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Abstract

We answer a question in real estate that is a variation of a problem
that arises in many combinatorics and discrete mathematics courses.

There are three things that
matter in property: location,
location, location.

Unknown. Possibly Lord Samuel
of Britain [§]

There is a lot of truth in this opening quote, especially applied to commercial
real estate. If you want your restaurant to succeed, customers have to walk
through the door.

1 The Problem

A walk on the Z? lattice using only the steps (0, 1), which we call ‘North’, and
(1,0), which we call ‘East’, is a lattice path.

Question 1. 1. How many lattice paths begin at (0,0) and end at (m,n)?
2. What proportion of these paths pass through the point (a,b)?

Versions of these elementary exercises appear in many introductory combi-
natorics textbooks, as lattice paths provide a nice setting to explore identities
involving binomial coefficients. See for example [3, Chapter 4], [2, Section 3.5],
[4, Section 8.5], and [5l Section 2.6].

Solution. 1. A path from (0,0) to (m,n) consists of m steps East, and n
steps North, and can be uniquely identified with a word of length m + n
consisting of m E’s and n N’s. Therefore, there are (mnt”) total lattice
paths.
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Figure 1: (Left): A path of minimal length from (0,0) to (5, 3)
(Right): The number of such paths passing through each point.

2. Every lattice path passing through (a,b) consists of two parts: a lattice
path from (0,0) to (a,b), followed by a lattice path from (a,b) to (m,n).
The number of paths of the first type is (“:b) and paths of the second type

are in bijection with lattice paths from (0, 0) to (m —a,n —b). Therefore,

the proportion of paths passing through (a, b) is

(aer) (m7a+n7b)

a m—a
GO
m
This function is our main object of study. We think of the integers m and n
being fixed and therefore focus on the numerator, which we denote fn, n(a,b).

Fyyn(a,b) = (1)

Question 2. In your town, everyone lives in one giant apartment building at
(0,0) and works in the local factory at (m,n). For some strange reason, locals
choose their walks to work randomly among all minimal lattice paths.

Nathan has plans to open a restaurant at some point (a,b). If you happen to
pass by on your way to work, you will buy a coffee and muffin, arriving at work
caffeinated, satisfied, and productive. If you do not pass Nathan’s, you arrive at
work miserable and tired.

Zoning regulations forbid building on the occupied vertices (0,0) and (m,n),
but otherwise Nathan is free to choose where to locate his establishment. Where
should he open his restaurant in order to maximize the chance that people will
visit?

We rephrase this question in terms of the function defined above.

Question 3. Given m,n > 0 what is the mazimum value of fmn(a,b) subject
to0<a<m, 0<b<n,and0<a+b<m+n?

Basic symmetries of binomial coefficients imply that fp, n(a,b) = fnm(b,a)
and fn(a,b) = fmn(m —a,n —b). Therefore, answering this question for



m > n and subject to the additional constraint 0 < a + b < m;r", is enough to
solve it in all instances.

Theorem 1. Let m andn be positive integers with m > n. The maximum value

. + . .
of fmm(a,b) subject to 0 <a<m, 0<b<n, and 0 < a+b< 5™ is given by

fmon(1,0) = (m+"71) ifm>n and fmn(1,1) = Q(m;fzz) if m=n.

m—1

We say that a point (a’,b") gives a mazimum if f,, ,(a’,b’) solves the opti-
mization problem in Question

The solution we give is elementary, but not obvious. Instead of solving a two
variable optimization problem we restrict to certain single variable refinements,
finding maximum values by analyzing ratios of consecutive terms. We first focus
on the ‘square case’ m = n, and use it in the proof of the general case. In the
final section we discuss connections to the Gamma function, the hypergeometric
distribution, and higher-dimensional lattice paths.

2 The Proof

Before giving a formal proof of Theorem [I| we give some intuition for why it is
true. Since all of our paths start at (0,0) and end at (m,n) it seems reasonable
that points (a,b) that are close to (0,0) or to (m,n) will have many paths
passing through them. Since the most direct path from (0,0) to (m,n) in R?
is given by the straight line y = >z, we expect that most lattice paths do not
stray too far form this line.

In order to test this intuition we consider f, (a,b) for some points close to
the origin, those with a + b € {1,2}. We compare these points by taking the
ratio of the corresponding function values. Suppose that n > 2. Since m > n,

we have S
fuun(1,0) _ ("0"0)

> 1.

m4n—1\

Fmn(0:1) (1)
Similarly, f.n(2,0) > fm.n(0,2). We also have
fmn(2,0)  m—1

3|3

fmon(1,1) 2n

Which of (2,0) and (1,1) has more paths passing through it depends on the
ratio ’”Tfl, which is closely related to the slope of the line y = *x.
It is easy to check that fn, n(1,0) > fm.n(2,0), so the only other comparison

to make is
Jmn(1,0)  m+n—1

Jmn(1,1) 2n 7
which is at least 1 except in the square case, m = n. This square case is the
only situation in which the point (1,1) actually lies on the line y = 2, making
up for the fact that it is two steps from the origin instead of one.
Our goal is to make this reasoning more precise. We first prove Theorem [I]in
the square case, which involves optimizing f,, ,(a,b) restricted to two different




kinds of diagonal lines. We then use this result to prove the theorem for general
rectangular grids, inducting on the size of m — n.

2.1 The Square Case

Proof of Theorem[I| for m = n. The idea of the proof is to turn this two variable
optimization problem into a single variable one. For each k € [1,2n — 1], we
find the maximum value of f, ,,(a,b) restricted to the diagonal line a +b = k.
By symmetry, we need only consider k € [1,n].

Diagonals: a +b=Fk

Consider the set of all (a,k — a) where a € [0, k]. We claim that

fam(a—1,k—a+1) > 1, if and only if a > w
fn,n(avk—a) 2

As we move along the diagonal consisting of points (k,0), (k — 1,1),...,(0,k)
the value of this function increases as we take steps ‘Northwest’ until we cross

the vertical line a = % When k is odd the two points closest to the central

diagonal (%, %) and (%, %) give the same maximum value. When k is
even the maximum value occurs at (4, %).

Consider the ratio of consecutive terms

fan(a—1,k—a+1) a n—k+a

fn,n(avk_a) _k—a+1 n—a—&—l'

(2)
This is at least 1 if and only if

aln—k+a)—(k—a+1l)(n—a+1)=mn+1)(2a—(k+1))>0. (3)
k41

Since n + 1 is positive, this holds for a € [ k]

Diagonals: a =band a=b+1

Since f,,n(a,b) restricted to each line a + b = k reaches a maximum either
at fon (%, g) or at fnn(%7 %), the symmetry of f, ,(a,b) implies that we
need only show that f, ,(1,1) is a maximum among all f, ,(a,a) for a € [1, 2]
and that f,,(1,0) is a maximum among all f, ,(a + 1,a) for a € [0, 251].

We consider the ratio

fan(a+k,a) (a+1)(a+k+1) 2n—2a—k)(2n—2a—k—1)

fanla+k+1la+1) (2a+k+2)(2a+k+1) (n—a)(n—a—k)
in the special cases k =0 and £ = 1. When k = 0, this simplifies to

(a+1)(2n—2a—1)
(2a+1)(n—a)

4
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Figure 2: Values of f4 4(a,b). In the first plot vertices are grouped along diagonal

lines a + b = k. In the second plot vertices are group along diagonal lines

b=a+k.

which is greater than 1 if and only if
(a+1)(2n—2a—1)—(2a+1)(n—a)=n—1—2a>0.

This holds for a € [0, ”771} When k = 1, our ratio simplifies to

(a+2)(2n —2a — 1)
(2a+3)(n —a)

which is greater than 1 if and only if
(a+2)2n—2a—1)—(2a+3)(n—a)=n—2—2a > 0.

This holds for a € [0, ”T_Q}

We see that the maximum value of f, ,,(a,a) subject to a € [1, %] is given by
fnn(1,1) and that the maximum value of f,, »,(a+1, a) subject to a € [0, 251] is
given by fn n(1,0). Noting that f,,(1,1) > f,.,(1,0), completes the the proof

of Theorem [I] in the square case. U

In our argument for the general rectangular case we require a slight refine-
ment of the square case.

Lemma 1. Forn > 5 the largest value of fy n(a,b) where
(CL, b) ¢ {(05 O>7 (TL, ’I’L>7 (L 1)7 (n - 17” - 1)}

is given by fnn(1,0).

The n > 5 assumption is necessary. For n = 4 the largest value of fy 4(a,b)
where (a,b) € {(0,0), (4,4), (1,1), (3,3)} is given by f4.4(2,2) = 36 > f4.4(1,0) =
35.



Proof. A point (a/,b’) with 0 < o/ + b = k < n maximizing f, ,(a,b) subject
to the conditions of Lemma [I| either gives the maximum value of of f,, ,(a,b)
among all points on the diagonal line a +b = k, or has a/ + b = 2, in which case
we note that f,, ,(1,0) > f,.(2,0). Therefore, we need only consider points on
the diagonal lines ¢ = b and a = b+ 1. By the analysis in the proof above, we
need only consider the ratio

Fan(1,0) _ G5 (@n—1)@n-2)(2n-3)

fan(2,2) 60" 6n(n —1)2
This is at least 1 for n > 5, completing the proof of Lemma [I] O

2.2 The Rectangular Case

Proof of Theorem[1: The Rectangular Case. The idea of the proof is to divide
the set of lattice paths from (0,0) to (m,n) into two disjoint sets: paths passing
through (m — 1,n), and paths passing through (m,n — 1). If (1,0) gives a
maximum for f,,—1,(a,b) and for f,, ,—1(a,b), then we conclude that (1,0)
gives a maximum for f, ,(a,b).

‘We proceed by a kind of double induction. For a given value of n we induct on
m. The case n = 0 is trivial. We give the argument for n = 1 in detail, and then
adapt it to the general situation. We compute that f21(1,0) = f2,1(1,1). Since
(1,0) gives a maximum for fa1(a,b) and for fso(a,b), we conclude that (1,0)
also gives a maximum for f31(a,b). Suppose that m > 3 and that (1,0) gives a
maximum for f,,1(a,b). Obviously, (1,0) gives a maximum for f,,4+1,0(a,b), so
we conclude that (1,0) gives a maximum for fp,4+1,1(a,b).

We now argue by induction on n. Suppose that for k € [1,n — 1] and any
m > k we know that (1,0) gives a maximum for f, (a,b). We show that (1,0)
also gives a maximum for f, ,(a,b).

For a fixed n, the base case of our induction is to show that (1,0) gives a
maximum for f,41,(a,b). We verify this explicitly for n = 3 and n = 4. For
n > 5 we use the result of Lemma |1} that f, ,(1,0) > f, »(a,b) for all pairs
(a,b) satisfying 0 < a+b < n except (a,b) = (1,1). By the induction hypothesis,
(1,0) gives a maximum among all f,41.,—1(a,b). Combining these facts shows
that fr+1,,(1,0) > frt1,n(a,bd) for all pairs (a, b) satisfying 0 < a+b < n except
(a,b) = (1,1). The explicit computation that f,+1,(1,0) = fr+1,,(1,1) shows
that (1,0) gives a maximum for f,11,(a,b).

Now we suppose that (1,0) gives a maximum for f,, ,(a,b). By induction
(1,0) gives a maximum for fp41,n-1(a,b). We conclude that (1,0) gives a
maximum for fp,4+1,,(a,b), completing the proof.

O
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Figure 3: Values of fs5(a,b) (Red), f55(a,b) (Green), and fg4(a,b) (Orange).
Comparing fs5(1,0) and fs5(1,1), noting that (1,0) gives the second largest
value of f55(a,b) and gives a maximum for fs 4(a,b), implies that (1,0) gives a
maximum for fs 5(a,b).

3 The Hypergeometric Distribution, the Gamma
Function, and The Jetsons

The Hypergeometric Distribution

One of the most appealing aspects of Question [3]is that it takes an elementary
subject not obviously related to statistics, counting lattice paths, and leads to
a fundamental discrete probability distribution.

Question 4. Suppose there are m + n students in a class, with a + b girls and
the rest boys. If we randomly choose m students, what is the probability that
exactly a of them are girls?

By basic counting, first choosing the girls and then choosing the boys, we
see that the answer is exactly the expression F, ,(a,b).

This is the basis for the hypergeometric distribution, which is essential to
understanding sampling without replacement from a finite population. Usually
it is introduced in the following form. In a set of n elements, n; are red and the
rest are black. If we choose exactly r elements at random without replacement,
then the probability that exactly k of our choices are red is given by

(%) - (%)
GO



Figure 4: A plot showing relative sizes of Fg 30(a,b), where larger points rep-
resent larger values.

For more of the basics of the hypergeometric distribution and some applica-
tions, see [0, Section I1.6]. Considering more sophisticated types of lattice paths
and their generating functions leads to certain hypergeometric series that have
number theoretic applications in the theory of partitions [I].

The Gamma Function

We have emphasized finding the maximum value of F,, ,(a,b) among all
points except (0,0) and (m, n), but it is also interesting to consider a birds-eye
view of this function over its entire domain. In Figure [f] we give an example for
m = 60, n = 30, where the circle at (a,b) is large if the corresponding value of
Feo,30(a, b) is large.

Points that are not close to the main diagonal y = %37 do not have many
paths passing through them. Given a lattice path from (0,0) to (m,n) we can
compute its maximum distance from this line. How large do we expect this
maximum to be? We leave this and more refined statistical questions about
these lattice paths to the interested reader.

Another appealing aspect of Question [3]is that it is an elementary example
of an optimization problem where the correct first step is not to take a derivative
and set it to zero. Attempting to go down this path does lead to interesting
mathematics. Binomial coefficients are defined in terms of factorials, which
are initially defined only for non-negative integers. However, there is a natural
continuous setting in which to consider this problem that involves the gamma
function I'(¢). This function plays an important role in complex analysis and
analytic number theory. Figure [4] suggests that the discrete values of F, ,,(a, b)
can be continuously interpolated in a nice way.

The Gamma function is defined by

F(t):/ ' le " da,
0
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Figure 5: A plot showing the relative sizes of the continuous version of
Fs0,30(a, b) defined by the gamma function.

for all complex number t except negative integers and zero. It is a standard
exercise to show that for n a positive integer, I'(n) = (n — 1)!. A continuous
version of the binomial coefficient is then given by

(x) B I'(x+1)

y) T+1) -T-y+1)

For much more on the gamma function and its role in number theory, see [7|
Chapter 3.

In Figure [5| we give a contour plot of the continuous version of the function
Fs0,30(a, b). We see the same phenomenon we saw in Figure 4. This function is
small away from the line y = %x and takes its largest values very close to the
origin and to the point (60, 30).

Giving a continuous function that agrees with F,, ,(a,b) suggests a way
to try to find the maximum value of this function subject to the constraints
of Question [3| by taking derivatives. The derivative of the gamma function is
given in terms of the polygamma function. This approach leads to some more
advanced complex analysis, but it is not clear that this helps us determine where
to open our restaurant.

Restaurants in Z"

We end this paper with a generalization of Question [3|to higher dimensions.
We considered all potential locations for our restaurant on a rectangular grid.
Suppose we finally reach the situation promised by The Jetsons decades ago.
You live at (0, 0,0) and take your aerocar to your office at point (a1, as, as). You



always follow the rules of space-traffic, only driving along edges of the integer
lattice Z3. Your minimum length drive takes a; + as + az steps. The number

. . . . . . !
of such drives is given by the trinomial coefficient (a;jgzt‘;:’) = %

Question 5. Which point in Z3 other than (0,0,0) and (a1, as,as) is visited on
the mazimum number of drives? That is, where is the best place to open your
3-dimensional space cantina? More generally, we can ask the same question in
Z". If people live at the origin and work at (a1, ...,a,), where should I open
my n-dimensional restaurant in order to mazximize visits?

The main ideas of the discussion at the start of Section [2] carry over to
this higher dimensional setting. The ideal location should be both ‘close’ to
the origin and not ‘too far’ from the line connecting the origin to the endpoint
(ai,...,ay). A similar approach of maximizing first over hyperplanes > . | z; =
k and then over lines orthogonal to them seems promising. We leave this as an
exercise for the interested reader.
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