DELTA SETS OF NUMERICAL MONOIDS
ARE EVENTUALLY PERIODIC
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ABSTRACT. Let M be a numerical monoid (i.e., an additive submonoid of Np) with minimal
generating set (ni,...,n¢). Form € M, if m = Zle x;n;, then 22:1 x; is called a factorization
length of m. We denote by L(m) = {m1,...,mg} (where m; < m;;1 for each 1 < i < k) the set of
all possible factorization lengths of m. The Delta set of m is defined by A(m) = {m;41 —m; |1 <
i < k'} and the Delta set of M by A(M) = UgzmeaA(m). In this paper, we expand on the study
of A(M) begun in [2] and [3] by showing that the delta sets of a numerical monoid are eventually
periodic. More specifically, we show for all = > angn% in M that A(z) = A(x 4+ ning).

Let M be a commutative cancellative monoid with set M*® of nonunits and A(M) of irreducible
elements. We assume that M is atomic (i.e., every nonunit can be written as a product of irreducible
elements). Problems involving the factorization properties of elements in M into irreducible elements
have been a frequent topic in the mathematical literature over the past 20 years (see [6] and the
references cited therein). Most of this work entails a study of the length set of an element = € M
which is defined as

Lx)={l]|3Fa1,...,ap € A(M) such that z = a1 ---a;}.

If L(x) = {ls,...,1;} with [y <y < ... <[, then define the delta set of x as the set of consecutive
differences of lengths,

A(LL‘) = {li+1 —1; | 1<1< j}
The delta set of M is defined as

reEM?®
The set A(M) has been widely studied. In particular, [10] studies the delta set of a Krull monoid
with finite divisor class group, [6, Section 6.7] examines the specific case of block monoids, while [2]
and [3] focus on the case where M is a numerical monoid. However, the exact structure of A(M) is
known for very few monoids.

Our work in this paper answers a question raised by Paul Baginski in 2004 which was motivated
by the work on numerical monoids in [2]. Using computer data generated by programs similar to
those in [1], Baginski conjectured for numerical monoids that the sequence {A(z)}.enr is eventually
periodic. We affirm this in Theorem 1 and find an upper bound for the fundamental period. As a
a result, in Corollary 3 we show that the problem of computing the delta set of a numerical monoid
M can be done in finite time with a bound derived from the minimal generating set of M.

A numerical monoid M is any submonoid of the nonnegative integers (denoted Ng) under addition.
We will say that the integers nq < ng < ... < ny generate M if M = {aini +---+apng | a; €
Ny for all ¢} and denote this by

M = (ni,na,...,ng).
Each numerical monoid M has a unique minimal (in terms of cardinality) set of generators. Hence-
forth, we shall assume that a given generating set for a numerical monoid M is minimal. If for M
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as written above, we have ged(nq,...,ng) = 1, then M is called primitive. We note that every nu-
merical monoid is clearly isomorphic to a primitive numerical monoid. If M is a primitive numerical
monoid, then there exists an integer F(M) & M such that m > F(M) implies that m € M. F(M)
is known as the Frobenius number of M and its computation has been a central focus of research for
over 100 years (see [11]). As with much work concerning numerical monoids, the Frobenius number
will play a central role in our argument. The monograph [5, Chapter 10] is a good general reference
on numerical monoids and [9] contains an in depth study of the Frobenius number. Our main result
now follows.

Theorem 1. Given a primitive numerical monoid M = (nq,...,ng), we have for all x > angn%
that A(z) = Az + ning).

Before proceeding, we note that work which is in some sense related to Baginski’s conjecture has
already appeared in the literature. Papers by Hassler [7] and Foroutan and Hassler [4] examine the
factorization properties of the powers, ™, of some fixed nonunit x of a commutative cancellative
atomic monoid M. In fact, that M in Theorem 1 is periodic follows from [4, Proposition 3.1 (2)]
(or [6, Proposition 4.9.6]) in the following manner [8]. Pick a € M and by,...,b, € M such that
M = {b;+ ja]l <i <mn,j > 0}. Then [4, Theorem 3.1 (1)] gives a bound N* and, for each
i € {1,...,n}, bounds B; such that A(b; + ja) = A(b; + la) for all j,l > B; with j =1 mod N*.
Now, if we put N := aN* and B := amax{By,..., By} +max{b1,...,b,}, then a simple calculation
shows that A(z) = A(y) for all ,y € M for which 2,y > B and x = y mod N. We note that
this argument does not yield the bounds or the period given in Theorem 1 in terms of the minimal
generating set of M.

Before continuing to our proof, we will require some additional notation. Let

k
Z(z) ={(a1,...,ar) | z= Zami with a; € Ny for all i}
i=1
denote the set of factorizations of x in M. For all (a1,as,...,ax) € Z(z), it follows that (a; +
Nk, 2,...,a;) and (a1, ...,ak_1,ar + ny) are both in Z(z + ning). Define o : Z(x) — Z(z + ning)
by
olay,as, ... ar) = (a1 + ng,ag, ..., ax).
We also define ¢ : Z(z) — Z(x 4+ ninyg) by
d)(al, e, a1, ak) = (al, ey Qp—1,0aL + nl).

We see that if f is a factorization of x of length [, then p(x) has length I 4+ nj and ¢(x) has length
I 4+ ny. Thus, ¢ and ¢ preserve ordering by length of factorization. We in fact can say more. The
proof of the following assertion is left to the reader.

Lemma 2. Let M = (ny,...,ng) be a primitive numerical monoid.

(1) If l1,ls are elements in L(x), then ly,ly are consecutive elements in L(x) if and only if
l1 + nk, o +ny are consecutive elements in the length set of factorizations in the image of o.

(2) Similarly, l1,ls are consecutive elements in L(x) if and only if 1 +n1,la+n1 are consecutive
elements in the length set of factorizations in the image of ¢.

Proof of Theorem 1. If k =1, then A(M) = () for all nonunits x € M and the result follows. If k = 2,
then by [2, Proposition 3.1] A(M) = {ns —n4} and the result again easily follows. So, assume k > 2
and note throughout our argument that by hypothesis x > 2knonz. If (a1, ..., ax) € Z(z+niny) with

length ! and a; > ng, then we see that (a; — ng,...,ax) € Z(x), o(ar — ng,...,ax) = (a1,...,ax),
and thus (aq,...,ax) is in the image of po. Hence, for all [ € L(x + ning) not in the length set
of the image o, we see that all factorizations (aq,...,ay) of length [ must have a; < ny. Among

factorizations of x + ning of length [ not in the image of o, choose one with a maximal coefficient
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of ny. If we denote this factorization as (aq,...,ar), we will demonstrate that a; < ny — ny for all
1=2,...,k—1.

So suppose that a; > nip — ny. Let by = a1 + ni — ny, by = a; +ny — ng, by = ar +n; — n1, and
bj = a; for all other j. From a; > ni —n; we see that b; > 0 for all j. We see that
bing +bin; +bgne = (a1 +ng —ny)ny + (a; + n1 — ng)ng + (ax +n; — ny)ng
= ainy + a;n; + agng.

If2<i<k—1,then

k j=i—1 j=k—1
Zb]”n]‘ = b1n1 -+ b1n1 + bknk + Z bjnj -+ Z bjnj
j=1 j=2 j=i+1
j=i—1 j=k—1
(1) = ainy +a;n; +apng + Z a;jn; + Z a;n;
j=2 j=i+1
k
= Z a;n; =T+ Ning.
j=1
We also have
j=i—1 j=k—1
bi = bit+bi+bet Y b+ Y b
j=1 j=2 j=i+1

—
[\

~
Il

(a1 + g — ni) + (a; + n1 — ng) + (ax +n; — nq)
j=k—1

a; + a;

j=i+1

j=i—1

+ 2
Jj=2

k

Zaj =1.

j=1

This implies that (b1, ...,by) is also a factorization of x +nyny of length I, but by = a1 +np—n; > ay,
which contradicts our choice of a; as the maximal coefficient of n; in such a factorization. With
minor adjustments to the inequalities in (1) and (2), the argument also works for the cases i = 2
and i = k — 1 and hence a; < np —nq foralli =2,... .,k — 1.

Now that we have bounded a; for i < k, we will note that since arpni < z, we have ar < x/ng.
Thus,

k—1
x x
l=a + g a; +ap <ng+ (E—2)(ng —n1) + — < — + kng.
i=2 Mk Tk

This inequality holds for all I € L(z + ny1ng) not in the image of ¢ , and hence we have verified the
following claim.

Claim A: If [ € L(z + ning) such that [ > x/ng + kny, then [ is in the length set of the image of
0.

If (a1,...,ar) € Z(x 4+ niny) with length I, ar > nq, we see that (a1,...,ar —n1) € Z(z), and
o(ay,...,ag—n1) = (a1,...,ax), so that (a,...,ax)is in the image of ¢. Thus, for alll € L(x+niny)
not in the length set of the image ¢, we see that all factorizations (as,...,ax) of length I must have
ap < nj.

Among such factorizations of x +nyny of length I, choose one with a maximal coefficient of ny. If
we denote this factorization as (ay,...,ax), then again we have a; < ny —nq foralli=2,...,k—1.
Otherwise, as before we can define by = a1 +ny —n4,b; = a; +ny —ng, by = ar +n; —ny, and b; = a;
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for all other j. Then again we see that (by,...,bx) is another factorization of = + niny of length .
But, by = ay + n; — ny > ax, contradicting the fact that a; is the maximal coefficient of ny in such
a factorization.

We then get

> ay = x — Z;C:—; @illi — ANk T — (k —2)(ng —n1)ng — ning S 2= kni

ny ny nq
This inequality holds for all [ € L(z + nink) not in the image of ¢ , and hence we have verified a
second claim.

Claim B: If | € L(x + nyng) such that | < (x — kn3)/n1, then [ is in the length set of the image of
o.

Now we observe by Proposition 2.9.4 in [6] that
F(M)<(ni—1)(ne+...4+ng) —ny < (k—1Dning — (na+ ... +ng) < (k— )ning — no.

Choose the integer i such that x + ning = kning + ¢ (mod ny) with 1 <4i < ny. We then choose
the integer s such that x +niny = sng + (kning — ne +4). From x > 2knan? we can see easily that
s> 0.

If we let r = kning — no + 4, we see that
r—ning > (k—1)ning —ne > F(M)

implies that r —ning € M. Let (c1,ca,...,cr) be an arbitrary element of Z(r — nyny). We then see
that (¢1 + ng,co, ..., cx) € Z(r) and this also gives us that

(c1 +ng,ca+s,¢3,...,¢) € Z(x + ning).

We wish to bound the length of this factorization.

First, we see that as s = (z + ning — r)/ne, we have s < x/ny from r > ning. We also see
that s > (z — kning)/ng from r < (k + 1)ning. Setting ¢ = ny + ¢1 + ... + ¢, it follows from
the previous paragraph that the length we wish to bound is s + ¢. We can bound ¢ < r/n; since
(c1 + ng,co, ..., ck) is a factorization of r. We then see

T kning

c< — < —— = kng.
ny ny

Thus we get s+ ¢ < x/ng + kny, so overall we have

Tz —knin T
71k<s<s+c<—+knk.
N2 n2
Now let y € A(z 4+ ninyg), and Iy, I3 be consecutive elements in L(x + nyng) such that lo —1; = y.
Since s + ¢ € L(z + niny), we have either s + ¢ < [j or ls < s+ ¢. We now consider the first case.
Since 2kn2n% < z we have

kng(ng 4+ n1) < (ng — no)x.

Hence,
1 1
ke <1+”1> < <):c
N9 N9 ng
and thus
kn
kng + ik < r_ i
N9 U») ng
Finally,
k
— + kn, < x it <s+c
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and thus, lo > I3 > s+c¢ > x/ng+kng. By Claim A, I3, s are both in the length set of the image of p.
Moreover, they must be consecutive elements in this length set. Thus, by Lemma 2, [y — ng, lo — ng
are consecutive elements of L(x). Thus, we see y = (Io —ng) — (I1 — nx) € A(x).

In the second case our assumption z > angni implies

(ng — ny1)x > knang(ng + nq)

and hence
1 1
(—>x>knk (n+1>
ni1 no ni
Finally
k 2
@ _w ke
ni n2 ni
implies that
T — Imi

T
> — 4+ knp > s+ec.
ny n2

Thus l; < ly < s+c < (z—kn?)/n; and by Claim B, l1, > are both in the length set of the image of
¢. Thus, again by Lemma 2, l; — nj,ls — n; are consecutive elements of L(z) and y € A(z) follows
as before. Therefore, A(x + ning) C A(z).

Next, let z € A(x), and l1,ls be consecutive elements in L(z) with lo — I3 = 2. Let f1, fa be
factorizations of length [y, s, respectively. We first remind ourselves that sny + r = & + ning, and
(c1,...,ck) is a factorization of r—njyny of length c—ny. Thus, (¢1,ca+$,¢3,. .., cx) is a factorization
of z of length s + ¢ — ny, so that s + ¢ — ny € L(z).

We have either I > s4+c—ny or Iy < s+ ¢ —ny. Consider the first case. We see that the lengths
of o(l1), o(l2) are Iy + ng,la + ng, respectively. Moreover, by Lemma 2, these must be consecutive
elements in the length set of the image of . We thus have

lo+ng >l +ng>s+c>x/ng+ kng.

Hence, all values between l; + ny and ls + ng in the set L(x + niny) must be in the image set of
o. However, the existence of such an element would contradict the fact that l; + ng,ls + ng are
consecutive in the length set of the image of 0. Thus, I; + nx and Il + ny are in fact consecutive
elements in L(x + ning), and thus z € A(z + ning).

In the second case we see that the lengths of ¢(l1), ¢(l2) are 1 + n1,ls + nq, respectively, and
again these must be consecutive elements in the length set of the image of ¢. From
T — kn%
lh+nm <lbb+n <s+c—np+n<s+e< ——=
ni
we see that all values between Iy + n; and Iy + ny in the set L(x + ning) must be in the image
set of ¢. The existence of such an element contradicts the fact that Iy + n1,ls + ny are consecutive
in the image set of ¢. Hence, l; + ny,ly + ny are consecutive elements of L(x + niny), and thus
z € A(x 4+ ning). Therefore, we know A(z) D A(z + nink) and A(z) = A(z + ning), completing
the proof. |

We close with this immediate corollary.

Corollary 3. Let M = (nq,...,ny) be a primitive numerical monoid, then if we set N = angni +
ning, we have:

AM) = | Aw@)

zeEM,x<N
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Proof. Let y be some element in A(M) not in the above union. If we then let z be the least

value in M with y € A(z), we see that z > N implies z — nin; > 2kn2n%. But then we have
A(z —ning) = A(z), so that y € A(z — niny), a contradiction. O
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