DELTA SETS OF NUMERICAL MONOIDS ARE EVENTUALLY PERIODIC

S. T. CHAPMAN, ROLF HOYER, AND NATHAN KAPLAN

ABSTRACT. Let M be a numerical monoid (i.e., an additive submonoid of \mathbb{N}_0) with minimal generating set $\langle n_1, \ldots, n_t \rangle$. For $m \in M$, if $m = \sum_{i=1}^t x_i n_i$, then $\sum_{i=1}^t x_i$ is called a *factorization length* of m. We denote by $\mathcal{L}(m) = \{m_1, \ldots, m_k\}$ (where $m_i < m_{i+1}$ for each $1 \leq i < k$) the set of all possible factorization lengths of m. The Delta set of m is defined by $\Delta(m) = \{m_{i+1} - m_i \mid 1 \leq i < k\}$ and the Delta set of M by $\Delta(M) = \bigcup_{0 \neq m \in M} \Delta(m)$. In this paper, we expand on the study of $\Delta(M)$ begun in [2] and [3] by showing that the delta sets of a numerical monoid are eventually periodic. More specifically, we show for all $x \geq 2kn_2n_k^2$ in M that $\Delta(x) = \Delta(x + n_1n_k)$.

Let M be a commutative cancellative monoid with set M^{\bullet} of nonunits and $\mathcal{A}(M)$ of irreducible elements. We assume that M is atomic (i.e., every nonunit can be written as a product of irreducible elements). Problems involving the factorization properties of elements in M into irreducible elements have been a frequent topic in the mathematical literature over the past 20 years (see [6] and the references cited therein). Most of this work entails a study of the length set of an element $x \in M$ which is defined as

$$\mathcal{L}(x) = \{l \mid \exists a_1, \dots, a_l \in \mathcal{A}(M) \text{ such that } x = a_1 \cdots a_l \}$$

If $\mathcal{L}(x) = \{l_1, \ldots, l_j\}$ with $l_1 < l_2 < \ldots < l_j$, then define the delta set of x as the set of consecutive differences of lengths,

$$\Delta(x) = \{ l_{i+1} - l_i \mid 1 \le i < j \}.$$

The delta set of M is defined as

$$\Delta(M) = \bigcup_{x \in M^{\bullet}} \Delta(x).$$

The set $\Delta(M)$ has been widely studied. In particular, [10] studies the delta set of a Krull monoid with finite divisor class group, [6, Section 6.7] examines the specific case of block monoids, while [2] and [3] focus on the case where M is a numerical monoid. However, the exact structure of $\Delta(M)$ is known for very few monoids.

Our work in this paper answers a question raised by Paul Baginski in 2004 which was motivated by the work on numerical monoids in [2]. Using computer data generated by programs similar to those in [1], Baginski conjectured for numerical monoids that the sequence $\{\Delta(x)\}_{x \in M}$ is eventually periodic. We affirm this in Theorem 1 and find an upper bound for the fundamental period. As a a result, in Corollary 3 we show that the problem of computing the delta set of a numerical monoid M can be done in finite time with a bound derived from the minimal generating set of M.

A numerical monoid M is any submonoid of the nonnegative integers (denoted \mathbb{N}_0) under addition. We will say that the integers $n_1 < n_2 < \ldots < n_k$ generate M if $M = \{a_1n_1 + \cdots + a_kn_k \mid a_i \in \mathbb{N}_0 \text{ for all } i\}$ and denote this by

$$M = \langle n_1, n_2, \dots, n_k \rangle.$$

Each numerical monoid M has a unique minimal (in terms of cardinality) set of generators. Henceforth, we shall assume that a given generating set for a numerical monoid M is minimal. If for M

²⁰⁰⁰ Mathematics Subject Classification. 20M14, 20D60, 11B75.

Key words and phrases. numerical monoid, non-unique factorization, delta set.

The second and third authors received support from the National Science Foundation under grant DMS-0648390.

as written above, we have $gcd(n_1, \ldots, n_k) = 1$, then M is called *primitive*. We note that every numerical monoid is clearly isomorphic to a primitive numerical monoid. If M is a primitive numerical monoid, then there exists an integer $F(M) \notin M$ such that m > F(M) implies that $m \in M$. F(M) is known as the *Frobenius number* of M and its computation has been a central focus of research for over 100 years (see [11]). As with much work concerning numerical monoids, the Frobenius number will play a central role in our argument. The monograph [5, Chapter 10] is a good general reference on numerical monoids and [9] contains an in depth study of the Frobenius number. Our main result now follows.

Theorem 1. Given a primitive numerical monoid $M = \langle n_1, \ldots, n_k \rangle$, we have for all $x \ge 2kn_2n_k^2$ that $\Delta(x) = \Delta(x + n_1n_k)$.

Before proceeding, we note that work which is in some sense related to Baginski's conjecture has already appeared in the literature. Papers by Hassler [7] and Foroutan and Hassler [4] examine the factorization properties of the powers, x^n , of some fixed nonunit x of a commutative cancellative atomic monoid M. In fact, that M in Theorem 1 is periodic follows from [4, Proposition 3.1 (2)] (or [6, Proposition 4.9.6]) in the following manner [8]. Pick $a \in M$ and $b_1, \ldots, b_n \in M$ such that $M = \{b_i + ja | 1 \leq i \leq n, j \geq 0\}$. Then [4, Theorem 3.1 (1)] gives a bound N^* and, for each $i \in \{1, \ldots, n\}$, bounds B_i such that $\Delta(b_i + ja) = \Delta(b_i + la)$ for all $j, l \geq B_i$ with $j \equiv l \mod N^*$. Now, if we put $N := aN^*$ and $B := a \max\{B_1, \ldots, B_n\} + \max\{b_1, \ldots, b_n\}$, then a simple calculation shows that $\Delta(x) = \Delta(y)$ for all $x, y \in M$ for which $x, y \geq B$ and $x \equiv y \mod N$. We note that this argument does not yield the bounds or the period given in Theorem 1 in terms of the minimal generating set of M.

Before continuing to our proof, we will require some additional notation. Let

$$\mathbf{Z}(x) = \{(a_1, \dots, a_k) \mid x = \sum_{i=1}^k a_i n_i \text{ with } a_i \in \mathbb{N}_0 \text{ for all } i\}$$

denote the set of factorizations of x in M. For all $(a_1, a_2, \ldots, a_k) \in \mathbb{Z}(x)$, it follows that $(a_1 + n_k, a_2, \ldots, a_k)$ and $(a_1, \ldots, a_{k-1}, a_k + n_1)$ are both in $\mathbb{Z}(x + n_1 n_k)$. Define $\varrho : \mathbb{Z}(x) \to \mathbb{Z}(x + n_1 n_k)$ by

 $\varrho(a_1, a_2, \dots, a_k) = (a_1 + n_k, a_2, \dots, a_k).$

We also define $\phi : \mathbf{Z}(x) \to \mathbf{Z}(x + n_1 n_k)$ by

$$\phi(a_1,\ldots,a_{k-1},a_k) = (a_1,\ldots,a_{k-1},a_k+n_1).$$

We see that if f is a factorization of x of length l, then $\rho(x)$ has length $l + n_k$ and $\phi(x)$ has length $l + n_1$. Thus, ρ and ϕ preserve ordering by length of factorization. We in fact can say more. The proof of the following assertion is left to the reader.

Lemma 2. Let $M = \langle n_1, \ldots, n_k \rangle$ be a primitive numerical monoid.

- (1) If l_1, l_2 are elements in $\mathcal{L}(x)$, then l_1, l_2 are consecutive elements in $\mathcal{L}(x)$ if and only if $l_1 + n_k, l_2 + n_k$ are consecutive elements in the length set of factorizations in the image of ϱ .
- (2) Similarly, l_1, l_2 are consecutive elements in $\mathcal{L}(x)$ if and only if $l_1 + n_1, l_2 + n_1$ are consecutive elements in the length set of factorizations in the image of ϕ .

Proof of Theorem 1. If k = 1, then $\Delta(M) = \emptyset$ for all nonunits $x \in M$ and the result follows. If k = 2, then by [2, Proposition 3.1] $\Delta(M) = \{n_2 - n_1\}$ and the result again easily follows. So, assume k > 2and note throughout our argument that by hypothesis $x \ge 2kn_2n_k^2$. If $(a_1, \ldots, a_k) \in \mathbb{Z}(x+n_1n_k)$ with length l and $a_1 \ge n_k$, then we see that $(a_1 - n_k, \ldots, a_k) \in \mathbb{Z}(x)$, $\varrho(a_1 - n_k, \ldots, a_k) = (a_1, \ldots, a_k)$, and thus (a_1, \ldots, a_k) is in the image of ϱ . Hence, for all $l \in \mathcal{L}(x + n_1n_k)$ not in the length set of the image ϱ , we see that all factorizations (a_1, \ldots, a_k) of length l must have $a_1 < n_k$. Among factorizations of $x + n_1n_k$ of length l not in the image of ϱ , choose one with a maximal coefficient of n_1 . If we denote this factorization as (a_1, \ldots, a_k) , we will demonstrate that $a_i < n_k - n_1$ for all $i = 2, \ldots, k - 1$.

So suppose that $a_i \ge n_k - n_1$. Let $b_1 = a_1 + n_k - n_i$, $b_i = a_i + n_1 - n_k$, $b_k = a_k + n_i - n_1$, and $b_j = a_j$ for all other j. From $a_i \ge n_k - n_1$ we see that $b_j \ge 0$ for all j. We see that

$$b_1n_1 + b_in_i + b_kn_k = (a_1 + n_k - n_i)n_1 + (a_i + n_1 - n_k)n_i + (a_k + n_i - n_1)n_k$$

= $a_1n_1 + a_in_i + a_kn_k.$

If 2 < i < k - 1, then

(1)

$$\sum_{j=1}^{k} b_{j}n_{j} = b_{1}n_{1} + b_{i}n_{i} + b_{k}n_{k} + \sum_{j=2}^{j=i-1} b_{j}n_{j} + \sum_{j=i+1}^{j=k-1} b_{j}n_{j}$$

$$= a_{1}n_{1} + a_{i}n_{i} + a_{k}n_{k} + \sum_{j=2}^{j=i-1} a_{j}n_{j} + \sum_{j=i+1}^{j=k-1} a_{j}n_{j}$$

$$= \sum_{j=1}^{k} a_{j}n_{j} = x + n_{1}n_{k}.$$

We also have

(2)

$$\sum_{j=1}^{k} b_j = b_1 + b_i + b_k + \sum_{j=2}^{j=i-1} b_j + \sum_{j=i+1}^{j=k-1} b_j$$

$$= (a_1 + n_k - n_i) + (a_i + n_1 - n_k) + (a_k + n_i - n_1)$$

$$+ \sum_{j=2}^{j=i-1} a_j + \sum_{j=i+1}^{j=k-1} a_j$$

$$= \sum_{j=1}^{k} a_j = l.$$

This implies that (b_1, \ldots, b_k) is also a factorization of $x + n_1 n_k$ of length l, but $b_1 = a_1 + n_k - n_i > a_1$, which contradicts our choice of a_1 as the maximal coefficient of n_1 in such a factorization. With minor adjustments to the inequalities in (1) and (2), the argument also works for the cases i = 2and i = k - 1 and hence $a_i < n_k - n_1$ for all $i = 2, \ldots, k - 1$.

Now that we have bounded a_i for i < k, we will note that since $a_k n_k \leq x$, we have $a_k \leq x/n_k$. Thus,

$$l = a_1 + \sum_{i=2}^{k-1} a_i + a_k < n_k + (k-2)(n_k - n_1) + \frac{x}{n_k} < \frac{x}{n_k} + kn_k.$$

This inequality holds for all $l \in \mathcal{L}(x + n_1 n_k)$ not in the image of ρ , and hence we have verified the following claim.

Claim A: If $l \in \mathcal{L}(x + n_1 n_k)$ such that $l \ge x/n_k + kn_k$, then l is in the length set of the image of ϱ .

If $(a_1, \ldots, a_k) \in \mathbb{Z}(x + n_1 n_k)$ with length $l, a_k \ge n_1$, we see that $(a_1, \ldots, a_k - n_1) \in \mathbb{Z}(x)$, and $\phi(a_1, \ldots, a_k - n_1) = (a_1, \ldots, a_k)$, so that (a_1, \ldots, a_k) is in the image of ϕ . Thus, for all $l \in \mathcal{L}(x + n_1 n_k)$ not in the length set of the image ϕ , we see that all factorizations (a_1, \ldots, a_k) of length l must have $a_k < n_1$.

Among such factorizations of $x + n_1 n_k$ of length l, choose one with a maximal coefficient of n_k . If we denote this factorization as (a_1, \ldots, a_k) , then again we have $a_i < n_k - n_1$ for all $i = 2, \ldots, k - 1$. Otherwise, as before we can define $b_1 = a_1 + n_k - n_i$, $b_i = a_i + n_1 - n_k$, $b_k = a_k + n_i - n_1$, and $b_j = a_j$ for all other j. Then again we see that (b_1, \ldots, b_k) is another factorization of $x + n_1 n_k$ of length l. But, $b_k = a_k + n_i - n_1 > a_k$, contradicting the fact that a_k is the maximal coefficient of n_k in such a factorization.

We then get

$$l \ge a_1 = \frac{x - \sum_{i=2}^{k-1} a_i n_i - a_k n_k}{n_1} > \frac{x - (k-2)(n_k - n_1)n_k - n_1 n_k}{n_1} > \frac{x - k n_k^2}{n_1}.$$

This inequality holds for all $l \in \mathcal{L}(x + n_1 n_k)$ not in the image of ϕ , and hence we have verified a second claim.

Claim B: If $l \in \mathcal{L}(x + n_1 n_k)$ such that $l \leq (x - k n_k^2)/n_1$, then l is in the length set of the image of ϕ .

Now we observe by Proposition 2.9.4 in [6] that

$$F(M) \le (n_1 - 1)(n_2 + \ldots + n_k) - n_1 < (k - 1)n_1n_k - (n_2 + \ldots + n_k) < (k - 1)n_1n_k - n_2.$$

Choose the integer *i* such that $x + n_1 n_k \equiv k n_1 n_k + i \pmod{n_2}$ with $1 \leq i \leq n_2$. We then choose the integer *s* such that $x + n_1 n_k = s n_2 + (k n_1 n_k - n_2 + i)$. From $x \geq 2k n_2 n_k^2$ we can see easily that $s \geq 0$.

If we let $r = kn_1n_k - n_2 + i$, we see that

$$r - n_1 n_k > (k - 1)n_1 n_k - n_2 > F(M)$$

implies that $r - n_1 n_k \in M$. Let (c_1, c_2, \ldots, c_k) be an arbitrary element of $Z(r - n_1 n_k)$. We then see that $(c_1 + n_k, c_2, \ldots, c_k) \in Z(r)$ and this also gives us that

$$(c_1 + n_k, c_2 + s, c_3, \dots, c_k) \in \mathbb{Z}(x + n_1 n_k)$$

We wish to bound the length of this factorization.

First, we see that as $s = (x + n_1n_k - r)/n_2$, we have $s < x/n_2$ from $r > n_1n_k$. We also see that $s > (x - kn_1n_k)/n_2$ from $r < (k + 1)n_1n_k$. Setting $c = n_k + c_1 + \ldots + c_k$, it follows from the previous paragraph that the length we wish to bound is s + c. We can bound $c \le r/n_1$ since $(c_1 + n_k, c_2, \ldots, c_k)$ is a factorization of r. We then see

$$c \le \frac{r}{n_1} \le \frac{kn_1n_k}{n_1} = kn_k$$

Thus we get $s + c < x/n_2 + kn_k$, so overall we have

$$\frac{x - kn_1n_k}{n_2} < s < s + c < \frac{x}{n_2} + kn_k.$$

Now let $y \in \Delta(x+n_1n_k)$, and l_1, l_2 be consecutive elements in $\mathcal{L}(x+n_1n_k)$ such that $l_2 - l_1 = y$. Since $s + c \in \mathcal{L}(x+n_1n_k)$, we have either $s + c \leq l_1$ or $l_2 \leq s + c$. We now consider the first case. Since $2kn_2n_k^2 \leq x$ we have

$$kn_k^2(n_2+n_1) < (n_k - n_2)x_k$$

Hence,

$$kn_k\left(1+\frac{n_1}{n_2}\right) < \left(\frac{1}{n_2}-\frac{1}{n_k}\right)x$$

and thus

$$kn_k + \frac{kn_1n_k}{n_2} < \frac{x}{n_2} - \frac{x}{n_k}.$$

Finally,

$$\frac{x}{n_k} + kn_k < \frac{x - kn_1n_k}{n_2} < s + c$$

and thus, $l_2 > l_1 \ge s + c > x/n_k + kn_k$. By Claim A, l_1, l_2 are both in the length set of the image of ϱ . Moreover, they must be consecutive elements in this length set. Thus, by Lemma 2, $l_1 - n_k, l_2 - n_k$ are consecutive elements of $\mathcal{L}(x)$. Thus, we see $y = (l_2 - n_k) - (l_1 - n_k) \in \Delta(x)$.

In the second case our assumption $x \ge 2kn_2n_k^2$ implies

$$(n_2 - n_1)x > kn_2n_k(n_k + n_1)$$

and hence

$$\left(\frac{1}{n_1} - \frac{1}{n_2}\right) x > kn_k \left(\frac{n_k}{n_1} + 1\right).$$

Finally

$$\frac{x}{n_1} - \frac{x}{n_2} > \frac{kn_k^2}{n_1} + kn_k$$

implies that

$$\frac{x - kn_k^2}{n_1} > \frac{x}{n_2} + kn_k > s + c.$$

Thus $l_1 < l_2 \le s + c < (x - kn_k^2)/n_1$ and by Claim B, l_1, l_2 are both in the length set of the image of ϕ . Thus, again by Lemma 2, $l_1 - n_1, l_2 - n_1$ are consecutive elements of $\mathcal{L}(x)$ and $y \in \Delta(x)$ follows as before. Therefore, $\Delta(x + n_1 n_k) \subset \Delta(x)$.

Next, let $z \in \Delta(x)$, and l_1, l_2 be consecutive elements in $\mathcal{L}(x)$ with $l_2 - l_1 = z$. Let f_1, f_2 be factorizations of length l_1, l_2 , respectively. We first remind ourselves that $sn_2 + r = x + n_1n_k$, and (c_1, \ldots, c_k) is a factorization of $r - n_1n_k$ of length $c - n_k$. Thus, $(c_1, c_2 + s, c_3, \ldots, c_k)$ is a factorization of x of length $s + c - n_k$, so that $s + c - n_k \in \mathcal{L}(x)$.

We have either $l_1 \ge s + c - n_k$ or $l_2 \le s + c - n_k$. Consider the first case. We see that the lengths of $\varrho(l_1), \varrho(l_2)$ are $l_1 + n_k, l_2 + n_k$, respectively. Moreover, by Lemma 2, these must be consecutive elements in the length set of the image of ϱ . We thus have

$$l_2 + n_k > l_1 + n_k \ge s + c \ge x/n_k + kn_k$$

Hence, all values between $l_1 + n_k$ and $l_2 + n_k$ in the set $\mathcal{L}(x + n_1 n_k)$ must be in the image set of ϱ . However, the existence of such an element would contradict the fact that $l_1 + n_k, l_2 + n_k$ are consecutive in the length set of the image of ϱ . Thus, $l_1 + n_k$ and $l_2 + n_k$ are in fact consecutive elements in $\mathcal{L}(x + n_1 n_k)$, and thus $z \in \Delta(x + n_1 n_k)$.

In the second case we see that the lengths of $\phi(l_1), \phi(l_2)$ are $l_1 + n_1, l_2 + n_1$, respectively, and again these must be consecutive elements in the length set of the image of ϕ . From

$$l_1 + n_1 < l_2 + n_1 \le s + c - n_k + n_1 < s + c < \frac{x - kn_k^2}{n_1}$$

we see that all values between $l_1 + n_1$ and $l_2 + n_1$ in the set $\mathcal{L}(x + n_1 n_k)$ must be in the image set of ϕ . The existence of such an element contradicts the fact that $l_1 + n_1, l_2 + n_1$ are consecutive in the image set of ϕ . Hence, $l_1 + n_1, l_2 + n_1$ are consecutive elements of $\mathcal{L}(x + n_1 n_k)$, and thus $z \in \Delta(x + n_1 n_k)$. Therefore, we know $\Delta(x) \supset \Delta(x + n_1 n_k)$ and $\Delta(x) = \Delta(x + n_1 n_k)$, completing the proof.

We close with this immediate corollary.

Corollary 3. Let $M = \langle n_1, \ldots, n_k \rangle$ be a primitive numerical monoid, then if we set $N = 2kn_2n_k^2 + n_1n_k$, we have:

$$\Delta(M) = \bigcup_{x \in M, x < N} \Delta(x)$$

Proof. Let y be some element in $\Delta(M)$ not in the above union. If we then let z be the least value in M with $y \in \Delta(z)$, we see that $z \ge N$ implies $z - n_1 n_k \ge 2kn_2 n_k^2$. But then we have $\Delta(z - n_1 n_k) = \Delta(z)$, so that $y \in \Delta(z - n_1 n_k)$, a contradiction.

References

- 1. C. Bowles, Matlab Routines for Delta Sets of Numerical Monoids, http://www.trinity.edu/schapman/MatLab.html.
- C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On Delta Sets of Numerical Monoids, J. Algebra Appl. 5(2006), 1–24
- 3. S. T. Chapman, N. Kaplan, T. Lemburg, A. Niles and C. Zlogar, Shifts of generators and delta sets of numerical monoids, submitted.
- 4. A. Foroutan and W. Hassler, Factorization of powers in C-monoids, J. Algebra 304(2006), 755-781.
- 5. P.A. García-Sánchez and J.C. Rosales, Finitely Generated Commutative Monoids, Nova Science Publishers, Commack, New York, 1999.
- A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006.
- W. Hassler, A note on sets of lengths of powers of elements of finitely generated monoids, Lect. Notes Pure Appl. Math. 241(2005), 293–303.
- 8. W. Hassler, private communication.
- 9. J. L. Ramirez Alfonsin, The Diophantine Frobenius Problem, Oxford University Press, 2005.
- W. Schmid, Differences in sets of lengths in Krull monoids with finite class group, J. Théor. Nombres Bordeaux 17(2005), 323–345.
- 11. J.J. Sylvester, Mathematical questions with their solutions, Educational Times, 41(21)(1884).

TRINITY UNIVERSITY, DEPARTMENT OF MATHEMATICS, ONE TRINITY PLACE, SAN ANTONIO, TX. 78212-7200 *E-mail address:* schapman@trinity.edu

GRINNELL COLLEGE, DEPARTMENT OF MATHEMATICS, GRINNELL, IOWA 50112-1690

 $E\text{-}mail \ address: \ \texttt{hoyerrol@grinnell.edu}$

PRINCETON UNIVERSITY, DEPARTMENT OF MATHEMATICS, PRINCETON NJ08544-1000

E-mail address: nathank@princeton.edu