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Abstract. Let M be a numerical monoid (i.e., an additive submonoid of N0) with minimal

generating set 〈n1, . . . , nt〉. For m ∈ M , if m =
Pt

i=1 xini, then
Pt

i=1 xi is called a factorization

length of m. We denote by L(m) = {m1, . . . , mk} (where mi < mi+1 for each 1 ≤ i < k) the set of
all possible factorization lengths of m. The Delta set of m is defined by ∆(m) = {mi+1 −mi | 1 ≤
i < k } and the Delta set of M by ∆(M) = ∪0 6=m∈M∆(m). In this paper, we expand on the study

of ∆(M) begun in [2] and [3] by showing that the delta sets of a numerical monoid are eventually
periodic. More specifically, we show for all x ≥ 2kn2n2

k in M that ∆(x) = ∆(x + n1nk).

Let M be a commutative cancellative monoid with set M• of nonunits and A(M) of irreducible
elements. We assume that M is atomic (i.e., every nonunit can be written as a product of irreducible
elements). Problems involving the factorization properties of elements in M into irreducible elements
have been a frequent topic in the mathematical literature over the past 20 years (see [6] and the
references cited therein). Most of this work entails a study of the length set of an element x ∈ M
which is defined as

L(x) = {l | ∃ a1, . . . , al ∈ A(M) such that x = a1 · · · al} .

If L(x) = {l1, . . . , lj} with l1 < l2 < . . . < lj , then define the delta set of x as the set of consecutive
differences of lengths,

∆(x) = {li+1 − li | 1 ≤ i < j}.
The delta set of M is defined as

∆(M) =
⋃

x∈M•

∆(x).

The set ∆(M) has been widely studied. In particular, [10] studies the delta set of a Krull monoid
with finite divisor class group, [6, Section 6.7] examines the specific case of block monoids, while [2]
and [3] focus on the case where M is a numerical monoid. However, the exact structure of ∆(M) is
known for very few monoids.

Our work in this paper answers a question raised by Paul Baginski in 2004 which was motivated
by the work on numerical monoids in [2]. Using computer data generated by programs similar to
those in [1], Baginski conjectured for numerical monoids that the sequence {∆(x)}x∈M is eventually
periodic. We affirm this in Theorem 1 and find an upper bound for the fundamental period. As a
a result, in Corollary 3 we show that the problem of computing the delta set of a numerical monoid
M can be done in finite time with a bound derived from the minimal generating set of M .

A numerical monoid M is any submonoid of the nonnegative integers (denoted N0) under addition.
We will say that the integers n1 < n2 < . . . < nk generate M if M = {a1n1 + · · · + aknk | ai ∈
N0 for all i} and denote this by

M = 〈n1, n2, . . . , nk〉.
Each numerical monoid M has a unique minimal (in terms of cardinality) set of generators. Hence-
forth, we shall assume that a given generating set for a numerical monoid M is minimal. If for M
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as written above, we have gcd(n1, . . . , nk) = 1, then M is called primitive. We note that every nu-
merical monoid is clearly isomorphic to a primitive numerical monoid. If M is a primitive numerical
monoid, then there exists an integer F (M) 6∈ M such that m > F (M) implies that m ∈ M . F (M)
is known as the Frobenius number of M and its computation has been a central focus of research for
over 100 years (see [11]). As with much work concerning numerical monoids, the Frobenius number
will play a central role in our argument. The monograph [5, Chapter 10] is a good general reference
on numerical monoids and [9] contains an in depth study of the Frobenius number. Our main result
now follows.

Theorem 1. Given a primitive numerical monoid M = 〈n1, . . . , nk〉, we have for all x ≥ 2kn2n
2
k

that ∆(x) = ∆(x + n1nk).

Before proceeding, we note that work which is in some sense related to Baginski’s conjecture has
already appeared in the literature. Papers by Hassler [7] and Foroutan and Hassler [4] examine the
factorization properties of the powers, xn, of some fixed nonunit x of a commutative cancellative
atomic monoid M . In fact, that M in Theorem 1 is periodic follows from [4, Proposition 3.1 (2)]
(or [6, Proposition 4.9.6]) in the following manner [8]. Pick a ∈ M and b1, . . . , bn ∈ M such that
M = {bi + ja|1 ≤ i ≤ n, j ≥ 0}. Then [4, Theorem 3.1 (1)] gives a bound N∗ and, for each
i ∈ {1, . . . , n}, bounds Bi such that ∆(bi + ja) = ∆(bi + la) for all j, l ≥ Bi with j ≡ l mod N∗.
Now, if we put N := aN∗ and B := amax{B1, . . . , Bn}+max{b1, . . . , bn}, then a simple calculation
shows that ∆(x) = ∆(y) for all x, y ∈ M for which x, y ≥ B and x ≡ y mod N . We note that
this argument does not yield the bounds or the period given in Theorem 1 in terms of the minimal
generating set of M .

Before continuing to our proof, we will require some additional notation. Let

Z(x) = {(a1, . . . , ak) | x =
k∑

i=1

aini with ai ∈ N0 for all i}

denote the set of factorizations of x in M . For all (a1, a2, . . . , ak) ∈ Z(x), it follows that (a1 +
nk, a2, . . . , ak) and (a1, . . . , ak−1, ak + n1) are both in Z(x + n1nk). Define % : Z(x) → Z(x + n1nk)
by

%(a1, a2, . . . , ak) = (a1 + nk, a2, . . . , ak).

We also define φ : Z(x) → Z(x + n1nk) by

φ(a1, . . . , ak−1, ak) = (a1, . . . , ak−1, ak + n1).

We see that if f is a factorization of x of length l, then %(x) has length l + nk and φ(x) has length
l + n1. Thus, % and φ preserve ordering by length of factorization. We in fact can say more. The
proof of the following assertion is left to the reader.

Lemma 2. Let M = 〈n1, . . . , nk〉 be a primitive numerical monoid.

(1) If l1, l2 are elements in L(x), then l1, l2 are consecutive elements in L(x) if and only if
l1 +nk, l2 +nk are consecutive elements in the length set of factorizations in the image of %.

(2) Similarly, l1, l2 are consecutive elements in L(x) if and only if l1 +n1, l2 +n1 are consecutive
elements in the length set of factorizations in the image of φ.

Proof of Theorem 1. If k = 1, then ∆(M) = ∅ for all nonunits x ∈ M and the result follows. If k = 2,
then by [2, Proposition 3.1] ∆(M) = {n2−n1} and the result again easily follows. So, assume k > 2
and note throughout our argument that by hypothesis x ≥ 2kn2n

2
k. If (a1, . . . , ak) ∈ Z(x+n1nk) with

length l and a1 ≥ nk, then we see that (a1 − nk, . . . , ak) ∈ Z(x), %(a1 − nk, . . . , ak) = (a1, . . . , ak),
and thus (a1, . . . , ak) is in the image of %. Hence, for all l ∈ L(x + n1nk) not in the length set
of the image %, we see that all factorizations (a1, . . . , ak) of length l must have a1 < nk. Among
factorizations of x + n1nk of length l not in the image of %, choose one with a maximal coefficient
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of n1. If we denote this factorization as (a1, . . . , ak), we will demonstrate that ai < nk − n1 for all
i = 2, . . . , k − 1.

So suppose that ai ≥ nk − n1. Let b1 = a1 + nk − ni, bi = ai + n1 − nk, bk = ak + ni − n1, and
bj = aj for all other j. From ai ≥ nk − n1 we see that bj ≥ 0 for all j. We see that

b1n1 + bini + bknk = (a1 + nk − ni)n1 + (ai + n1 − nk)ni + (ak + ni − n1)nk

= a1n1 + aini + aknk.

If 2 < i < k − 1, then
k∑

j=1

bjnj = b1n1 + bini + bknk +
j=i−1∑
j=2

bjnj +
j=k−1∑
j=i+1

bjnj

= a1n1 + aini + aknk +
j=i−1∑
j=2

ajnj +
j=k−1∑
j=i+1

ajnj(1)

=
k∑

j=1

ajnj = x + n1nk.

We also have
k∑

j=1

bj = b1 + bi + bk +
j=i−1∑
j=2

bj +
j=k−1∑
j=i+1

bj

= (a1 + nk − ni) + (ai + n1 − nk) + (ak + ni − n1)(2)

+
j=i−1∑
j=2

aj +
j=k−1∑
j=i+1

aj

=
k∑

j=1

aj = l.

This implies that (b1, . . . , bk) is also a factorization of x+n1nk of length l, but b1 = a1+nk−ni > a1,
which contradicts our choice of a1 as the maximal coefficient of n1 in such a factorization. With
minor adjustments to the inequalities in (1) and (2), the argument also works for the cases i = 2
and i = k − 1 and hence ai < nk − n1 for all i = 2, . . . , k − 1.

Now that we have bounded ai for i < k, we will note that since aknk ≤ x, we have ak ≤ x/nk.
Thus,

l = a1 +
k−1∑
i=2

ai + ak < nk + (k − 2)(nk − n1) +
x

nk
<

x

nk
+ knk.

This inequality holds for all l ∈ L(x + n1nk) not in the image of % , and hence we have verified the
following claim.

Claim A: If l ∈ L(x + n1nk) such that l ≥ x/nk + knk, then l is in the length set of the image of
%.

If (a1, . . . , ak) ∈ Z(x + n1nk) with length l, ak ≥ n1, we see that (a1, . . . , ak − n1) ∈ Z(x), and
φ(a1, . . . , ak−n1) = (a1, . . . , ak), so that (a1, . . . , ak) is in the image of φ. Thus, for all l ∈ L(x+n1nk)
not in the length set of the image φ, we see that all factorizations (a1, . . . , ak) of length l must have
ak < n1.

Among such factorizations of x+n1nk of length l, choose one with a maximal coefficient of nk. If
we denote this factorization as (a1, . . . , ak), then again we have ai < nk − n1 for all i = 2, . . . , k− 1.
Otherwise, as before we can define b1 = a1 +nk−ni, bi = ai +n1−nk, bk = ak +ni−n1, and bj = aj
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for all other j. Then again we see that (b1, . . . , bk) is another factorization of x + n1nk of length l.
But, bk = ak + ni − n1 > ak, contradicting the fact that ak is the maximal coefficient of nk in such
a factorization.

We then get

l ≥ a1 =
x−

∑k−1
i=2 aini − aknk

n1
>

x− (k − 2)(nk − n1)nk − n1nk

n1
>

x− kn2
k

n1
.

This inequality holds for all l ∈ L(x + n1nk) not in the image of φ , and hence we have verified a
second claim.

Claim B: If l ∈ L(x + n1nk) such that l ≤ (x− kn2
k)/n1, then l is in the length set of the image of

φ.

Now we observe by Proposition 2.9.4 in [6] that

F (M) ≤ (n1 − 1)(n2 + . . . + nk)− n1 < (k − 1)n1nk − (n2 + . . . + nk) < (k − 1)n1nk − n2.

Choose the integer i such that x + n1nk ≡ kn1nk + i (mod n2) with 1 ≤ i ≤ n2. We then choose
the integer s such that x + n1nk = sn2 + (kn1nk − n2 + i). From x ≥ 2kn2n

2
k we can see easily that

s ≥ 0.
If we let r = kn1nk − n2 + i, we see that

r − n1nk > (k − 1)n1nk − n2 > F (M)

implies that r− n1nk ∈ M . Let (c1, c2, . . . , ck) be an arbitrary element of Z(r− n1nk). We then see
that (c1 + nk, c2, . . . , ck) ∈ Z(r) and this also gives us that

(c1 + nk, c2 + s, c3, . . . , ck) ∈ Z(x + n1nk).

We wish to bound the length of this factorization.
First, we see that as s = (x + n1nk − r)/n2, we have s < x/n2 from r > n1nk. We also see

that s > (x − kn1nk)/n2 from r < (k + 1)n1nk. Setting c = nk + c1 + . . . + ck, it follows from
the previous paragraph that the length we wish to bound is s + c. We can bound c ≤ r/n1 since
(c1 + nk, c2, . . . , ck) is a factorization of r. We then see

c ≤ r

n1
≤ kn1nk

n1
= knk.

Thus we get s + c < x/n2 + knk, so overall we have

x− kn1nk

n2
< s < s + c <

x

n2
+ knk.

Now let y ∈ ∆(x + n1nk), and l1, l2 be consecutive elements in L(x + n1nk) such that l2 − l1 = y.
Since s + c ∈ L(x + n1nk), we have either s + c ≤ l1 or l2 ≤ s + c. We now consider the first case.
Since 2kn2n

2
k ≤ x we have

kn2
k(n2 + n1) < (nk − n2)x.

Hence,

knk

(
1 +

n1

n2

)
<

(
1
n2

− 1
nk

)
x

and thus

knk +
kn1nk

n2
<

x

n2
− x

nk
.

Finally,
x

nk
+ knk <

x− kn1nk

n2
< s + c.
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and thus, l2 > l1 ≥ s+c > x/nk+knk. By Claim A, l1, l2 are both in the length set of the image of %.
Moreover, they must be consecutive elements in this length set. Thus, by Lemma 2, l1 − nk, l2 − nk

are consecutive elements of L(x). Thus, we see y = (l2 − nk)− (l1 − nk) ∈ ∆(x).
In the second case our assumption x ≥ 2kn2n

2
k implies

(n2 − n1)x > kn2nk(nk + n1)

and hence (
1
n1

− 1
n2

)
x > knk

(
nk

n1
+ 1

)
.

Finally
x

n1
− x

n2
>

kn2
k

n1
+ knk

implies that
x− kn2

k

n1
>

x

n2
+ knk > s + c.

Thus l1 < l2 ≤ s+ c < (x−kn2
k)/n1 and by Claim B, l1, l2 are both in the length set of the image of

φ. Thus, again by Lemma 2, l1 − n1, l2 − n1 are consecutive elements of L(x) and y ∈ ∆(x) follows
as before. Therefore, ∆(x + n1nk) ⊂ ∆(x).

Next, let z ∈ ∆(x), and l1, l2 be consecutive elements in L(x) with l2 − l1 = z. Let f1, f2 be
factorizations of length l1, l2, respectively. We first remind ourselves that sn2 + r = x + n1nk, and
(c1, . . . , ck) is a factorization of r−n1nk of length c−nk. Thus, (c1, c2+s, c3, . . . , ck) is a factorization
of x of length s + c− nk, so that s + c− nk ∈ L(x).

We have either l1 ≥ s+ c−nk or l2 ≤ s+ c−nk. Consider the first case. We see that the lengths
of %(l1), %(l2) are l1 + nk, l2 + nk, respectively. Moreover, by Lemma 2, these must be consecutive
elements in the length set of the image of %. We thus have

l2 + nk > l1 + nk ≥ s + c ≥ x/nk + knk.

Hence, all values between l1 + nk and l2 + nk in the set L(x + n1nk) must be in the image set of
%. However, the existence of such an element would contradict the fact that l1 + nk, l2 + nk are
consecutive in the length set of the image of %. Thus, l1 + nk and l2 + nk are in fact consecutive
elements in L(x + n1nk), and thus z ∈ ∆(x + n1nk).

In the second case we see that the lengths of φ(l1), φ(l2) are l1 + n1, l2 + n1, respectively, and
again these must be consecutive elements in the length set of the image of φ. From

l1 + n1 < l2 + n1 ≤ s + c− nk + n1 < s + c <
x− kn2

k

n1

we see that all values between l1 + n1 and l2 + n1 in the set L(x + n1nk) must be in the image
set of φ. The existence of such an element contradicts the fact that l1 + n1, l2 + n1 are consecutive
in the image set of φ. Hence, l1 + n1, l2 + n1 are consecutive elements of L(x + n1nk), and thus
z ∈ ∆(x + n1nk). Therefore, we know ∆(x) ⊃ ∆(x + n1nk) and ∆(x) = ∆(x + n1nk), completing
the proof. �

We close with this immediate corollary.

Corollary 3. Let M = 〈n1, . . . , nk〉 be a primitive numerical monoid, then if we set N = 2kn2n
2
k +

n1nk, we have:

∆(M) =
⋃

x∈M,x<N

∆(x)



6 S. T. CHAPMAN, R. HOYER, AND N. KAPLAN

Proof. Let y be some element in ∆(M) not in the above union. If we then let z be the least
value in M with y ∈ ∆(z), we see that z ≥ N implies z − n1nk ≥ 2kn2n

2
k. But then we have

∆(z − n1nk) = ∆(z), so that y ∈ ∆(z − n1nk), a contradiction. �
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