. First assume � 2 S0. If �� 2 C 0� \ C is large enough that12 T � � 2 rng(���;� ) then T � �� 2 �N , ���;� (T � ��) = T � � and T � �� has no o�nal13 branh in N�� . These onlusions are onsequenes of the �0-elementarity of the14 map; the former two follow by an argument similar to that in proof of Lemma 1.215 and the latter one follows from the fat that the nonexistene of a o�nal branh an16 be expressed as a �1-statement, so it is preserved bakward under ���;� . Hene that17 T � �� has no o�nal branh in the singularizing struture for �� , and onsequently18 N�� = �N . Now assume � 2 S1. The onlusion then follows from the fat that M�19 and N� ompute the ardinal suessor of � the same way and they agree below this20 ommon suessor, and the same is true of the strutures �M and �N and ardinal21 �� to whih they are assigned. The same argument as above an be then used with22 the map ���;� whih is now a map between two protomie. As before we onlude23 that �N = N�� . It follows that �� 2 C0 and the same onlusion an be made for any24 � 0 suh that �� � � 0 < � , so it suÆes to let  = �� . ut25 For � 2 lim(C) \ C0 we let� = the least  � � suh that C 0� \ C�  � C0and de�ne C�� as follows.26 � If C 0� \ C� � is unbounded in � we let C�� = C 0� \ C� � ;27 � otherwise C�� is the <E-least sequene of order type ! onverging to � .28 Lemma 1.3 together with the properties of the sets C 0� guarantee that this de�nition29 makes sense, eah C�� is a losed unbounded subset of � and C��� = C�� \ �� whenever30 �� 2 lim(C�� ). Thus, for � 2 lim(C) \ C0, (a) and (b) in Theorem 0.1 hold with C��31 in plae of C� .32 We next de�ne sets C�� for � 2 lim(C)\C1. The de�nition of the sets C�� is based33 on the following observation, whih is a diret onsequene of the fat that � 2 C1.34 (2) � \ ~hn+1N� (� [ fpN� g) is bounded in � whenever � < � and n 2 !.The sets C�� are de�ned as follows.35 � C�� is the set of all �� 2 � \C1 satisfying: N�� is a premouse of the same type36 as N� and there is a ��-preserving embedding ���;� suh that:37 (i) �� = r(�) and ���;� (�� ) = � .38 (ii) ���;� (pN�� ) = pN� .39 (iii) ���;� (T � ��) = T � � .40



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 5Clause (iii) in the above de�nition is superuous, as it is easy to see that (ii) holds1 even if we drop it. We inlude it as a part of the de�nition in order to simplify2 the matters. Clearly, the map ���;� is the unique ��-preserving map � : N�� ! N�3 satisfying (i) and (ii).4 Lemma 1.4. If � 2 lim(C) \ C1 and f(�) > ! then C�� is unbounded in � .5 Proof. Given some �� < � we �nd �� 2 C�� suh that �� � �� . As is typial for6 onstrutions of square sequenes, we will look for the right kind of hulls. Let7 � n 2 ! be suh that !%n+1N� � � < !%nN� ;8 Suh an n exists, as there is a o�nal branh through T � � in JEÆ0�+1�JEÆ0� and suh9 a branh, being a subset of � , is ��-de�nable over JEÆ0�+1 jj Æ0� = N� . Let x 2 [� ℄<!10 be suh that T � � 2 ~hn+1N� (x[fpN� g), W �;p�N� 2 ~hn+1N� (x[fpN� g) whenever � 2 pN� ,11 and some o�nal branh through T � � is �(n)1 (N� )-de�nable from x and pN� . Suh12 an x exists, as these tasks require only �nite amount of information. De�ne a13 sequene h�k; Xk j k 2 !i of ordinals below � and hulls as follows.14 �0 = max(x [ f��g) + 1Xk = [̀2! ~h`+1N� (�k [ fpN� g)� 0k+1 = sup(� \Xk)�k+1 = min(C� � 0k+1) + 1By (2), eah �\~h`+1N� (��[fpN� g) is smaller than � , granting that �k < � . Sine � has15 unountable o�nality, also �k+1 < � , whih enables us to run indution on k and16 then onlude that also �� = sup(f�k j k 2 !g) is below � . Letting X = Sk2! Xk17 we have � \X = �� . In the following we show that �� 2 C�� .18 Notie �rst that sine the ordinals �k are stritly inreasing and eah interval19 (�k; �k+1) has nonempty intersetion with C, the supremum �� is a limit point of C,20 so �� 2 C. We next observe:21 (3) X = ~hn+1N� (�� [ fpN�g):By onstrution, eah z 2 X is of the form ~h`+1N� (i; h�z; pN� i) for some ` � n, i 2 !22 and �z 2 [�� ℄<!. Assume ` > n. The funtion ~h`+1N� (u; hv; pN� i) an be expressed as a23 omposition ~hn+1N� ((u)20; hh((u)21; v); pN� i) where h : ! � JE� ! JE� is a partial good24 �(`+1)1 -funtion; see [7℄, Setion 1.8 for details. If �z 2 [�k℄<! then h((i)21; �z) 2 JE� 0k ,25 and sine there is a uniformly �1-de�nable surjetion of � 0k onto JE� 0k we an replae26 the above value of h with some �nite z0 2 [� 0k℄<!. So there is some j < ! suh that27 z = ~hn+1N� (j; hz0; pN� i). This proves (3).28 Let �N be the transitive ollapse of X and � : �N ! N� be the inverse to the29 Mostowski ollapsing isomorphism. Then �� = r(�) and �(�� ) = � . Moreover, it30 follows from (3) and the onstrution of X that31 (4) X = ~h`+1N� (�� [ fpN�g) whenever ` � n,so the map � is �(`)1 -preserving for all suh ` hene ��-preserving. As x; T � � 2 X ,32 we have x; T � �� 2 �N and �(x; T � �� ) = (x; T � �). For x this is immediate, for T � �33 this follows from the fat that T � � 2 rng(�) by an argument similar to that in the34



6 MARTIN ZEMANproof of Lemma 1.2. Sine p� 2 X we have some �p 2 �N suh that �(�p) = p� . From1 (3) we obtain �N = ~hn+1�N (�� [ f�pg) whih implies that !%n+1�N � �� and �p 2 Rn+1�N .32 By onstrution �� is a limit ardinal in L[E℄, so atually !%!�N = !%n+1�N = � .3 The struture �N is a premouse of the same type as N ; this follows from the ��-4 elementarity of �.5 An appliation of the Condensation Lemma to the map � : �N ! N� then6 yields that �N is a solid premouse. The hoie of the set x at the beginning of7 the onstrution guarantees that for eah � 2 p� the standard witness W �;p�N� is an8 element ofX , so its preimageQ� under � is a generalized witness for �� = ��1(�) 2 �p9 with respet toM and �p. 4 So �p = p �N and �N is sound above �� by [7℄, Lemma 1.12.5.10 One more appliation of the Condensation Lemma to the map � : �N ! N then11 gives us the following options: (a) �N = ore(N), (b) �N is a proper initial segment12 of N , () �N is an ultrapower of an initial segment N 0 of N with ritial point13 equal to the ardinal predeessor of �� in N 0 and (d) �N is a proper initial segment14 of Ult(N;E�� ). Here option (a) is impossible as �N and N have di�erent ultimate15 projeta and options () and (d) are impossible as �� is a limit ardinal in �N . Thus,16 �N is a proper initial segment of N� and thereby an initial segment of L[E℄.17 So far we have obtained an initial segment �N of L[E℄ and a ��-preserving map18 � : �N ! N� suh that �� < �� = r(�) is inaessible in �N and �(�� ; p �N ; T � �� ) =19 (�; p� ; T � �). Obviously, T � �� has no o�nal branh in �N , as T � � has no o�nal20 branh in N� and � is suÆiently elementary. In order to verify that �� 2 C��21 we have to verify that �� 2 C1 whih amounts to showing that �N = N�� . This is22 equivalent to saying that �� is regular in JE�+1 and T � �� has a o�nal branh in23 JE�+1 where � = ht(N�� ). The former follows immediately from the onstrution of24 X , as the ��-elementarity of � implies that ~h`+1�N (�k [fp �Ng) is bounded in �� for all25 k; ` 2 !. As any funtion f : �� ! �� that is an element of JE�+1 is de�nable over �N26 and therefore an be expressed in the form ~h`+1�N (�[ fq [ p �Ng) for some ` 2 ! and27 q 2 [�� ℄<!, suh funtion annot singularize �� .28 To see that JE�+1 ontains a o�nal branh through T � �� it suÆes to show that29 suh a branh is ��-de�nable over �N . Let b 2 JEÆ0�+1 be a o�nal branh through30 T � � . Similarly as with f above, it follows that b is �(`)1 (N� )-de�nable from pN�31 and some q 2 [� ℄<! for some ` 2 !. Let '(u; v) be a �(`)1 -formula that de�nes b,32 that is, for eah � < � we have33 � 2 b () N� j= '(�; q [ pN� ):We �rst observe that q an be taken from [�� ℄<!. This is the ase, as the statement34 \the set of all � < � satisfying N� j= '(�; q [ pN� ) determines a o�nal branh35 through T � �" an be expressed in a �(`+2)1 -manner, namely as the onjuntion of36 (8�`+1; �`+1)[('(�`+1; q [ pN� ) & '(�`+1; q [ pN� )) �! (�`+1 <T �`+1 _ �`+1 <T �`+1)℄and37 (8�`+2)(9�`+1)(�`+1 > �`+2 & '(�`+2; q [ pN� )):3See [7℄, Setion 1.54See ([7℄, Setion 1.12 or ([8℄)



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 7The former expresses that b determines a branh through T � � and the latter1 expresses that the branh is o�nal. This onjuntion is a statement about q and2 pN� ; denote it by  (q; pN� ). As q witnesses that N� j= (9z`+3) (z; pN� ) and X is3 losed under good ��-funtions, there also must be a witness �q 2 X . Then �q 2 [�� ℄<!4 and �N j=  (�q; p �N). It follows that f� < �� j �N j= '(�; �q [ p �N )g determines a o�nal5 branh through T � �� . Suh branh is �(`)1 -de�nable over �N in parameters. This6 ompletes the proof of the fat that �� 2 C1 and thereby the proof of the lemma. ut7 Lemma 1.5. If � 2 lim(C) \ C1 then C�� is losed.8 Proof. Let �� be a limit point of C�� . We show that �� 2 C�� . As in the previous9 lemma, let10 � n be suh that !%n+1N� � � < !%nN� .11 We �rst observe that if �� 2 C�� then !%n+1N�� � �� < !%nN�� . The inequality on12 the right follows from the fat that N� satis�es the �(n)1 -statement (9�n)(� < �n)13 and this statement is preserved under �. The inequality on the left follows from14 the fat that ~hn+1N� (� [ fpN�g) = N� and � preserves �(n)1 -statements. Consider15 the diagram hN�� ; ���;� 0 j �� � � 0 2 �� \ C�� i; let h �N; ��� j �� 2 �� 2 C�� i be its16 diret limit with the diret limit maps ��� : N�� ! �N and let �� : �N ! N� be17 the anonial embedding of the diret limit �N into N� satisfying �� Æ ��� = ���;� .18 Standard onsiderations yield that �N an be viewed as a premouse of the same type19 as N� and all N�� , all maps ��� and �� are ��-preserving and !%n+1�N � �� < !%n�N . If20 �p is the ommon value of ���(pN�� ) then obviously ��(�p) = pN� . By the properties21 of n reorded above, ~hn+1N� (� [ fpN�g) = N� so ~hn+1�N (�� [ f�pg) = �N , as follows from22 preservation properties of ��. An appliation of the Condensation Lemma to the map23 �� : �N ! N� yields that �N is solid. Sine eah N�� , being a proper initial segment24 of L[E℄, is sound, for eah � 2 pN�� the standard witness W �;pN��N�� is an element of25 N�� and its image under ��� is a generalized witness for ���(�) with respet to �N26 and �p, as ��� is suÆiently elementary. This way we onlude that for eah element27 of �p there is in �N a generalized witness with respet to �N and �p, and exatly as28 in the proof of Lemma 1.4 then onlude that �N is sound and �p = p �N . One more29 appliation of the Condensation Lemma then yields, exatly as in Lemma 1.4 that30 �N is an initial segment of N� . Obviously �� = r(�), �(�� ; p �N ) = �; pN� , the ardinal31 �� is inaessible in �N and �N , being a limit point of C�� , is a limit point of C hene32 �� 2 C. It remains to prove that �� 2 C1. As � is ��-preserving, this follows exatly33 as in the proof of Lemma 1.4.5 ut34 Lemma 1.6. If � 2 lim(C) \ C1 and �� 2 lim(C�� ) then �� 2 lim(C) \ C1 and35 C��� = C�� \ �� .36 Proof. Sine � 2 lim(C) \ C1, the ondition �� 2 lim(C�� ) implies �� 2 lim(C) \ C1,37 so C�� and C��� are de�ned in the same way. If �� 2 C�� then �� 2 C1 and we have38 the map ���;�� : N�� ! N�� witnessing the memebership of �� to C��� . But then39 ���;� Æ ���;�� : N�� ! N� witnesses the membership of �� to C� . Conversely, if40 5Alternatively, one an onsider a de�nition of a o�nal branh of T � �� over N�� fromparameters pN�� and q 2 [��℄<! for some/any �� 2 C�� \ �� and show that the same de�nitionover �N de�nes a o�nal branh through T � �� from p �N and q. This works, as ��� is ��-preserving.



8 MARTIN ZEMAN�� 2 C�� \ �� then �� 2 C1 and there is a map ���;� witnessing the membership of1 �� to C� . Sine both ���;� and ���;� are ��-preserving and �� < �� we have2 rng(���;� ) = [̀2! ~h`+1N� (�� [ fpN� g) � [̀2! ~h`+1N� (�� [ fpN�g) = rng(���;� );so (���;� )�1 Æ ���;� : N�� ! N�� witnesses the membership of �� to C��� . ut3 So far we have onstrutred sets C�� for � 2 lim(C) suh that (a) and (b) in4 Theorem 0.1 hold with C�� in plae of C� . Given stationary set A � �, we �nd5 stationary A0 � A and re�ne C�� into C� that will satisfy all onlusions of the6 theorem. We let7 � A0 = the set of all � 2 C for whih there are an L[E℄-level P = JE� and a8 parameter a 2 P suh that:9 (a) P j= ZFC�, � is the largest ardinal in P , is inaessible in P and10 T � � has no o�nal branh in P .11 (b) For every X � P satisfying X \ � 2 � and p 2 X we have X \ � =2 A.12 The same proof as that of [8℄, Theorem 3.21 shows that the set A0 is stationary13 in �. Notie that the only di�erene between A0 in this paper and A0 in [8℄ is the14 additional requirement in (a) above that T � � has no o�nal branh in P and the15 restrition of the set A0 to elements of the losed unbounded set C.16 Lemma 1.7. Let � 2 lim(C). If �� 2 lim(C�� ) \ A0 then there is some �� 2 C�� \ ��17 suh that A is disjoint with C�� \ (��; ��).18 Proof. For � 2 C0 this was proved in [8℄, Lemma 3.22. For � 2 C1 the same19 argument goes through. If there is a pair (P; a) 2 N�� witnessing the membership20 of �� to A0 the argument an be literally repeated: Given � 0 2 C�� \ �� large enough21 that (P; a) is in the range of �� 0;�� , let P 0 2 N� 0 be suh that �� 0;�� (P 0) = P ; then22 X = �� 0;�� [P 0℄ � P and a 2 X , so � 0 = X \ �� =2 A. In the remaining ase we23 onlude that P = JEÆ0�� where reall that Æ0�� = ht(N�� ). This is the ase, as T � �� has24 a o�nal branh in JEÆ0��+1 . As P j= ZFC� and N�� projets to �� , neessarily EN��top is an25 extender with �(EN��top) = �� . Sine �� 0;�� is ��-preserving, EN�0top is an extender with26 �(EN�0top ) = � 0 and the two extenders have the same ritial point � < � 0. Moreover,27 sine both � 0 and �� are limit ardinals, both N� 0 and N�� ompute the ardinal28 suessor of � the same way as L[E℄; denote this ommon suessor by #. As both29 these premie are oherent strutures, JEÆ0�0 = Ult(JE# ; EN�0top ), JEÆ0�� = Ult(JE# ; EN��top)30 and it follows immediately that �� 0;�� : �0(f)(�) 7! ��(f)(�� 0;�� (�)) and therefore is31 fully elementary. Hene if a 2 rng(�� 0;�� ) then X = rng(�� 0;�� ) � P . It follows that32 � 0 = X \ �� =2 A. ut33 For � 2 lim(C) we an now de�ne sets C� as in [8℄. We �rst let34 Æ� = the least Æ � � suh that A \ C�� � Æ = ?.We then let35 C� = C�� �[f(Æ�� ; �� ) j �� 2 lim(C�� ) \ A0g:Then the sets C� are obviously losed. If A0 \ lim(C�� ) is bounded in � then C� is36 learly unbounded; otherwise C� is unbounded beause it follows from its de�nition37 that A0 \ lim(C�� ) � C� . The ohereny of sets C� follows from the ohereny of38



MORE FINE STRUCTURAL GLOBAL SQUARE SEQUENCES 9sets C�� and the uniformity of the de�nition of C� . Finally lim(C� ) \ A0 = ?, as1 every element of A0 is a suessor point of C� .2 It remains to de�ne the sets C� for � =2 lim(C). Notie that A0 � C, whih3 simpli�es the matters. The omplement of lim(C) an be written as the union of4 disjoint open intervals that are bounded in �. We assume that these intervals are5 maximal. Let (�; �) be suh an interval. Then �; � 2 lim(C) by maximality. The6 set C� is de�ned above, and it has no limit points in the interval (�; �). For eah7 � 2 (�; �) we an thus let C� = � � (� + 1). Obviously, this de�nition does not8 ollide with the de�nition in the ase where � 2 lim(C) and satis�es (a) { () in9 Theorem 0.1. This ompletes the entire onstrution.10 Referenes11 [1℄ Devlin, K. J., Construtibility, Springer, 198412 [2℄ Cox, S., Covering Theorems for the ore model, with an appliation to stationary set13 reetion, to appear14 [3℄ Jensen, R. B., The �ne struture of the onstrutible hierarhy, Annals of Mathematial15 Logi 4 (1972), 229-30816 [4℄ Jensen, R. B., A new �ne struture for higher ore models, handwritten notes, Berlin, 199717 [5℄ Shimmerling, E. and Zeman, M., Square in ore models, Square in ore models, Bulletin18 of Symboli Logi 7(3), (2001), 305 { 31419 [6℄ Shimmerling, E. and Zeman, M., Charaterization of �� in ore models, Journal of Math-20 ematial Logi 4(1)1, (2004), 1 { 7221 [7℄ Zeman, M., Inner Models and Large Cardinals, de Gruyter Series in Logi and its Appli-22 ations 5, de Gruyter (2002)23 [8℄ Zeman, M., Global square sequenes in extender models, submitted, preprint available at24 http://math.ui.edu/�mzeman/RESEARCH25 Department of Mathematis, University of California at Irvine, Irvine, CA 9269726 E-mail address: mzeman�math.ui.edu27


