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Abstract. Several recent papers have studied the structure of the delta set of a numerical monoid.

We continue this work with the assumption that the generating set S chosen for the numerical
monoid M is not necessarily minimal. We show that for certain choices of S, the resulting delta

set can be made (in terms of cardinality) arbitrarily large or small. We close with a close analysis

of the case where M = 〈n1, n2, in1 + jn2〉 for nonnegative i and j.

1. Introduction

The study of delta sets of various commutative cancellative atomic monoids has been a frequent
topic in the recent literature (see the bibliography for numerous references). Several papers have
addressed this subject with respect to a numerical monoid M ([1], [3], [5] and [6]). In a recent paper
[2] which computes delta sets of certain arithmetical congruence monoids, several of the proofs relied
on factoring elements in numerical monoids using generating sets which may not be minimal. Hence,
the question arises as to how the delta set of a numerical monoid changes as its set of generators
changes. In this paper, we address this issue and show (among other things) that no matter the
structure of ∆(M) , generating sets S1 and S2 of M can be found so that |∆S1(M)| is arbitrarily
large, and |∆S2(M)| = 1.

Before reviewing our results, we will cover some basic definitions and notation as outlined in [9].
Let M be a commutative cancellative atomic monoid with set A(M) of irreducible elements and set
M× of units. For m ∈ M\M×, set L(m) = { t ∈ N | ∃ x1, . . . , xt ∈ A(M) with m = x1 · · ·xt }. The
set L(m) is called the set of lengths of m. For any m ∈ M\M×, we define L(m) = sup L(m) and
`(m) = inf L(m). Moreover, if m ∈ M\M× and L(m) = {x1, . . . , xn} with x1 < x2 < · · · < xn,
then the delta set of m is ∆(m) = {xi − xi−1|2 ≤ i ≤ n}, and the delta set of M is ∆(M) =⋃

m∈M\M× ∆(m). By a fundamental result of Geroldinger [8, Lemma 3], if d = gcd ∆(M) and
|∆(M)| < ∞, then {d} ⊆ ∆(M) ⊆ {d, 2d, . . . , kd} for some k ∈ N. A general review of known
results involving delta sets can be found in [9, Section 6.7].

A numerical monoid M is any submonoid of the nonnegative integers (denoted N0) under addition.
We will say that the integers n1 < n2 < · · · < nk generate M if M = {a1n1 + · · · + aknk | ai ∈
N0 for all i} and denote this by M = 〈n1, n2, . . . , nk〉. Each numerical monoid M has a unique
minimal (in terms of cardinality and set inclusion) set of generators. If n1, . . . , nk are the minimal
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generators of M , then A(M) = {n1, . . . , nk}. If, for M as written above, we have gcd(n1, . . . , nk) = 1,
then M is called primitive. We note that every numerical monoid is clearly isomorphic to a primitive
numerical monoid. If M is a primitive numerical monoid, then there exists an integer F (M) 6∈ M
such that m > F (M) implies that m ∈M . The integer F (M) is known as the Frobenius number of
M .

Much is known about the structure of ∆(M) for a numerical monoid M . Of particular interest
in our current work are the following results.

Proposition 1.1. Let M = 〈n1, . . . , nk〉 be a primitive numerical monoid with n1, . . . , nk a minimal
system of generators.

(1) |∆(M)| <∞ and min ∆(M) = gcd{ni − ni−1 | 2 ≤ i ≤ k } [3, Proposition 2.9].
(2) If M = 〈n, n + k, n + 2k,. . . , n + bk〉, then ∆(M) = {k} [3, Theorem 3.9].
(3) For any k and v in N there exists a three generated numerical monoid M with ∆(M) =
{k, 2k, . . . , vk} [3, Corollary 4.8].

(4) The sequence {∆(x)}x∈M is eventually periodic [5].

Our approach will be slightly different than that of [3] and [5] and we extend the definitions of
the previous page as follows. For any numerical monoid M , let S = {n1, n2, . . . , nk} be an arbitrary
generating set for M . For x ∈ M \M×, set FS(x) = {(x1, . . . , xk) ⊂ Nk

0 | x = x1n1 + . . . + xknk}.
We will refer to FS(x) as the set of factorizations of x in S. For x ∈M \M×, the set

LS(x) = {l ∈ N | ∃ (x1, . . . , xt) ∈ FS(x) with l = x1 + · · ·+ xl}
will be referred to as the set of lengths of x with respect to S. Set LS(x) = max LS(x) and
`S(x) = min LS(x). Next, if we have LS(x) = {l1, . . . , ln}, with l1 < l2 < . . . < ln, then

∆S(x) = {li − li−1 | 2 ≤ i ≤ n}
is known as the delta set of x with respect to S and ∆S(M) =

⋃
x∈M\M× ∆S(x) the delta set of M

with respect to S.
We break the remainder of our work into two sections. In Section 2, we examine how the set

∆S(M) can vary from ∆(M). In Theorem 2.1 we show for all positive integers n, there is a generating
set S1 of M so that |∆S1(M)| > n. Conversely, in Theorem 2.2 we show that there is always a
generating set S2 such that ∆S2(M) = {1}. In Section 3, for primitive M = 〈n1, n2〉, we examine
closely the behavior of the set ∆S(M) for S = {n1, n2, in1 + jn2} for i, j ≥ 0. After some basic
structure results, we are able to show the following for such an S.

(1) If S = {n1, n2, n1 + n2}, then ∆S(M) = {1, 2, . . . , n2 − n1} (Proposition 3.8).
(2) ∆S(M) = ∆(M) if and only if i + j − 1 = n2 − n1 (Theorem 3.5).
(3) We give exact conditions for when |∆S(M)| = 1 (Theorem 3.6).
(4) If i + j = 2, then ∆S(M) = {1, 2, ..., k} for some k (Proposition 3.7).
(5) If ∆S(M) = {1, k}, then k = 2 (Theorem 3.12).

We note that for numerical monoids, the proofs of Proposition 3.5 in [3] and Proposition 1.4.4
in [9] are still valid when we lose the minimality of our generators. Hence, we will freely use the
following throughout the remainder of our work.

Proposition 1.2. gcd(∆S(M)) = min(∆S(M)) = gcd{ni+1 − ni, 1 ≤ i < t}.

2. Variations in ∆S(M) For Different Generating Sets

We start by proving that the delta set of a numerical monoid can be made arbitrarily large with
non-minimal generating sets.
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Theorem 2.1. For any primitive numerical monoid M and all n ∈ N, there is a finite generating
set S such that |∆S(M)| > n.

Proof. We will proceed by showing that for all finite generating sets S ⊂ M , there exists a finite
generating set S′ ⊂ M such that S ⊂ S′ and |∆S(M)| < |∆S′(M)|. Then we can find a series of
finite generating sets S0, S1, . . . , Sn, where S0 is the minimal generating set, and |∆Si(M)| ≥ i.

Let F (M) be the Frobenius number of M . Let d be the largest element of ∆S(M). Let s be the
largest element of S. Let k be the smallest integer such that ∆S(M) ⊂

⋃k
i=1 ∆S(i). Such a value

will always exist, since for each l ∈ ∆S(M), there is a least element y ∈M such that l ∈ ∆S(y).
Now choose m ∈ N such that m > max{F (M), k, s(d + 1)}, and let S′ = S ∪ {m}. We see since

m > k, that ∆S(M) ⊂ ∆S′(M), because given x ∈M with x < m no factorization of x includes m,
and the factorizations of x in S′ are precisely those in S. Since m > F (M) there is a factorization
of m in S and lS(m) ≥ m

s > d + 1. We see that the set of factorizations of m in the generating set
S′ is precisely the set of factorizations of m in S, as well as the factorization m = 1 ·m, of length 1.
Thus, we see that lS(m)− 1 ∈ ∆S′(m). Since lS(m)− 1 > d + 1− 1 > d and lS(m)− 1 ∈ ∆S′(M)
the proof is complete. �

If we choose our generating set S to include many small elements of M then we can show that
∆S(M) is small.

Theorem 2.2. Let M be a primitive numerical monoid, with minimal generating set {n1, n2, . . . , nk}.
For all N ≥ 2nk, if we let S = {m ∈M such that m ≤ N}, then ∆S(M) = {1}.

Proof. We can write S = {n1, . . . , nk, nk+1, . . . , nr} where the first k generators are the minimal
generators of M and nk+1 < · · · < nr are the generators we have added to S.

Suppose ∆S(M) 6= {1}. Then there exists some x ∈M such that we have two factorizations of x
in S,

x =
r∑

i=1

bini =
r∑

i=1

cjni,

where each bi, ci ≥ 0,
∑r

i=1 bi = B,
∑r

i=1 ci = C, C−B ≥ 2 and x does not have any factorizations
of length between B and C. In particular, we may assume that x has no factorizations of length
B + 1 or C − 1.

Suppose bi ≥ 0 for some i ≥ k + 1. Since ni is not a minimal generator of M we can write it as a
sum of two elements of S and clearly we have a factorization of x of length B + 1. So we have bi = 0
for all i ≥ k + 1 and therefore x ≤ Bnk.

Suppose there exist i, j such that ci, cj > 0 and ni + nj ≤ N . Then ni + nj ∈ S and we clearly
have a factorization of length C−1. So the factorization of length C contains at most one generator
less than N

2 . Therefore x ≥ n1 + (C − 1)N
2 .

We have n1 + (C − 1)N
2 ≤ x ≤ Bnk. Since C − 1 > B we have N

2 < nk, which contradicts our
choice of N . Therefore there does not exist x ∈ M such that ∆S(x) contains an element greater
than 1 and ∆S(M) = {1}. �

3. The Structure of ∆S(M) when S = {n1, n2, in1 + jn2}

3.1. Basic Structure Results. We now will find restrictions on what sort of delta sets are obtain-
able, presenting both general principles and specific examples. Throughout the rest of this paper we
will assume that M is primitive. We begin with a useful lemma. Let M = 〈n1, n2〉 be a numerical
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monoid, and let s = in1 + jn2 with 0 ≤ j, 0 ≤ i < n2. This implies that in1 + jn2 is the shortest
possible factorization of s in M .

Lemma 3.1. Let M = 〈n1, n2〉 be a primitive numerical monoid and S = {n1, n2, in1 + jn2} with
i < n2. Then i + j − 1 ∈ ∆S(M).

Proof. The shortest factorization of in1 + jn2 in S has length 1. Every other factorization is of the
form in1 + jn2 = (i+kn2) ·n1 + (j−kn1) ·n2 for some −bi/n2c ≤ k ≤ bj/n1c . But i < n2, so k ≥ 0
and LS(in1 + jn2) = {1} ∪ {i + j + k(n2 − n1) | 0 ≤ k ≤ bj/n1c} and thus i + j − 1 ∈ ∆S(M). �

It will often be useful to consider the cases j 6= 0 and j = 0 separately. If j = 0 we can write
n2 = ki + c for unique integers k ≥ 0 and 0 ≤ c < i.

Proposition 3.2. Let M = 〈n1, n2〉, S = {n1, n2, in1} with 2 ≤ i < n2 and n2 = ki + c for unique
integers k ≥ 0 and 0 ≤ c < i. Then if in1 < n2, we have {i− 1, k + c− n1} ⊆ ∆S(M).

Proof. Note that n2− in1 = i(k−n1)+ c > 0 implies k ≥ n1. We will show that {i−1, k + c−n1} =
∆S(n1n2). Any factorization of n1n2 is of the form n1n2 = x1n1+x2n2+x3(in1) with x1, x2, x3 ≥ 0.
If x2 > 0 then since n1n2 − x2n2 ≡ 0 (mod n1) we must have x2 = n1. Every factorization with
x2 = 0 is of the form (c + li)n1 + in1(k − l) for 0 ≤ l ≤ k, so

LS(n1n2) = {n1} ∪ {c + k + l(i− 1) | 0 ≤ l ≤ k}.
We can order the elements of LS(n1n2) from least to greatest as {n1, k+c, k+c+(i−1), . . . , ki+c}.
We see that ∆S(n1n2) = {k + c− n1, i− 1}. �

We now state a theorem proved in [6, Theorem 3.1], and derive a useful corollary. We note
that the proof of this theorem does not require the generating set of M to be minimal. Let k1 =
min{k | k > 0, kn1 ∈ 〈n2, n3〉} and k3 = min{k | k > 0, kn3 ∈ 〈n1, n2〉}.

Theorem 3.3. Let M = 〈n1, n2, n3〉 be a numerical monoid with n1 < n2 < n3. Then max(∆(M)) =
max(∆(k1n1) ∪∆(k3n3)).

We will use this theorem to explicitly calculate max(∆S(M)) in certain cases. We will now
compute max(∆S(M)) for the main type of numerical monoid that we will study in this paper.

Corollary 3.4. Let M = 〈n1, n2〉 be a numerical monoid, and let s = in1 + jn2 with 0 ≤ j, 0 ≤
i < n2 and i + j ≥ 2. Let S = {n1, n2, s} and if j = 0, then let k and c be as in Proposition 3.2. It
follows that

(1) If j 6= 0 max(∆S(M)) = max{n2 − n1, i + j − 1}.
(2) If j = 0 and n2 < s, max(∆S(M)) = i− 1.
(3) If j = 0 and s < n2, max(∆S(M)) = max{i− 1, k + c− n1}.

Proof. (1) Every x 6= 0 in 〈n2, s〉 satisfies x, x − n2 ∈ M . The smallest multiple of n1 satisfying
this condition is n1n2, so k1 = n2. If i 6= 0 then n1n2 − s 6∈ M and the only factorizations of
n1n2 are (n2, 0, 0) and (0, n1, 0). Therefore ∆S(n1n2) = {n2 − n1}. If i = 0 then n2n1 = n1n2 =
(n1 − kj)n2 + ks for all 0 ≤ k ≤ bn1/jc . In this case,

LS(n1n2) = {n2} ∪ {n1 − k(j − 1) | 0 ≤ k ≤ bn1/jc}.
Thus {n2 − n1} ⊆ ∆S(n1n2) ⊆ {n2 − n1, i + j − 1}.

Since s ∈M , k3 = 1. The factorizations of s in 〈n1, n2〉 are of the form s = (i+kn2)n1+(j−kn1)n2

for any 0 ≤ k ≤ bj/n1c. Note that (i, j, 0) is the shortest factorization of s by hypothesis. Thus
LS(s) = {1}∪ {i + j + k(n2−n1) | 0 ≤ k ≤ bj/n1c}, and {i + j− 1} ⊆ ∆S(s) ⊆ {n2−n1, i + j− 1}.
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Therefore ∆S(k1n1)∪∆S(k3s) = {n2−n1, i+j−1} and by Theorem 3.3 we have max(∆S(M)) =
max{n2 − n1, i + j − 1}.

(2) Suppose x ∈ 〈n2, s〉 with x 6= 0. Then either x − n2 ∈ M or x − s ∈ M . The least kn1 with
kn1 − n2 ∈M is n1n2 and in1 = s < n1n2. Thus s is the least multiple of n1 in 〈n2, s〉 and k1 = i.
We see that LS(s) = {1, i} and so ∆S(s) = {i− 1}.

Since s ∈M, k3 = 1. Therefore ∆S(k1n1) ∪∆S(k3s) = ∆S(s) = {i− 1} and by Theorem 3.3 we
have max(∆S(M)) = i− 1.

(3) Using exactly the same argument as above, we see that s is the least multiple of n1 in 〈n2, s〉
and k1 = i. We have LS(s) = {1, i} and ∆S(s) = {i− 1}.

We compute k3 = min{k | k > 0, kn2 ∈ 〈n1, s〉}. Every x ∈ 〈n1, s〉 satisfies x − n1 ∈ M . The
smallest multiple of n2 with kn2 − n1 ∈ M is n1n2, so k3 = n1. In the proof of Proposition 3.2 we
showed that ∆S(n1n2) = {i − 1, k + c − n1}. Therefore ∆(s) ∪∆(n1n2) = {i − 1, k + c − n1}, and
by Theorem 3.3 we have max(∆S(M)) = max{i− 1, k + c− n1}. �

3.2. Sets S for which |∆S(M)| = 1. Let M = 〈n1, n2〉 and S = {n1, n2, s} for s = in1 + jn2 with
s = in1 + jn2 with 0 ≤ j, 0 ≤ i < n2 and i + j ≥ 2 be a nonminimal generating set for M . In this
section we investigate when |∆(M)| = |∆S(M)| = 1. We first determine precisely when the addition
of a nonminimal generator produces an identical delta set.

Theorem 3.5. ∆(M) = ∆S(M) if and only if i + j − 1 = n2 − n1.

Proof. Recall that ∆(M) = {n2 − n1}. First suppose ∆(M) = ∆S(M). By Lemma 3.1, we know
i + j − 1 ∈ ∆S(M). Therefore i + j − 1 = n2 − n1.

Now suppose i+j−1 = n2−n1. We first note that s = in1+jn2 ≥ (i+j)n1 = (n2−n1)n1+n1 > n2.
By Proposition 1.2, min(∆S(M)) = gcd{n2 − n1, s− n2}. We have

s− n2 = (i + j − 1)n1 + (j − 1)(n2 − n1) = (n2 − n1)(n1 + j − 1).

This implies min(∆S(M)) = gcd{n2 − n1, (n2 − n1)(n1 + j − 1)} = n2 − n1.
We will now apply Corollary 3.4 to find max(∆S(M)). If j = 0 then max(∆S(M)) = i − 1 =

n2 − n1. If j 6= 0 then max(∆S(M)) = max{n2 − n1, i + j − 1} = n2 − n1.
We have max(∆S(M)) = n2 − n1 = min(∆S(M)). Therefore ∆S(M) = {n2 − n1} = ∆(M). �

We now determine necessary and sufficient conditions for the addition of a non-minimal generator
to yield a singleton delta set.

Theorem 3.6. |∆S(M)| = 1 if and only if one of the following two conditions holds:

(1) i + j − 1 = n2 − n1.
(2) j = 0 and there exists a positive integer l ≤ bn2

i c+ 1 such that l(i− 1) = n2 − n1.

Proof. Suppose |∆S(M)| = 1. Lemma 3.1 implies that i + j − 1 ∈ ∆S(M). If i + j − 1 = n2 − n1

then condition (1) holds. Suppose i + j − 1 6= n2 − n1. If n1n2 − s 6∈M then the only factorizations
of n1n2 in S are (n2, 0, 0) and (0, n1, 0) and ∆S(n1n2) = {n2 − n1}. This implies |∆S(M)| ≥ 2,
which is a contradiction. Therefore n1n2 − in1 − jn2 ∈ M . Hence either i = 0 or j = 0. Suppose
i = 0. Then the two longest factorizations of n1n2 have length n2 and n1, so n2 − n1 ∈ ∆S(n1n2)
and |∆S(M)| ≥ 2. So i 6= 0 and thus j = 0.

Corollary 3.4 and the fact that |∆S(M)| = 1 yields i − 1 ∈ ∆S(M). Combining this with
Proposition 1.2 (in either the case in1 < n2 or n2 < in1) yields an l with l(i − 1) = n2 − n1.
Now suppose l > bn2/ic + 1. Then n1n2 has the factorizations (0, n1, 0) and (n2 − ki, 0, k) for
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0 ≤ k ≤ bn2/ic. Thus LS(n1n2) = {n1, n2−k(i−1) | 0 ≤ k ≤ bn2/ic}. But n1 = n2− l(i−1), so we
have LS(n1n2) = {n2−k(i−1) | 0 ≤ k ≤ bn2/ic or k = l}. Thus the consecutive difference between
each pair of terms is (i − 1), except for the last pair which has a difference of (i − 1)(l − bn2/ic).
Since l > bn2/ic+ 1, we have (l− bn2/ic) > 1 and (i− 1)(l− bn2/ic) 6= i− 1. Thus |∆S(n1n2)| = 2
and |∆S(M)| ≥ 2.

Now suppose that i + j − 1 = n2 − n1. By Theorem 3.5 |∆S(M)| = 1. So suppose j = 0 and
there exists a positive integer l ≤ dn2/ie such that l(i − 1) = n2 − n1. In either the case in1 < n2

or n2 < in1, Proposition 1.2 and a simple calculation yields

min(∆S(M)) = (i− 1) gcd{l, n1}.

Since l(i− 1) = n2 − n1 we have n1 + l(i− 1) = n2. So gcd{l, n1} | n2 and gcd{n1, n2} = 1 implies
gcd{l, n1} = 1 and min(∆S(M)) = i− 1.

We now compute max(∆S(M)). If in1 > n2 then Corollary 3.4 implies max(∆S(M)) = i − 1.
If in1 < n2 then we can write n2 = ki + c for some unique integers k ≥ 1 and 0 ≤ c < i. Then
Corollary 3.4 implies max(∆S(M)) = max{i−1, k+c−n1}. We have l(i−1) = n2−n1 = ki+c−n1,
so l = ki+c−n1

i−1 = k + k+c−n1
i−1 . Since l ≤ bn2/ic + 1 we have l ≤ k + 1. This implies k+c−n1

i−1 ≤ 1
and therefore i − 1 ≥ k + c − n1. Then max(∆S(M)) = i − 1. Therefore max(∆S(M)) = i − 1 =
min(∆S(M)), and ∆S(M) = {i− 1}. �

3.3. Intervals as Delta Sets. It is difficult to give explicit formulas for ∆S(M). In this section we
will consider M = 〈n1, n2〉 with certain nonminimal generating sets and prove the following result.
In the following, for an integer k > 1 we set [1, k] = {1, 2, 3, . . . , k}.

Theorem 3.7. Let M = 〈n1, n2〉 and S = {n1, n2, s} with s = in1 + jn2, i, j ≥ 0 and i + j = 2.
Then ∆S(M) = [1, k] for some k.

There are three cases depending on the value of i. We will consider each separately. We begin
with i = j = 1.

Proposition 3.8. Let M = 〈n1, n2〉 and S = {n1, n2, n1 + n2}. Then ∆S(M) = {1, 2, . . . , n2−n1}.

Proof. Since gcd{n1+n2−n2, n2−n1} = gcd{n1, n2} = 1, Proposition 1.2 implies min(∆S(M)) = 1.
Corollary 3.4 implies that max(∆S(M)) = n2−n1. Let k = 2+dn2

n1
e. Let y0, y1, . . . , yn1−1 be defined

so that ym = (kn1 + m)n2. We will show that
⋃n1−1

m=0 ∆(ym) = [1, n2 − n1].
Every solution of the equation (kn1+m)n2 = x1n1+x2n2 with x1, x2 ≥ 0 satisfies x1 = (kn2−ln2)

and x2 = m + ln1 for some integer l ≥ 0. In particular, every factorization of (kn1 + m)n2 with
respect to S has the form (kn1 + m)n2 = (x1 + x3)n1 + (x2 + x3)n2. So every factorization of
(kn1 + m)n2 satisfies x1 + x3 = (k− l)n2 and x2 + x3 = ln1 + m. Since x1, x2, x3 ≥ 0, we must have
0 ≤ l ≤ k and x3 ≤ min{ln1 + m, (k − l)n2}.

We will see that the set of factorization lengths of (kn1 + m)n2 is a union of intervals and we
will compute the gaps between them. A factorization (x1, x2, x3) of x has length x1 + x2 + x3 =
(k − l)n2 + ln1 + m− x3.

For a fixed m, let

Il = [(k − l)n2 + ln1 + m−min{ln1 + m, (k − l)n2}, (k − l)n2 + ln1 + m].

We see that for 0 ≤ l < k, max(Il) = n2 − n1 + max(Il+1). So we have max(Ik) < max(Ik−1) <
· · · < max(I0), and whenever min(Il)−max(Il+1) > 0 we have min(Il)−max(Il+1) ∈ ∆(ym).



NON-MINIMAL GENERATORS AND DELTA SETS 7

Let t = kn2−m
n1+n2

. For l ≤ btc we have ln1 + m ≤ (k − l)n2. This implies that min(Il) = (k − l)n2.
We have

min(Il)−max(Il+1) = (k − l)n2 − [(ln1 −m) + (k − l)n2 − (n2 − n1)] = (n2 − n1)− (ln1 + m).

We see that bn2−n1
n1
c ≤ n2−n1

n1
, and since k = 2 + dn2

n1
e ≥ 2 + n2

n1
and m ≤ n1, we have

btc ≥ kn2 −m

n1 + n2
− 1 ≥

2n2 + n2
2

n1
− n1 − (n1 + n1)
n1 + n2

≥
n2

2
n1
− n1

n1 + n2
=

n2
2 − n2

1

n1(n1 + n2)
=

n2 − n1

n1
.

Therefore we have that bn2−n1
n1
c ≤ btc. We conclude that {(n2 − n1) −m − ln1} ∈ ∆(ym) for all

0 ≤ l ≤ bn2−n1−m
n1

c. We see that
⋃n1−1

m=0 ∆(ym) = [1, n2 − n1], completing the proof. �

We will now consider i = 0, j = 2 and i = 2, j = 0.

Proposition 3.9. Let M = 〈n1, n2〉 and S = {n1, n2, 2n2}. Then ∆S(M) = [1, n2 − n1].

Proof. Since gcd{n2, n2 − n1} = gcd{n1, n2} = 1, Proposition 1.2 implies min(∆S(M)) = 1. By
Corollary 3.4, we know that max(∆S(M)) = n2 − n1. Let y0, y1, . . . , yn2−n1 be defined so that
yl = n1n2 +2ln2. We will show that (n2−n1)− l ∈ ∆(yl), and therefore

⋃n2−n1
l=0 ∆(yl) = [1, n2−n1].

Since n1n2 + l2n2 is a multiple of n2, given a factorization (n1 + 2l)n2 = x1n1 + (x2 + 2x3)n2 we
know that x1 = mn2 for 0 ≤ m ≤ 1 +

⌊
2l
n1

⌋
.

Let Am denote the set of lengths of factorizations of yl with x1 = mn2. We see that for such a
factorization 0 ≤ x3 ≤ l +

⌊
n1(1−m)

2

⌋
. We see that max(Am) = mn2 + 2l + n1(1−m) and therefore

min(Am) = mn2+l+n1(1−m)−
⌊

n1(1−m)
2

⌋
. We see that min(A0) < min(A1) < · · · < min(A

1+
⌊

2l
n1

⌋)

and that min(A1)−max(A0) = (n2 + l)−(2l+n1) = (n2−n1)− l ∈ ∆(yl), completing the proof. �

Proposition 3.10. Let M = 〈n1, n2〉 and S = {n1, n2, 2n1}. If 2n1 > n2, then ∆S(M) = {1}. If
2n1 < n2 then ∆S(M) = [1, dn2/2e − n1].

Proof. If 2n1 > n2 then max(∆S(M)) = i − 1 = 1 by Corollary 3.4, so ∆S(M) = {1} and we are
done. So suppose 2n1 < n2. We can write n2 = 2k + c for unique integers k ≥ 0 and 0 ≤ c ≤ 1. By
that same corollary, we know max(∆S(M)) = k + c−n1 = dn2/2e−n1. Let y0, y1, . . . , ydn2

2 e−n1
be

defined so that yl = (n2 + 2l)n1. We will prove that
⌈

n2
2

⌉
− n1 − l ∈ ∆(yl), and taking the union of

the sets ∆(yl) will complete the proof.
Since yl is a multiple of n1, whenever we have yl = (x1 + 2x3)n1 + x2n2 we know that x2 = mn1

for some 0 ≤ m ≤ 1 +
⌊

2l
n2

⌋
. Since l ≤ dn2

2 e − n1 ≤ n2+1
2 − n1, we have

0 <
2l

n2
≤ n2 + 1− 2n1

n2
≤ 1 +

1− 2n1

n2
< 1,

and therefore 0 ≤ m ≤ 1.
Let A0 denote the set of factorizations with m = 0 and let A1 denote the set of factorizations

with m = 1. We see that max(A1) = n1 + 2l and min(A0) = l +
⌊

n2
2

⌋
+ n2− 2

⌊
n2
2

⌋
= l + n2−

⌊
n2
2

⌋
.

Therefore min(A0)−max(A1) =
⌈

n2
2

⌉
− n1 − l ∈ ∆(yl), completing the proof. �

Combining the last three propositions proves Theorem 3.7. We will now consider one more case
in which we can explicitly describe ∆S(M).



8 S. T. CHAPMAN, J. DAIGLE, R. HOYER, AND N. KAPLAN

Theorem 3.11. Let M = 〈n1, n2〉 and S = {n1, n2, in1 + jn2} such that i + j − 1 = k(n2 − n1) for
k > 0, j ≥ 0, and 0 ≤ i < n2. Then ∆S(M) = {n2 − n1, 2(n2 − n1), . . . , k(n2 − n1)}.

Note that the case k = 1 is implied by Theorem 3.5.

Proof. We first note that in1 + jn2 ≥ (i + j)n1 = k(n2 − n1)n1 + n1. Therefore in1 + jn2 − n2 ≥
(kn1 − 1)(n2 − n1) > 0, so in1 + jn2 > n2. We will now compute max(∆S(M)) and min(∆S(M)).
Since n2−n1 ≤ i + j− 1, by Corollary 3.4 we see that max(∆S(M)) = i + j− 1 = k(n2−n1). Since
in1 + jn2 = (k(n2 − n1) + 1)n1 + j(n2 − n1), we see that

gcd{n2 − n1, in1 + jn2 − n1} = gcd{n2 − n1, (k + j)(n2 − n1)} = n2 − n1.

By Proposition 1.2 we have min(∆S(M)) = n2 − n1.
Let y0, y1, . . . , yk−1 be defined so that yl = in1 +jn2 + ln1n2. We will prove that (k− l)(n2−n1) ∈

∆(yl), and taking the union of the sets ∆(yl) will complete the proof.
It is clear that the shortest factorization of yl which does not contain any factors of in1 + jn2 has

length ln1 + j + i = ln1 + k(n2 − n1) + 1. The longest factorization of x which contains exactly one
factor of in1 +jn2 has length 1+ ln2. We have ln1 +k(n2−n1)+1− (ln2−1) = (k− l)(n2−n1) ≥ 0.

Suppose we have a factorization of x with at least two factors of in1 + jn2. Then it has length at
most (ln1n2 − in1 − jn2)/n1 + 2 = ln2 − i− jn2/n1 + 2 ≤ ln2 + 1. Therefore ln1 + j + i and 1 + ln2

are consecutive elements in LS(x) and we have (k − l)(n2 − n1) ∈ ∆S(yl). �

3.4. Delta Set {1, t}. In this section we will continue to work with M = 〈n1, n2〉 and S =
{n1, n2, in1 + jn2}. We will show for t > 2 that the set T = {1, t} is not equal to ∆S(M) for
any values i, j. In particular, we will prove the following:

Theorem 3.12. Let M = 〈n1, n2〉 and let s = in1 +jn2 with 0 ≤ j, 0 ≤ i < n2. Let S = {n1, n2, s}.
Then if ∆S(M) = {1, t}, t = 2.

This proof divides into three major cases: (1) i+j = 2, (2) i+j > 2, j 6= 0, and (3) i+j > 2, j = 0.
The first case follows from Proposition 3.7. We know that ∆S(M) must be an interval, and thus
t = 2. The rest of the proof will follow from two propositions.

Proposition 3.13. Let M = 〈n1, n2〉 and let s = in1 with 3 ≤ i < n2. Let S = {n1, n2, s}. Then if
∆S(M) = {1, t}, t = 2.

Proof. Lemma 3.1 implies that i−1 ∈ {1, t}. Since i ≥ 3 we have i−1 = t. We can write n2 = ki+c
for unique integers k ≥ 0 and 0 ≤ c < i. We consider n1n2, as we did in the proof of Proposition 3.2.
Any factorization of n1n2 is of the form n1n2 = x1n1 + x2n2 + x3(in1) with x1, x2, x3 ≥ 0. If x2 > 0
then since n1n2 − x2n2 ≡ 0 (mod n1) we must have x2 = n1. Every factorization with x2 = 0 is of
the form (c + li)n1 + in1(k − l) for 0 ≤ l ≤ k, so

LS(n1n2) = {n1} ∪ {c + k + l(i− 1) | 0 ≤ l ≤ k}.

We first suppose that n1 ≥ k + c. Since n1 < n2, we must have n1 ∈ [c + k + (l − 1)(i − 1), c +
k + l(i− 1)) for some 1 ≤ l ≤ k. If n1 6= c + k + (l− 1)(i− 1) then we have {n1− (c + k + (l− 1)(i−
1)), c + k + l(i− 1)− n1} ⊆ ∆S(M). Clearly both of these elements are at most i− 2 and their sum
is i − 1. Therefore they must both be equal to 1, and so t = 2. If n1 = c + k + l(i − 1) for some
0 ≤ l < k then Proposition 1.2 implies

min(∆S(M)) = gcd{(i− 1)n1, ki + c− n1} = gcd{(i− 1)n1, (k − l)(i− 1)} = i− 1 = t 6= 1,

which is a contradiction.
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So we can suppose n1 < k+c. Then we have k+c−n1 ∈ ∆S(n1n2) so we must have k+c−n1 = i−1
or k+c−n1 = 1. In the first case we have k = i−1+n1−c. Then ki+c−in1 = (i−c)(i−1). Proposition
1.2 implies min(∆S(M)) = gcd{(i− 1)n1, (i− c)(i− 1)} ≥ i− 1 > 1 which is a contradiction.

So we have k + c − n1 = 1. Consider 2n1n2 = 2n1(ki + c). Any factorization of 2n1n2 is of the
form 2n1n2 = x1n1 + x2n2 + x3(in1) with x1, x2, x3 ≥ 0. Since 2n1n2 − x2n2 ≡ 0 (mod n1), we
must have x2 ∈ {0, n1, 2n1}. There a unique factorization with x2 = 2n1 and it has length 2n1.

Let A1 be the set of factorizations of 2n1n2 with x2 = n1. We have factorizations 2n1n2 =
n1n2 + (c + li)n1 + (k− l)in1, for any 0 ≤ l ≤ k. Such a factorization has length n1 + c + k + l(i− 1)
for 0 ≤ l ≤ k.

Let A0 be the set of factorizations of 2n1n2 with x2 = 0. We have 2n1n2 = (2c+li)n1+(2k−l)in1,
for any 0 ≤ l ≤ 2k if 2c < i and any −1 ≤ l ≤ 2k if 2c ≥ i, since 2cn1 = in1 + (2c − i)n1. Such a
factorization has length 2c + 2k + l(i− 1) for l in the allowed range.

The shortest two factorizations in A1 have lengths n1 + c + k = 2n1 + 1 and 2n1 + 1 + (i − 1)
respectively. There exists a factorization in A0 of length 2c + 2k = 2n1 + 2. The next longest
factorization in A0 has length 2c + 2k + (i − 1). Therefore 2n1 + 2 and 2n1 + 1 + (i − 1) are
consecutive factorization lengths of 2n1n2 and i − 2 ∈ ∆S(2n1n2). This implies i − 2 = 1 and
t = 2. �

Proposition 3.14. Let M = 〈n1, n2〉, S = {n1, n2, s} with s = in1 +jn2 with i+j > 2, 0 ≤ i < n2,
and j > 0. Suppose ∆S(M) = {1, t} for some t ≥ 2. Then t = 2.

Proof. Lemma 3.1 implies i + j − 1 ∈ ∆S(M). Since i + j − 1 > 1 we must have i + j = t + 1. We
now consider n1n2. Since j > 0 we have s > n2. The longest factorization of n1n2 in S has length
n2 and the second longest has length n1. Therefore n2−n1 ∈ ∆S(n1n2). If n2−n1 = i + j− 1 then
by Theorem 3.5 we have ∆S(M) = {n2 − n1} which is a contradiction. So n2 − n1 6= t implies that
n2 − n1 = 1.

Thus
S = {n1, n1 + 1, (i + j)n1 + j}.

Let l be the least positive integer such that either li ≥ n2 or lj ≥ n1. We see that ls = lin1 + ljn1 +
lj = lin1 + lj(n1 + 1).

Suppose li ≥ n1+1. Since i < n1+1 we have l ≥ 2. We can write ls = (l−m)s+min1+mj(n1+1)
for any 0 ≤ m ≤ l. By the definition of l, m < l implies that min1 +mjn2 has only one factorization
in M . When m = l we also have the extra factorization,

ls = (li− (n1 + 1))n1 + (lj + n1)(n1 + 1).

The definition of l implies that (l − 1)j < n1. Since l ≥ 2 we have lj < 2n1. We may also have
one more factorization of the form ls = (li + (n1 + 1))n1 + (lj − n1)(n1 + 1) if lj ≥ n1. We see
that LS(ls) = {l + m(i + j − 1) | 0 ≤ m ≤ l} ∪ {l(i + j)− 1}, with one extra factorization of length
l(i + j) + 1 if lj ≥ n1. We see that there are three consecutive factorization lengths,

l + (l − 1)(i + j − 1) = (l − 1)(i + j) + 1 < l(i + j)− 1 < l(i + j).

Therefore (l(i + j)− 1)− ((l − 1)(j − 1) + 1) = i + j − 2 ∈ ∆S(ls). Since i + j − 2 6= t = i + j − 1,
we have i + j − 2 = 1 which implies t = 2.

Now suppose lj ≥ n1 and li < n1 + 1. We will end up considering two cases based on the value of
blj/n1c. We see that i ≤ j. Consider (l+1)s. We can write (l+1)s = (l+1−m)s+min1+mj(n1+1)
for m ≤ l + 1. When m < l, min1 + mjn2 has only one factorization in M . We will group
factorizations by the value of m. For m < l there is one factorization for each value of m and
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it has length l + 1 + m(i + j − 1). The longest of these has length l + 1 + (l − 1)(i + j − 1) =
l(i + j)− (i + j − 2) < l(i + j).

Let Al denote the set of all factorizations of (l + 1)s with m = l. We want to compute the length
of the longest factorization in this set. We have the factorization

(l + 1)s = s + (li + (n1 + 1))n1 + (lj − n1)(n1 + 1)

which has length 2 + l(i + j). If blj/n1c = 1 then this is the maximum factorization length in Al.
First suppose

⌊
lj
n1

⌋
= 1.

Let Al+1 denote the set of all factorizations of (l + 1)s with m = l + 1. We want to compute
the length of the shortest factorization in Al+1. We have a factorization of length (l + 1)(i + j). If
(l + 1)i < n1 + 1 then this is the length of the shortest factorization of Al+1. When (l + 1)i ≥ n1 + 1
we also have a factorization

(l + 1)s = ((l + 1)i− (n1 + 1))n1 + ((l + 1)j + n1)(n1 + 1),

which has length (l+1)(i+ j)−1. Since li < n1 +1 we have (l+1)i < 2(n1 +1) and (l+1)(i+ j)−1
is the length of the shortest factorization in Al+1.

First suppose (l + 1)i < n1 + 1. Then we have consecutive factorization lengths 2 + l(i + j) <
(l+1)(i+j). We have (l+1)(i+j)−(2+ l(i+j)) = i+j−2 ∈ ∆S((l+1)s) and therefore i+j−2 = 1
which implies t = 2.

Now suppose (l + 1)i ≥ n1 + 1. Then we have consecutive factorization lengths 2 + l(i + j) <
(l + 1)(i + j) − 1. We have (l + 1)(i + j) − 1 − (2 + l(i + j)) = i + j − 3 ∈ ∆S((l + 1)s) and
therefore i + j = 4 or t = 2. Suppose i + j = 4. Since i < j we have only two possibilities
(i, j) ∈ {(0, 4), (1, 3)}. Since (l + 1)i ≥ n1 + 1 we cannot have i = 0. So i = 1 and l ≥ n1. Since
n1 ≥ 2 we have (l − 1)j ≥ 3(n1 − 1) ≥ n1, contradicting (l − 1)j < n1. Therefore t = 2.

Now suppose blj/n1c = k > 1. Since (l − 1)j < n1, we must have l = 1. Now
⌊

j
n1

⌋
= k > 1 and

n1 ≥ 2 implies j ≥ 4. We have j = kn1 + c for some 0 ≤ c < n1. So k = j−c
n1
≤ j

n1
≤ j − 2.

Consider 2s = (2−m)s + min1 + mj(n1 + 1) for 0 ≤ m ≤ 2. Let A1 be the set of factorizations
of 2s with m = 1. The longest factorization in this set is 2s = s + (i + k(n1 + 1))n1 + c(n1 + 1),
which has length 1 + i + j + k. Let A2 be the set of factorizations of 2s with m = 2. If 2i < n1 + 1
then the shortest factorization in this set has length 2(i + j). If 2i ≥ n1 + 1 then since i < n1 + 1
we have 2i < 2(n1 + 1) and the shortest factorization in this set has length 2(i + j)− 1.

Suppose 2i < n1 +1. We have 2(i+ j)− (1+ i+ j +k) = i+ j−1−k = t−k. If k < i+ j−2, then
∆S(2s) contains an element other than 1 or t, which is a contradiction. If not, then we must have
k = j − 2 so i = 0, j = 4, n1 = k = 2 and c = 0. This gives M = 〈2, 3〉, j = 4 and S = {2, 3, 12}.
In this case 2 ∈ ∆S(21), so ∆S(M) 6= {1, t}.

Suppose 2i ≥ n1 + 1. Since n1 ≥ 2 we have i ≥ 2. We have 2(i + j) − 1 − (1 + i + j + k) =
i + j − 2− k = t− 1− k. Since i + j − 3 ≥ j − 1 > k, ∆S(2s) contains an element other than 1 or t,
which is a contradiction. �
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