DELTA SETS OF NUMERICAL MONOIDS ARE EVENTUALLY PERIODIC

S. T. CHAPMAN, ROLF HOYER, AND NATHAN KAPLAN

Abstract

Let M be a numerical monoid (i.e., an additive submonoid of \mathbb{N}_{0}) with minimal generating set $\left\langle n_{1}, \ldots, n_{t}\right\rangle$. For $m \in M$, if $m=\sum_{i=1}^{t} x_{i} n_{i}$, then $\sum_{i=1}^{t} x_{i}$ is called a factorization length of m. We denote by $\mathcal{L}(m)=\left\{m_{1}, \ldots, m_{k}\right\}$ (where $m_{i}<m_{i+1}$ for each $1 \leq i<k$) the set of all possible factorization lengths of m. The Delta set of m is defined by $\Delta(m)=\left\{m_{i+1}-m_{i} \mid 1 \leq\right.$ $i<k\}$ and the Delta set of M by $\Delta(M)=\cup_{0 \neq m \in M} \Delta(m)$. In this paper, we expand on the study of $\Delta(M)$ begun in [2] and [3] by showing that the delta sets of a numerical monoid are eventually periodic. More specifically, we show for all $x \geq 2 k n_{2} n_{k}^{2}$ in M that $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

Let M be a commutative cancellative monoid with set M^{\bullet} of nonunits and $\mathcal{A}(M)$ of irreducible elements. We assume that M is atomic (i.e., every nonunit can be written as a product of irreducible elements). Problems involving the factorization properties of elements in M into irreducible elements have been a frequent topic in the mathematical literature over the past 20 years (see [6] and the references cited therein). Most of this work entails a study of the length set of an element $x \in M$ which is defined as

$$
\mathcal{L}(x)=\left\{l \mid \exists a_{1}, \ldots, a_{l} \in \mathcal{A}(M) \text { such that } x=a_{1} \cdots a_{l}\right\} .
$$

If $\mathcal{L}(x)=\left\{l_{1}, \ldots, l_{j}\right\}$ with $l_{1}<l_{2}<\ldots<l_{j}$, then define the delta set of x as the set of consecutive differences of lengths,

$$
\Delta(x)=\left\{l_{i+1}-l_{i} \mid 1 \leq i<j\right\}
$$

The delta set of M is defined as

$$
\Delta(M)=\bigcup_{x \in M^{\bullet}} \Delta(x)
$$

The set $\Delta(M)$ has been widely studied. In particular, [10] studies the delta set of a Krull monoid with finite divisor class group, [6, Section 6.7] examines the specific case of block monoids, while [2] and [3] focus on the case where M is a numerical monoid. However, the exact structure of $\Delta(M)$ is known for very few monoids.

Our work in this paper answers a question raised by Paul Baginski in 2004 which was motivated by the work on numerical monoids in [2]. Using computer data generated by programs similar to those in [1], Baginski conjectured for numerical monoids that the sequence $\{\Delta(x)\}_{x \in M}$ is eventually periodic. We affirm this in Theorem 1 and find an upper bound for the fundamental period. As a a result, in Corollary 3 we show that the problem of computing the delta set of a numerical monoid M can be done in finite time with a bound derived from the minimal generating set of M.

A numerical monoid M is any submonoid of the nonnegative integers (denoted \mathbb{N}_{0}) under addition. We will say that the integers $n_{1}<n_{2}<\ldots<n_{k}$ generate M if $M=\left\{a_{1} n_{1}+\cdots+a_{k} n_{k} \mid a_{i} \in\right.$ \mathbb{N}_{0} for all $\left.i\right\}$ and denote this by

$$
M=\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle
$$

Each numerical monoid M has a unique minimal (in terms of cardinality) set of generators. Henceforth, we shall assume that a given generating set for a numerical monoid M is minimal. If for M

[^0]as written above, we have $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1$, then M is called primitive. We note that every numerical monoid is clearly isomorphic to a primitive numerical monoid. If M is a primitive numerical monoid, then there exists an integer $F(M) \notin M$ such that $m>F(M)$ implies that $m \in M . F(M)$ is known as the Frobenius number of M and its computation has been a central focus of research for over 100 years (see [11]). As with much work concerning numerical monoids, the Frobenius number will play a central role in our argument. The monograph [5, Chapter 10] is a good general reference on numerical monoids and [9] contains an in depth study of the Frobenius number. Our main result now follows.

Theorem 1. Given a primitive numerical monoid $M=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, we have for all $x \geq 2 k n_{2} n_{k}^{2}$ that $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

Before proceeding, we note that work which is in some sense related to Baginski's conjecture has already appeared in the literature. Papers by Hassler [7] and Foroutan and Hassler [4] examine the factorization properties of the powers, x^{n}, of some fixed nonunit x of a commutative cancellative atomic monoid M. In fact, that M in Theorem 1 is periodic follows from [4, Proposition 3.1 (2)] (or [6, Proposition 4.9.6]) in the following manner [8]. Pick $a \in M$ and $b_{1}, \ldots, b_{n} \in M$ such that $M=\left\{b_{i}+j a \mid 1 \leq i \leq n, j \geq 0\right\}$. Then [4, Theorem 3.1 (1)] gives a bound N^{*} and, for each $i \in\{1, \ldots, n\}$, bounds B_{i} such that $\Delta\left(b_{i}+j a\right)=\Delta\left(b_{i}+l a\right)$ for all $j, l \geq B_{i}$ with $j \equiv l \bmod N^{*}$. Now, if we put $N:=a N^{*}$ and $B:=a \max \left\{B_{1}, \ldots, B_{n}\right\}+\max \left\{b_{1}, \ldots, b_{n}\right\}$, then a simple calculation shows that $\Delta(x)=\Delta(y)$ for all $x, y \in M$ for which $x, y \geq B$ and $x \equiv y \bmod N$. We note that this argument does not yield the bounds or the period given in Theorem 1 in terms of the minimal generating set of M.

Before continuing to our proof, we will require some additional notation. Let

$$
\mathrm{Z}(x)=\left\{\left(a_{1}, \ldots, a_{k}\right) \mid x=\sum_{i=1}^{k} a_{i} n_{i} \text { with } a_{i} \in \mathbb{N}_{0} \text { for all } i\right\}
$$

denote the set of factorizations of x in M. For all $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathrm{Z}(x)$, it follows that $\left(a_{1}+\right.$ $\left.n_{k}, a_{2}, \ldots, a_{k}\right)$ and $\left(a_{1}, \ldots, a_{k-1}, a_{k}+n_{1}\right)$ are both in $\mathrm{Z}\left(x+n_{1} n_{k}\right)$. Define $\varrho: \mathrm{Z}(x) \rightarrow \mathrm{Z}\left(x+n_{1} n_{k}\right)$ by

$$
\varrho\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(a_{1}+n_{k}, a_{2}, \ldots, a_{k}\right)
$$

We also define $\phi: \mathrm{Z}(x) \rightarrow \mathrm{Z}\left(x+n_{1} n_{k}\right)$ by

$$
\phi\left(a_{1}, \ldots, a_{k-1}, a_{k}\right)=\left(a_{1}, \ldots, a_{k-1}, a_{k}+n_{1}\right)
$$

We see that if f is a factorization of x of length l, then $\varrho(x)$ has length $l+n_{k}$ and $\phi(x)$ has length $l+n_{1}$. Thus, ϱ and ϕ preserve ordering by length of factorization. We in fact can say more. The proof of the following assertion is left to the reader.
Lemma 2. Let $M=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ be a primitive numerical monoid.
(1) If l_{1}, l_{2} are elements in $\mathcal{L}(x)$, then l_{1}, l_{2} are consecutive elements in $\mathcal{L}(x)$ if and only if $l_{1}+n_{k}, l_{2}+n_{k}$ are consecutive elements in the length set of factorizations in the image of ϱ.
(2) Similarly, l_{1}, l_{2} are consecutive elements in $\mathcal{L}(x)$ if and only if $l_{1}+n_{1}, l_{2}+n_{1}$ are consecutive elements in the length set of factorizations in the image of ϕ.

Proof of Theorem 1. If $k=1$, then $\Delta(M)=\emptyset$ for all nonunits $x \in M$ and the result follows. If $k=2$, then by [2, Proposition 3.1] $\Delta(M)=\left\{n_{2}-n_{1}\right\}$ and the result again easily follows. So, assume $k>2$ and note throughout our argument that by hypothesis $x \geq 2 k n_{2} n_{k}^{2}$. If $\left(a_{1}, \ldots, a_{k}\right) \in \mathrm{Z}\left(x+n_{1} n_{k}\right)$ with length l and $a_{1} \geq n_{k}$, then we see that $\left(a_{1}-n_{k}, \ldots, a_{k}\right) \in \mathrm{Z}(x), \varrho\left(a_{1}-n_{k}, \ldots, a_{k}\right)=\left(a_{1}, \ldots, a_{k}\right)$, and thus $\left(a_{1}, \ldots, a_{k}\right)$ is in the image of ϱ. Hence, for all $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ not in the length set of the image ϱ, we see that all factorizations $\left(a_{1}, \ldots, a_{k}\right)$ of length l must have $a_{1}<n_{k}$. Among factorizations of $x+n_{1} n_{k}$ of length l not in the image of ϱ, choose one with a maximal coefficient
of n_{1}. If we denote this factorization as $\left(a_{1}, \ldots, a_{k}\right)$, we will demonstrate that $a_{i}<n_{k}-n_{1}$ for all $i=2, \ldots, k-1$.

So suppose that $a_{i} \geq n_{k}-n_{1}$. Let $b_{1}=a_{1}+n_{k}-n_{i}, b_{i}=a_{i}+n_{1}-n_{k}, b_{k}=a_{k}+n_{i}-n_{1}$, and $b_{j}=a_{j}$ for all other j. From $a_{i} \geq n_{k}-n_{1}$ we see that $b_{j} \geq 0$ for all j. We see that

$$
\begin{aligned}
b_{1} n_{1}+b_{i} n_{i}+b_{k} n_{k} & =\left(a_{1}+n_{k}-n_{i}\right) n_{1}+\left(a_{i}+n_{1}-n_{k}\right) n_{i}+\left(a_{k}+n_{i}-n_{1}\right) n_{k} \\
& =a_{1} n_{1}+a_{i} n_{i}+a_{k} n_{k} .
\end{aligned}
$$

If $2<i<k-1$, then

$$
\begin{align*}
\sum_{j=1}^{k} b_{j} n_{j} & =b_{1} n_{1}+b_{i} n_{i}+b_{k} n_{k}+\sum_{j=2}^{j=i-1} b_{j} n_{j}+\sum_{j=i+1}^{j=k-1} b_{j} n_{j} \\
& =a_{1} n_{1}+a_{i} n_{i}+a_{k} n_{k}+\sum_{j=2}^{j=i-1} a_{j} n_{j}+\sum_{j=i+1}^{j=k-1} a_{j} n_{j} \tag{1}\\
& =\sum_{j=1}^{k} a_{j} n_{j}=x+n_{1} n_{k}
\end{align*}
$$

We also have

$$
\begin{align*}
\sum_{j=1}^{k} b_{j}= & b_{1}+b_{i}+b_{k}+\sum_{j=2}^{j=i-1} b_{j}+\sum_{j=i+1}^{j=k-1} b_{j} \\
= & \left(a_{1}+n_{k}-n_{i}\right)+\left(a_{i}+n_{1}-n_{k}\right)+\left(a_{k}+n_{i}-n_{1}\right) \tag{2}\\
& +\sum_{j=2}^{j=i-1} a_{j}+\sum_{j=i+1}^{j=k-1} a_{j} \\
= & \sum_{j=1}^{k} a_{j}=l .
\end{align*}
$$

This implies that $\left(b_{1}, \ldots, b_{k}\right)$ is also a factorization of $x+n_{1} n_{k}$ of length l, but $b_{1}=a_{1}+n_{k}-n_{i}>a_{1}$, which contradicts our choice of a_{1} as the maximal coefficient of n_{1} in such a factorization. With minor adjustments to the inequalities in (1) and (2), the argument also works for the cases $i=2$ and $i=k-1$ and hence $a_{i}<n_{k}-n_{1}$ for all $i=2, \ldots, k-1$.

Now that we have bounded a_{i} for $i<k$, we will note that since $a_{k} n_{k} \leq x$, we have $a_{k} \leq x / n_{k}$. Thus,

$$
l=a_{1}+\sum_{i=2}^{k-1} a_{i}+a_{k}<n_{k}+(k-2)\left(n_{k}-n_{1}\right)+\frac{x}{n_{k}}<\frac{x}{n_{k}}+k n_{k}
$$

This inequality holds for all $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ not in the image of ϱ, and hence we have verified the following claim.

Claim A: If $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ such that $l \geq x / n_{k}+k n_{k}$, then l is in the length set of the image of ϱ.

If $\left(a_{1}, \ldots, a_{k}\right) \in \mathrm{Z}\left(x+n_{1} n_{k}\right)$ with length $l, a_{k} \geq n_{1}$, we see that $\left(a_{1}, \ldots, a_{k}-n_{1}\right) \in \mathrm{Z}(x)$, and $\phi\left(a_{1}, \ldots, a_{k}-n_{1}\right)=\left(a_{1}, \ldots, a_{k}\right)$, so that $\left(a_{1}, \ldots, a_{k}\right)$ is in the image of ϕ. Thus, for all $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ not in the length set of the image ϕ, we see that all factorizations $\left(a_{1}, \ldots, a_{k}\right)$ of length l must have $a_{k}<n_{1}$.

Among such factorizations of $x+n_{1} n_{k}$ of length l, choose one with a maximal coefficient of n_{k}. If we denote this factorization as $\left(a_{1}, \ldots, a_{k}\right)$, then again we have $a_{i}<n_{k}-n_{1}$ for all $i=2, \ldots, k-1$. Otherwise, as before we can define $b_{1}=a_{1}+n_{k}-n_{i}, b_{i}=a_{i}+n_{1}-n_{k}, b_{k}=a_{k}+n_{i}-n_{1}$, and $b_{j}=a_{j}$
for all other j. Then again we see that $\left(b_{1}, \ldots, b_{k}\right)$ is another factorization of $x+n_{1} n_{k}$ of length l. But, $b_{k}=a_{k}+n_{i}-n_{1}>a_{k}$, contradicting the fact that a_{k} is the maximal coefficient of n_{k} in such a factorization.

We then get

$$
l \geq a_{1}=\frac{x-\sum_{i=2}^{k-1} a_{i} n_{i}-a_{k} n_{k}}{n_{1}}>\frac{x-(k-2)\left(n_{k}-n_{1}\right) n_{k}-n_{1} n_{k}}{n_{1}}>\frac{x-k n_{k}^{2}}{n_{1}}
$$

This inequality holds for all $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ not in the image of ϕ, and hence we have verified a second claim.

Claim B: If $l \in \mathcal{L}\left(x+n_{1} n_{k}\right)$ such that $l \leq\left(x-k n_{k}^{2}\right) / n_{1}$, then l is in the length set of the image of ϕ.

Now we observe by Proposition 2.9.4 in [6] that

$$
F(M) \leq\left(n_{1}-1\right)\left(n_{2}+\ldots+n_{k}\right)-n_{1}<(k-1) n_{1} n_{k}-\left(n_{2}+\ldots+n_{k}\right)<(k-1) n_{1} n_{k}-n_{2}
$$

Choose the integer i such that $x+n_{1} n_{k} \equiv k n_{1} n_{k}+i\left(\bmod n_{2}\right)$ with $1 \leq i \leq n_{2}$. We then choose the integer s such that $x+n_{1} n_{k}=s n_{2}+\left(k n_{1} n_{k}-n_{2}+i\right)$. From $x \geq 2 k n_{2} n_{k}^{2}$ we can see easily that $s \geq 0$.

If we let $r=k n_{1} n_{k}-n_{2}+i$, we see that

$$
r-n_{1} n_{k}>(k-1) n_{1} n_{k}-n_{2}>F(M)
$$

implies that $r-n_{1} n_{k} \in M$. Let $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ be an arbitrary element of $\mathrm{Z}\left(r-n_{1} n_{k}\right)$. We then see that $\left(c_{1}+n_{k}, c_{2}, \ldots, c_{k}\right) \in \mathrm{Z}(r)$ and this also gives us that

$$
\left(c_{1}+n_{k}, c_{2}+s, c_{3}, \ldots, c_{k}\right) \in \mathrm{Z}\left(x+n_{1} n_{k}\right)
$$

We wish to bound the length of this factorization.
First, we see that as $s=\left(x+n_{1} n_{k}-r\right) / n_{2}$, we have $s<x / n_{2}$ from $r>n_{1} n_{k}$. We also see that $s>\left(x-k n_{1} n_{k}\right) / n_{2}$ from $r<(k+1) n_{1} n_{k}$. Setting $c=n_{k}+c_{1}+\ldots+c_{k}$, it follows from the previous paragraph that the length we wish to bound is $s+c$. We can bound $c \leq r / n_{1}$ since $\left(c_{1}+n_{k}, c_{2}, \ldots, c_{k}\right)$ is a factorization of r. We then see

$$
c \leq \frac{r}{n_{1}} \leq \frac{k n_{1} n_{k}}{n_{1}}=k n_{k}
$$

Thus we get $s+c<x / n_{2}+k n_{k}$, so overall we have

$$
\frac{x-k n_{1} n_{k}}{n_{2}}<s<s+c<\frac{x}{n_{2}}+k n_{k} .
$$

Now let $y \in \Delta\left(x+n_{1} n_{k}\right)$, and l_{1}, l_{2} be consecutive elements in $\mathcal{L}\left(x+n_{1} n_{k}\right)$ such that $l_{2}-l_{1}=y$. Since $s+c \in \mathcal{L}\left(x+n_{1} n_{k}\right)$, we have either $s+c \leq l_{1}$ or $l_{2} \leq s+c$. We now consider the first case. Since $2 k n_{2} n_{k}^{2} \leq x$ we have

$$
k n_{k}^{2}\left(n_{2}+n_{1}\right)<\left(n_{k}-n_{2}\right) x
$$

Hence,

$$
k n_{k}\left(1+\frac{n_{1}}{n_{2}}\right)<\left(\frac{1}{n_{2}}-\frac{1}{n_{k}}\right) x
$$

and thus

$$
k n_{k}+\frac{k n_{1} n_{k}}{n_{2}}<\frac{x}{n_{2}}-\frac{x}{n_{k}}
$$

Finally,

$$
\frac{x}{n_{k}}+k n_{k}<\frac{x-k n_{1} n_{k}}{n_{2}}<s+c .
$$

and thus, $l_{2}>l_{1} \geq s+c>x / n_{k}+k n_{k}$. By Claim A, l_{1}, l_{2} are both in the length set of the image of ϱ. Moreover, they must be consecutive elements in this length set. Thus, by Lemma 2, $l_{1}-n_{k}, l_{2}-n_{k}$ are consecutive elements of $\mathcal{L}(x)$. Thus, we see $y=\left(l_{2}-n_{k}\right)-\left(l_{1}-n_{k}\right) \in \Delta(x)$.

In the second case our assumption $x \geq 2 k n_{2} n_{k}^{2}$ implies

$$
\left(n_{2}-n_{1}\right) x>k n_{2} n_{k}\left(n_{k}+n_{1}\right)
$$

and hence

$$
\left(\frac{1}{n_{1}}-\frac{1}{n_{2}}\right) x>k n_{k}\left(\frac{n_{k}}{n_{1}}+1\right) .
$$

Finally

$$
\frac{x}{n_{1}}-\frac{x}{n_{2}}>\frac{k n_{k}^{2}}{n_{1}}+k n_{k}
$$

implies that

$$
\frac{x-k n_{k}^{2}}{n_{1}}>\frac{x}{n_{2}}+k n_{k}>s+c
$$

Thus $l_{1}<l_{2} \leq s+c<\left(x-k n_{k}^{2}\right) / n_{1}$ and by Claim B, l_{1}, l_{2} are both in the length set of the image of ϕ. Thus, again by Lemma $2, l_{1}-n_{1}, l_{2}-n_{1}$ are consecutive elements of $\mathcal{L}(x)$ and $y \in \Delta(x)$ follows as before. Therefore, $\Delta\left(x+n_{1} n_{k}\right) \subset \Delta(x)$.

Next, let $z \in \Delta(x)$, and l_{1}, l_{2} be consecutive elements in $\mathcal{L}(x)$ with $l_{2}-l_{1}=z$. Let f_{1}, f_{2} be factorizations of length l_{1}, l_{2}, respectively. We first remind ourselves that $s n_{2}+r=x+n_{1} n_{k}$, and $\left(c_{1}, \ldots, c_{k}\right)$ is a factorization of $r-n_{1} n_{k}$ of length $c-n_{k}$. Thus, $\left(c_{1}, c_{2}+s, c_{3}, \ldots, c_{k}\right)$ is a factorization of x of length $s+c-n_{k}$, so that $s+c-n_{k} \in \mathcal{L}(x)$.

We have either $l_{1} \geq s+c-n_{k}$ or $l_{2} \leq s+c-n_{k}$. Consider the first case. We see that the lengths of $\varrho\left(l_{1}\right), \varrho\left(l_{2}\right)$ are $l_{1}+n_{k}, l_{2}+n_{k}$, respectively. Moreover, by Lemma 2, these must be consecutive elements in the length set of the image of ϱ. We thus have

$$
l_{2}+n_{k}>l_{1}+n_{k} \geq s+c \geq x / n_{k}+k n_{k} .
$$

Hence, all values between $l_{1}+n_{k}$ and $l_{2}+n_{k}$ in the set $\mathcal{L}\left(x+n_{1} n_{k}\right)$ must be in the image set of ϱ. However, the existence of such an element would contradict the fact that $l_{1}+n_{k}, l_{2}+n_{k}$ are consecutive in the length set of the image of ϱ. Thus, $l_{1}+n_{k}$ and $l_{2}+n_{k}$ are in fact consecutive elements in $\mathcal{L}\left(x+n_{1} n_{k}\right)$, and thus $z \in \Delta\left(x+n_{1} n_{k}\right)$.

In the second case we see that the lengths of $\phi\left(l_{1}\right), \phi\left(l_{2}\right)$ are $l_{1}+n_{1}, l_{2}+n_{1}$, respectively, and again these must be consecutive elements in the length set of the image of ϕ. From

$$
l_{1}+n_{1}<l_{2}+n_{1} \leq s+c-n_{k}+n_{1}<s+c<\frac{x-k n_{k}^{2}}{n_{1}}
$$

we see that all values between $l_{1}+n_{1}$ and $l_{2}+n_{1}$ in the set $\mathcal{L}\left(x+n_{1} n_{k}\right)$ must be in the image set of ϕ. The existence of such an element contradicts the fact that $l_{1}+n_{1}, l_{2}+n_{1}$ are consecutive in the image set of ϕ. Hence, $l_{1}+n_{1}, l_{2}+n_{1}$ are consecutive elements of $\mathcal{L}\left(x+n_{1} n_{k}\right)$, and thus $z \in \Delta\left(x+n_{1} n_{k}\right)$. Therefore, we know $\Delta(x) \supset \Delta\left(x+n_{1} n_{k}\right)$ and $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$, completing the proof.

We close with this immediate corollary.
Corollary 3. Let $M=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ be a primitive numerical monoid, then if we set $N=2 k n_{2} n_{k}^{2}+$ $n_{1} n_{k}$, we have:

$$
\Delta(M)=\bigcup_{x \in M, x<N} \Delta(x)
$$

Proof. Let y be some element in $\Delta(M)$ not in the above union. If we then let z be the least value in M with $y \in \Delta(z)$, we see that $z \geq N$ implies $z-n_{1} n_{k} \geq 2 k n_{2} n_{k}^{2}$. But then we have $\Delta\left(z-n_{1} n_{k}\right)=\Delta(z)$, so that $y \in \Delta\left(z-n_{1} n_{k}\right)$, a contradiction.

References

1. C. Bowles, Matlab Routines for Delta Sets of Numerical Monoids, http://www.trinity.edu/schapman/MatLab.html.
2. C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On Delta Sets of Numerical Monoids, J. Algebra Appl. 5(2006), 1-24
3. S. T. Chapman, N. Kaplan, T. Lemburg, A. Niles and C. Zlogar, Shifts of generators and delta sets of numerical monoids, submitted.
4. A. Foroutan and W. Hassler, Factorization of powers in C-monoids, J. Algebra 304(2006), 755-781.
5. P.A. García-Sánchez and J.C. Rosales, Finitely Generated Commutative Monoids, Nova Science Publishers, Commack, New York, 1999.
6. A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
7. W. Hassler, A note on sets of lengths of powers of elements of finitely generated monoids, Lect. Notes Pure Appl. Math. 241(2005), 293-303.
8. W. Hassler, private communication.
9. J. L. Ramirez Alfonsin, The Diophantine Frobenius Problem, Oxford University Press, 2005.
10. W. Schmid, Differences in sets of lengths in Krull monoids with finite class group, J. Théor. Nombres Bordeaux 17 (2005), 323-345.
11. J.J. Sylvester, Mathematical questions with their solutions, Educational Times, 41(21)(1884).

Trinity University, Department of Mathematics, One Trinity Place, San Antonio, TX. 78212-7200
E-mail address: schapman@trinity.edu
Grinnell College, Department of Mathematics, Grinnell, Iowa 50112-1690
E-mail address: hoyerrol@grinnell.edu
Princeton University, Department of Mathematics, Princeton NJ 08544-1000
E-mail address: nathank@princeton.edu

[^0]: 2000 Mathematics Subject Classification. 20M14, 20D60, 11B75.
 Key words and phrases. numerical monoid, non-unique factorization, delta set.
 The second and third authors received support from the National Science Foundation under grant DMS-0648390.

