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Abstract. Let M be a commutative, cancellative, atomic monoid and x a nonunit in M . We

define ω(x) = n if n is the smallest positive integer with the property that whenever x | a1 · · · at,

where each ai is an atom, there is a T ⊆ {1, 2, . . . , t} with |T | ≤ n such that x |
∏

k∈T ak. The
ω-function measures how far x is from being prime in M . In this paper, we give an algorithm

for computing ω(x) in any numerical monoid. Simple formulas for ω(x) are given for numerical

monoids of the form 〈n, n + 1, . . . , 2n− 1〉, where n ≥ 3, and 〈n, n + 1, . . . , 2n− 2〉, where n ≥ 4.
The paper then focuses on the special case of 2-generator numerical monoids. We give a formula

for computing ω(x) in this case and also necessary and sufficient conditions for determining when

x is an atom. Finally, we analyze the asymptotic behavior of ω(x) by computing limx→∞
ω(x)

x
.

1. Introduction

Problems involving non-unique factorizations in monoids and integral domains have gathered
much recent attention in the mathematical literature (see the monograph [7] and the references
therein). Much of this work was fueled by earlier study of the elasticity of a ring of algebraic integers
R. The elasticity of R in some sense measures how far R is from being a half-factorial domain (i.e., an
integral domain where every irreducible factorization of an element has the same length). A recent
paper of Geroldinger and Hassler [8] has introduced a new invariant which essentially measures how
far an element of an integral domain or a monoid is from being prime. Their definition is as follows.

Definition 1.1. Let M be a commutative, cancellative, atomic monoid with set of units M× and
set of irreducibles (or atoms) A(M). For x ∈ M \M×, we define ω(x) = n if n is the smallest
positive integer with the property that whenever x | a1 · · · at, where each ai ∈ A(M), there is a
T ⊆ {1, 2, . . . , t} with |T | ≤ n such that x |

∏
k∈T ak. If no such n exists, then ω(x) = ∞. For

x ∈M×, we define ω(x) = 0. Finally, ω(M) = {ω(x) : x ∈M \M×}.

It follows easily from the definition that an element x ∈ M \M× is prime if and only if ω(x) = 1.
Some basic properties of this function can be found not only in the paper mentioned above [8], but
also in [7]. This function is also studied in the context of integral domains in [1]. As with many other
constants in the theory of non-unique factorizations, the computation of specific values of ω(x) is
often highly non-trivial, and even in the context of the references already mentioned, there are very
few existing calculations. This led us to consider the ω-function in one of the most basic classes of
monoids, namely numerical monoids (i.e., additive submonoids of the nonnegative integers N0). To
our surprise, calculations even in this relatively simple additive structure were difficult. We produce
in Section 3 an algorithm to compute ω(x) for any nonzero x in a given numerical monoid S. If S is
the monoid 〈n, n + 1, . . . , 2n− 1〉 (for n ≥ 3) or 〈n, n + 1, . . . , 2n− 2〉 (for n ≥ 4), then we are able
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from the algorithm to give an exact formula for ω(x) (see Propositions 3.1 and 3.2) which in turn
yields the structure of ω(S). In Section 4, we focus on the case where S requires two generators (i.e.,
S = 〈n1, n2〉). In this case, Theorem 4.4 yields a formula which in turn gives an exact calculation
of ω(S) (Theorem 4.7). Using these two theorems, we obtain an interesting characterization of the
generators n1 and n2 (Theorem 4.5). While the results of Sections 3 and 4 yield sets ω(S) of the
form [k,∞) ∩ N for k ≥ 1, we show in Example 3.2 that this is not always the case. We close by
considering the asymptotic behavior of ω(x) (Theorem 4.9).

Throughout, we will use the standard notation from the theory of non-unique factorizations as
outlined in [7]. Let M be a commutative, cancellative monoid. The nonunit x ∈ M is an atom if
whenever x = yz, then either y ∈ M× or z ∈ M×. As mentioned above, A(M) will denote the set
of atoms of M . If every x ∈ M \M× can be written as a product of elements from A(M), we say
that M is atomic. An element x ∈M\M× is prime if x | yz implies x | y or x | z. Let x ∈M \M×.
We say a1 · · · an is a factorization of x if each ai ∈ A(M) and x = a1 · · · an, and the length of
this factorization is n. Finally, for x ∈ M\M×, we define the length set of x, denoted by L(x), as
L(x) = {n | x = a1 · · · an, where ai ∈ A(M)}. We let L(x) = sup L(x) and l(x) = inf L(x). If
L(x) <∞ for every x ∈M \M×, then M is called a bounded factorization monoid (or BFM).

A submonoid S of N0 under addition is called a numerical monoid. Every numerical monoid S
has a unique minimal generating set, where the generators are precisely the atoms of the monoid.
A numerical monoid S = 〈n1, . . . , nt〉 is primitive if gcd(n1, . . . , nt) = 1. Every primitive numerical
monoid S has the property that N0 \ S is finite. Thus, there is a greatest element of N0 not in
S, which we call the Frobenius number of S and denote by F (S). Since every numerical monoid is
isomorphic to a primitive numerical monoid, we will only concern ourselves with primitive numerical
monoids. A good general reference on numerical monoids is [6]. Properties of the length sets of a
numerical monoid have been studied extensively in the recent literature (see for example [2], [3], [4],
and [5]).

We note here some recent work of Omidali [9] on the catenary and tame degree of certain numerical
monoids. A numerical monoid S is said to be generated by a generalized arithmetic sequence
if S = 〈a, ha + d, . . . , ha + xd〉 where a, d, h and x are positive integers and gcd(a, d) = 1. In [9,
Theorem 3.10], the author shows for such an S that ωmin(S) = max{ω(a), ω(ha+d), . . . , ω(ha+xd)}
coincides with the tame degree (denoted t(S)) of S (see [7, Chapter 3] for the definition of t(S) and
a summary of known facts concerning this constant). In general, it is clear that there are elements
x ∈ S with ω(x) 6= t(x). By our Proposition 3.1, the set ω(S) is unbounded, but by [9, Theorem
3.10], t(S) = {t(x) | x ∈ S} is finite. We leave the question of whether or not there is a strong
relationship between ω(x) and t(x) in a general numerical monoid to future work.

2. Background and Basic Results

We begin with a basic, but important, observation.

Proposition 2.1. Let M be a commutative, cancellative, atomic BFM .

(a) ω(xy) ≤ ω(x) + ω(y) for all x and y ∈M \M×.
(b) The set ω(M) is unbounded.

Proof. The proof of (a) can be found in [Lemma 3.3 [8]]. For (b), let x ∈M \M× and x = a1 · · · at

be a longest factorization of x. Since there can be no subset T ⊆ {1, 2, . . . , t} with |T | < t such that
x |
∏

i∈T ai, we have ω(x) ≥ t = L(x). Thus, ω(M) is unbounded since {L(x) : x ∈ M \M×} is
unbounded. �
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Let S = 〈n1, . . . , nt〉 be a minimally generated, primitive numerical monoid with 1 < n1 < · · · <
nt. Let n̄ = (n1, . . . , nt) ∈ Nt

0 be the vector representation of the generating set of S. Then for each
x ∈ S, there exists a vector x̄ = (x1, . . . , xt) ∈ Nt

0 such that x = x̄ · n̄ = x1n1 + · · ·+ xtnt. Thus, we
can represent elements of S as vectors in Nt

0.

Definition 2.1. (1) Let x̄ = (x1, . . . , xt) ∈ Nt
0 and ȳ = (y1, . . . , yt) ∈ Nt

0. We say that x̄
subsumes ȳ (or ȳ is subsumed by x̄) if x̄ 6= ȳ and xi ≥ yi for all 1 ≤ i ≤ t.

(2) For each 1 ≤ i ≤ t, define mi : S → N0 by mi(x) = min {d : dni − x ∈ S, d ∈ N0}.

From the definition of mi(x), we see that the function mi computes the smallest multiplier such that
x divides that multiple of the ith generator in the monoid S.

Definition 2.2. Let x ∈ S \ S×; we define

(1) D(x) = {v̄ ∈ Nt
0 : x | v̄ · n̄},

(2) F(x) = {v̄ ∈ D(x) : x = v̄ · n̄}, and
(3) Y(x) = {ȳ ∈ D(x) : ∀ c̄ ∈ D(x), ȳ does not subsume c̄}.

The set D(x) is the set of factorizations of elements of S divisible by x. The set F(x) is the
factorization set of x. Let (0, . . . , 0, mi(x), 0, . . . , 0) ∈ Nt

0 such that mi(x) is in the ith component
for all 1 ≤ i ≤ t. It follows from the definition of Y(x) that (0, . . . , 0, mi(x), 0, . . . , 0) ∈ Y(x), and so
Y(x) is nonempty. Using the above notation, we obtain an initial representation for ω(x).

Proposition 2.2. ω(x) = max {
∑t

1 yi : ȳ ∈ Y(x)}.

Proof. Let k̄ = (k1, . . . , kt) ∈ Y(x) such that
∑t

1 ki = max {
∑t

1 yi : ȳ ∈ Y(x)}. Since, for every
c̄ ∈ D(x) we have that c̄ is not subsumed by k̄, we conclude that x does not divide any subsum
of the sum k̄ · n̄ = k1n1 + · · · + ktnt. Thus, we have ω(x) ≥

∑t
1 ki because x | k̄ · n̄. But,

since
∑t

1 ki = max {
∑t

1 yi : (y1, . . . , yt) ∈ Y(x)}, we also have that ω(x) ≤
∑t

1 ki. Therefore,
ω(x) =

∑t
1 ki. �

3. ω-Measure in General Numerical Monoids

Our main result of this section is an algorithm which computes ω(x) for any nonunit x in a given
primitive numerical monoid.

The Omega Algorithm (x, {n1, . . . , nt}).
Input: {n1, . . . , nt}, the primitive set of generators for S, and 0 6= x ∈ S.
Output: ω(x).

(1) Compute mi(x), for 1 ≤ i ≤ t. Let M = max {mi(x) : 1 ≤ i ≤ t}.
(2) Solve U0(x) =

{
(d1, . . . , dt) ∈ Nt

0 :
∑t

1 di = M, di < mi(x)
}

, and

V0(x) =
{

(d1, . . . , dt) ∈ Nt
0 :

∑t
1 di > M, di < mi(x)

}
.

(3) Set U1(x) = {v̄ ∈ U0(x) : x | v̄ · n̄}.
Set V1(x) = {v̄ ∈ V0(x) : ∃ c̄ ∈ U1(x) such that v̄ subsumes c̄}.
Set V2(x) = V0(x) \ V1(x).

(4) Set V3(x) = {v̄ ∈ V2(x) : x | v̄ · n̄}.
Set V4(x) = {v̄ ∈ V3(x) : ∃ c̄ ∈ V3(x) such that v̄ subsumes c̄}.

(5) Set W(x) = V3(x) \ V4(x).
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(6) If W(x) is not empty, then ω(x) = max {
∑t

1 di : (d1, . . . , dt) ∈W(x)}.
Otherwise, ω(x) = M .

Proof. Let x ∈ S, M = max {mi(x) : 1 ≤ i ≤ t}, and W(x) be as constructed above. We
will show that W(x) = {v̄ ∈ Y(x) :

∑t
1 vi > M}. Then, if W(x) is not empty, it is clear that

ω(x) = max {
∑t

1 di : (d1, . . . , dt) ∈W(x)} = max {
∑t

1 yi : ȳ ∈ Y(x)}.
We first show that k̄ ∈ W(x) implies k̄ ∈ Y(x). Since k̄ ∈ W(x) implies k̄ ∈ V3(x), we have

k̄ ∈ D(x). Now we will show that k̄ does not subsume any c̄ ∈ D(x). Suppose that there is
b̄ ∈ D(x) such that k̄ subsumes b̄ and

∑t
1 bi < M . Then there exists c̄ ∈ D(x) with

∑t
1 ci = M

and bi ≤ ci ≤ ki for all 1 ≤ i ≤ t. Since k̄ ∈ W(x) implies k̄ 6∈ V1(x), k̄ does not subsume any
c̄ ∈ D(x) with

∑t
1 ci ≤M . Since k̄ ∈W(x) implies k̄ 6∈ V4(x), k̄ does not subsume any c̄ ∈ D(x) with∑t

1 ci > M . Therefore, W(x) ⊂ Y(x). It is clear that ȳ ∈ Y(x) is in W(x) if and only if
∑t

1 yi > M .

If W(x) is empty, then
∑t

1 yi ≤M for all ȳ ∈ Y(x). Since there exists an integer j ∈ {1, 2, . . . , t}
such that (0, . . . , 0, mj(x), 0, . . . , 0) ∈ Y(x) and mj(x) = M , we have max {

∑t
1 yi : ȳ ∈ Y(x)} =

M = ω(x). �

Example 3.1. The Omega Algorithm can be readily programmed using any standard computer
algebra package. To demonstrate this, we compute the omega values of the generators for some
three-generated numerical monoids.

〈n1, n2, n3〉 Ordering of Omega Values
〈5, 7, 17〉 ω(5) = 5 < ω(7) = 7 < ω(17) = 9
〈5, 7, 11〉 ω(5) = 3 < ω(7) = ω(11) = 5
〈4, 5, 6〉 ω(4) = 2 < ω(5) = 4 > ω(6) = 3
〈6, 9, 11〉 ω(6) = ω(9) = 3 < ω(11) = 7
〈7, 11, 17〉 ω(7) = ω(11) = ω(17) = 5
〈6, 7, 11〉 ω(6) = 4 > ω(7) = 3 < ω(11) = 5
〈7, 8, 12〉 ω(7) = 5 > ω(8) = ω(12) = 4

It is unclear whether or not the remaining 6 orderings (such as ω(n1) = ω(n2) > ω(n3)) are possible.

In Propositions 3.1 and 3.2, we apply the algorithm to two specific classes of numerical monoids
and obtain exact formulas for ω(x) and ω(S).

Proposition 3.1. Let S = 〈n, n + 1, . . . , 2n− 1〉, for an integer n ≥ 3. If 0 6= x ∈ S, then

ω(x) =
⌈x

n

⌉
+ 1

and thus ω(S) = {2, 3, 4, 5, . . .}.

Proof. Let n ≥ 3 be an integer and S = 〈n, n + 1, . . . , 2n − 1〉. Then S = {0, n, n + 1, n + 2, . . . }.
Let x ∈ S. Then there exist unique positive integers q and r such that x = qn + r, where q =

⌊
x
n

⌋
and 0 ≤ r ≤ n− 1. We consider two cases, where r = 0 or r > 0.

If r = 0, we first show that ω(x) ≤ q + 1. The sum of any q + 1 atoms is at least (q + 1)n. Since
(q + 1)n− x = n ∈ S, then x divides the sum of any q + 1 atoms and ω(x) ≤ q + 1.

To see that ω(x) = q + 1, consider (q− 1)n + 2(n + 1). We know that x divides this sum of q + 1
atoms, but since (q − 1)n + 2(n + 1)− x− n = 2 < n, we see that x does not divide any subsum of
q atoms. So ω(x) = q + 1 =

⌈
x
n

⌉
+ 1.
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If r > 0, we first show that ω(x) ≤ q + 2. The sum of any q + 2 atoms is at least (q + 2)n. Since
(q + 2)n− x = 2n− r > n ∈ S, then x divides the sum of any q + 2 atoms and ω(x) ≤ q + 2. Since
x | (q + 2)n, but (q + 1)n− x = n− r ∈ [1, n− 1], we see that x does not divide any subsum of q + 1
atoms, and therefore ω(x) ≥ q + 2. So ω(x) = q + 2 =

⌈
x
n

⌉
+ 1. The structure of ω(S) now easily

follows. �

Proposition 3.2. Let S = 〈n, n + 1, . . . , 2n − 2〉, for an integer n ≥ 4, x ∈ S, and let k be the
unique integer such that kn < x ≤ (k + 1)n. Then,

ω(x) =

{
k + 3, if k + 2 divides x− (kn + 1),
k + 2, otherwise.

Moreover, it follows that

ω(S) =
{
{2, 3, 4, 5, . . .} if n is even
{3, 4, 5, 6, . . .} if n is odd .

Proof. Since S = {0, n, n + 1, . . . , 2n− 2, 2n, 2n + 1, . . .}, we note that x | y if and only if y − x = 0,
or y − x ≥ n and y − x 6= 2n− 1. We first see that ω(x) ≤ k + 3 by noting that (k + 3)n− x ≥ 2n,
and therefore x divides the sum of any k + 3 atoms.

Suppose that there is a sum of k + 3 atoms such that x does not divide any subsum of k + 2
atoms. Since (k + 2)n− x ≥ n, this is possible if and only if the difference between any subsum of
k + 2 atoms and x is equal to 2n− 1. In this case, all of the k + 3 atoms must be the same, say n + t
for 0 ≤ t < n−1 and (k + 2)(n+ t)−x = 2n−1. This is possible if and only if x = kn+ (k + 2)t+ 1.
In this case, we have ω(x) ≥ k + 3, and therefore ω(x) = k + 3. Otherwise, if x divides k + 3 atoms,
then it divides some subsum of k + 2 atoms and ω(x) ≤ k + 2.

We suppose that there is no t such that x = kn + (k + 2)t + 1, so in particular x 6= kn + 1, and
show that ω(x) ≥ k + 2. If x = (k + 1)n, then x | kn + 2(n + 1), but x does not divide any subsum
of k + 1 atoms. If x 6≡ 0, 1 (mod n), then x | (k + 2)n, but (k + 1)n− x ∈ [1, n− 2] 6∈ S. Therefore
ω(x) ≥ k + 2, and so ω(x) = k + 2.

For the second assertion, no matter the parity of n, we have kn + 2 ∈ S for all k ≥ 2. By our
formula, ω(kn + 2) = k + 2, and hence {4, 5, 6, 7, . . .} ⊆ ω(S). If n is even, then easy computations
yield ω(n) = 2 and ω(n+2) = 3, which completes the top formula. If n is odd, then ω(n) = 3. Since
k > 0 for all other elements of S, the second formula follows. �

We close this section by showing that ω(S) does not always consist of an interval of integers. We
will first require a proposition.

Proposition 3.3. Let S = 〈n1, . . . , nt〉 be primitive with minimal set of generators {n1, . . . , nt}.
Let t be the Frobenius number of S. Define F , LS(F ), and T (k) as follows:

• F = 〈t + 1, t + 2, . . . , 2(t + 1)− 1〉,
• LS(F ) = {LS(x) : x ∈ F \ {0}} (where LS(x) denotes the longest length of x in S),
• For any positive integer k, let T (k) be the set of all x in {t + 1, t + 2, . . . , 2(t + 1)− 1} such

that k ≥ LS(x).

A positive integer k is not in ω(S) if all of the following are true:

(1) k /∈ ω(S \ F ),
(2) k /∈ ω(T (k)), and
(3) If T (k) is not empty, then k < 2 ·min LS(T (k)).
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Proof. Let S, t, F , LS(F ), and T (k) be as defined above. It is clear that F = {t+1, t+2, t+3, . . . } ⊂
S. Suppose k is a positive integer that satisfies the above criteria. Then it is clear from criterion
(1) that k /∈ ω(S \ F ). Using criteria (2) and (3) we will show that k /∈ ω(F ).

The minimal set of generators for F is {t+ 1, t+ 2, . . . , 2(t+ 1)−1}. Since every x ∈ F is a linear
combination of the generators of F , it is clear that LS(x) ≥ min LS({t + 1, t + 2, . . . , 2(t + 1)− 1}).
Thus we have min LS({t + 1, t + 2, . . . , 2(t + 1) − 1}) = min LS(F ). Since ω(x) ≥ LS(x), we have
ω(x) ≥ min LS({t + 1, t + 2, . . . , 2(t + 1)− 1}) = min LS(F ) for any x ∈ F .

If T (k) is empty, then for all x ∈ {t + 1, t + 2, . . . , 2(t + 1) − 1} we have k < LS(x). Thus,
k < min LS({t + 1, t + 2, . . . , 2(t + 1)− 1}) = min LS(F ) ≤ ω(x) for all x ∈ F . Hence, k /∈ ω(F ).

Now, suppose T (k) is not empty. We have that k /∈ ω({t + 1, t + 2, . . . , 2(t + 1) − 1} \ T (k))
because k < LS(x) ≤ ω(x) for any x ∈ {t + 1, t + 2, . . . , 2(t + 1) − 1} \ T (k). From criterion (2),
we have k /∈ ω(T (k)), and so k /∈ ω({t + 1, t + 2, . . . , 2(t + 1) − 1}). Now, for x ∈ F \ {t + 1, t +
2, . . . , 2(t + 1) − 1}, it is clear that LS(x) ≥ 2 · min LS({t + 1, t + 2, . . . , 2(t + 1) − 1}). Criterion
(3) gives us k < 2 · min LS(T (k)) = 2 · min LS({t + 1, t + 2, . . . , 2(t + 1) − 1}), which implies
k /∈ ω(F \ {t + 1, t + 2, . . . , 2(t + 1)− 1}). Hence, k /∈ ω(F ). �

Example 3.2. Let S = 〈9, 29, 39〉. Computer data indicates that 4 and 5 are not in ω(S), so let
k ∈ {4, 5}. The Frobenius number of S is 127. Using the definitions given in the above proposition,
we have:

• F = 〈128, 129, . . . , 255〉 = {128, 129, 130, . . . },
• LS({128, 129, . . . , 255}) = {4, 5, 6, . . . , 28},
• T (4) = {136} and T (5) = {136, 145}.

We check the three criteria of the above proposition on 4 and 5:

(1) 4, 5 /∈ ω(S \ F ) = {3, 6, 7, 8, . . . , 22, 23, 24, 27, 28, 29},
(2) 4 /∈ ω(T (4)) = ω({136}) = {27} and 5 /∈ ω(T (5)) = ω({136, 145}) = {27, 28},
(3) T (4) and T (5) are not empty and we have 4 < 2 · min LS(T (4)) = 2 · LS(136) = 8 and

5 < 2 ·min LS(T (5)) = 2 ·min{136, 145} = 2 · LS(136) = 8.

Since 4 and 5 satisfy the criteria, we have that 4, 5 /∈ ω(〈9, 29, 39〉), but as indicated above, 3 ∈ ω(S).

4. ω-Measure in 2-generator Numerical Monoids

Throughout this section, we will be dealing with the special class of numerical monoids generated
by two elements. Thus, we let S = 〈n1, n2〉 be primitive with 1 < n1 < n2. We determine an exact
formula for ω(x) in Theorem 4.4, but we first require three Lemmas.

Lemma 4.1. Let x ∈ S\S×, and let (d1, d2) ∈ D(x) such that (d1, d2) /∈ F(x)∪{(m1(x), 0), (0, m2(x))}.
Then, at least one of the following is true:

(1) There exists (x1, x2) ∈ F(x) such that (d1, d2) subsumes (x1, x2),
(2) (d1, d2) subsumes (m1(x), 0), or
(3) (d1, d2) subsumes (0, m2(x)).

Proof. Let x ∈ S \ S×, and let (d1, d2) ∈ D(x) such that (d1, d2) /∈ F(x) ∪ {(m1(x), 0), (0, m2(x))}.
Then d1n1+d2n2−x = c1n1+c2n2 ∈ S. If there is an (x1, x2) ∈ F(x) such that x1 ≤ d1 and x2 ≤ d2,
then we are done. So suppose that there is no such (x1, x2). Then for any given (x1, x2) ∈ F(x),
either x1 > d1 and x2 < d2, or x2 > d2 and x1 < d1.



ω-PRIMALITY IN A NUMERICAL MONOID 7

First, suppose that x1 > d1 and x2 < d2. Then d1− x1 < 0 and d2− x2 > 0. Since (d1− x1)n1 +
(d2−x2)n2 = c1n1 + c2n2 ∈ S, there exists a positive integer k such that c1 = d1−x1 +kn2 ≥ 0 and
c2 = d2−x2−kn1 ≥ 0. Then d2 = c2+x2+kn1, and so d2n2−x = (c2+x2+kn1)n2−(x1n1+x2n2) =
c2n2 + (kn2 − x1)n1. Because c2 ≥ 0, if we can show that kn2 − x1 ≥ 0, then we get d2n2 − x ∈ S.
Suppose kn2 − x1 < 0. Let a1 = x1 − kn2 and a2 = x2 + kn1. Then (a1, a2) ∈ F(x) such that
d1 − a1 ≥ 0 and d2 − a2 ≥ 0, which is a contradiction. Thus, we have kn2 − x1 > 0, and so
d2n2 − x ∈ S. From the definition of m2(x), it follows that m2(x) ≤ d2, and so (d1, d2) subsumes
(0, m2(x)).

Now, suppose that x2 > d2 and x1 < d1. An argument similar to the above gives us m1(x) ≤ d1,
and thus (d1, d2) subsumes (m1(x), 0). �

Lemma 4.2. Let x ∈ S \ S×. Then max{x1 + x2 : (x1, x2) ∈ F(x)} ≤ m1(x).

Proof. Let x ∈ S \ S×. Let (x1, x2) ∈ F(x) such that max{x1 + x2 : (x1, x2) ∈ F(x)} = x1 + x2.
Then x1 + x2 = L(x), the longest factorization length of x, and x2 < n1. If x2 = 0, then x = x1n1

and L(x) = x1. By the definition of m1(x), we have m1(x) = x1 = L(x). Suppose that x2 > 0.
Since 0 < n1 − x2 and m1(x)n1 − x = m1(x)n1 − (x1n1 + x2n2) = (m1(x) − x1)n1 + (−x2)n2 =
(m1(x)−x1−n2)n1+(n1−x2)n2 ∈ S, we have m1(x)−x1−n2 ≥ 0. It follows from the minimality of
m1(x) that x1+n2 = m1(x). Now, since x2 < n1 < n2, we get L(x) = x1+x2 < x1+n2 = m1(x). �

Lemma 4.3. Let x ∈ S \ S×. Then ω(x) = max {m1(x), m2(x)}.

Proof. Let x ∈ S \ S×. It is clear that F(x) ∪ {(m1(x), 0), (0, m2(x))} is a subset of Y(x). Let
(d1, d2) ∈ D(x) such that (d1, d2) /∈ F(x)∪{(m1(x), 0), (0, m2(x))}. By Lemma 4.1, (d1, d2) subsumes
some element of F(x) ∪ {(m1(x), 0), (0, m2(x))}. This implies that (d1, d2) /∈ Y(x), and so F(x) ∪
{(m1(x), 0), (0, m2(x))} = Y(x). Finally, we get ω(x) = max {m1(x), m2(x)} by applying Lemma
4.2. �

Theorem 4.4. Let x ∈ S \ S× and (x1, x2) ∈ F(x). Then,

ω(x) = max
{⌈

x2

n1

⌉
n2 + x1,

⌈
x1

n2

⌉
n1 + x2

}
.

Proof. Let x ∈ S \ S× and (x1, x2) ∈ F(x). Then x = x1n1 + x2n2. It follows from the definition of
m1(x) that m1(x)n1 − x = y2n2, where y2 < n1. Then, m1(x)n1 − x = m1(x)n1 − (x1n1 + x2n2) =
(m1(x) − x1)n1 − x2n2 = y2n2 ∈ S implies m1(x) − x1 ≥ 0. Since n2 | (m1(x) − x1)n1 and
gcd(n1, n2) = 1, we have n2 | (m1(x) − x1). Thus, there exists a nonnegative integer q such that
m1(x)− x1 = qn2, and so m1(x) = qn2 + x1. Then m1(x)n1 − x = (qn2 + x1)n1 − (x1n1 + x2n2) =
(qn1 − x2)n2 ∈ S implies qn1 − x2 ≥ 0. Since q ≥ x2

n1
and q is an integer, we get q = d x2

n1
e. Hence,

m1(x) = qn2 + x1 = d x2
n1
en2 + x1. A similar proof shows that m2(x) = d x1

n2
en1 + x2. �

Theorem 4.5. Let x ∈ S \ S×. Then ω(x) = x if and only if x ∈ {n1, n2}.

Proof. Theorem 4.4 implies ω(n1) = m2(n1) = n1 and ω(n2) = m1(n2) = n2. For the converse,
suppose that m1(x) = x. We have m1(x) = d x2

n1
en2+x1 = x2n2+x1n1. We can write x2 = kn1+r for

unique integers k ≥ 0 and 0 ≤ r ≤ n1−1. Then d x2
n1
en2+x1 = (k+d r

n1
e)n2+x1 = (kn1+r)n2+x1n1.

We have (k(n1−1) + r−d r
n1
e)n2 +x1(n1−1) = 0. Therefore k = x1 = 0 and r = d r

n1
e. Since x 6= 0

we cannot have r = 0 as well; so r = 1 and x = n2.
A very similar argument shows m2(x) = x implies x = n1. So x 6∈ {n1, n2} implies ω(x) 6= x. �

Theorem 4.7 will describe the set ω(S). Its proof follows immediately from the following Lemma.
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Lemma 4.6. Let S be a primitive numerical monoid of the form S = 〈n1, n2〉.

(i) If x ∈ S and ω(x) < n1, then x = 0.
(ii) If k is an integer such that 0 ≤ k ≤ n2 − n1, then ω((n1 + k)n1) = n1 + k.
(iii) If k ≥ 0, then ω(kn1 + n2) = n2 + k.

Proof. (i) Theorem 4.4 implies ω(x) ≥ d x2
n1
en2 + x1; so ω(x) < n1 implies x2 = 0. Similarly

ω(x) ≥ d x1
n2
en1 + x2; so ω(x) < n1 implies x1 = 0. Therefore, ω(x) < n1 implies x = 0.

(ii) Let k be an integer such that 0 ≤ k ≤ n2−n1. We will consider elements of the form (n1+k)n1

in S.
Let x1 = n1 + k and x2 = 0; then (x1, x2) ∈ F((n1 + k)n1). According to Theorem 4.4, we have

m1((n1 + k)n1) =
⌈

x2

n1

⌉
n2 + x1 =

⌈
0
n1

⌉
n2 + (n1 + k) = n1 + k,

m2((n1 + k)n1) =
⌈

x1

n2

⌉
n1 + x2 =

⌈
n1 + k

n2

⌉
n1.

We note that dn1
n2
e ≤ dn1+k

n2
e ≤ dn2

n2
e; so m2((n1 + k)n1) = n1 and ω((n1 + k)n1) = n1 + k.

(iii) Let k ≥ 0 be an integer. Consider the element kn1 + n2 ∈ S. Let x1 = k and x2 = 1. Then
(x1, x2) ∈ F(kn1 + n2). According to Theorem 4.4, we have

m1(kn1 + n2) =
⌈

x2

n1

⌉
n2 + x1 =

⌈
1
n1

⌉
n2 + k = n2 + k,

m2(kn1 + n2) =
⌈

x1

n2

⌉
n1 + x2 =

⌈
k

n2

⌉
n1 + 1.

Since
⌈

k
n2

⌉
n1 + 1 <

(
k
n2

+ 1
)

n1 + 1 < k + (n1 + 1) ≤ k + n2, we have ω(kn1 + n2) = n2 + k. �

The next theorem follows immediately.

Theorem 4.7. ω(S) = {n1, n1 + 1, n1 + 2, . . . }.

We close by showing that in the 2-generator case, the ω function has nice asymptotic behavior.
We will first require a lemma. The existence of the limit below is guaranteed by [1, Theorem 2.8].

Lemma 4.8. Consider tn1 ∈ S \ S× and tn2 ∈ S \ S× for t ∈ N.

(1) lim
t→∞

ω(tn1)
t

= 1, and there exists a T ∈ N such that ω(tn1) = t for all t > T .

(2) lim
t→∞

ω(tn2)
t

=
n2

n1
.

Proof. For the first statement, consider elements of the form tn1, where t ∈ N. It follows from the
definition that m1(tn1) = t. Applying Theorem 4.4, we have m2(tn1) = d t

n2
en1 ≤ (t + 1)n1

n2
, which

is less than t whenever t > n1
n2−n1

. So limt→∞
ω(tn1)

t = limt→∞
m1(tn1)

t = 1.

For the second statement, consider elements of the from tn2, where t ∈ N. It follows from the
definition that m2(tn2) = t. Applying Theorem 4.4, we have m1(tn2) = d t

n1
en2 ≥ tn2

n1
> t. We have

n2
n1
≤ m1(tn2)

t ≤ n2
n1

+ n2
t . So limt→∞

ω(tn2)
t = limt→∞

m1(tn2)
t = n2

n1
. �

Theorem 4.9. Let x ∈ S \ S×. Then lim
x→∞

ω(x)
x

=
1
n1

.
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Proof. We may ignore all x ∈ S \ S× except for x > n1n2 + n1.

Let q(x) =
⌊

x−n1n2
n1

⌋
. From x > n1n2 + n1, we know that q(x) ≥ 1. We also know that

x−n1n2 = q(x)n1 + r(x) for some r(x) satisfying 0 ≤ r(x) < n1. Thus, x = q(x)n1 + (n1n2 + r(x)).
Since n1n2 +r(x) is greater than the Frobenius number of S, which is n1n2−n1−n2, it is clear that
n1n2 + r(x) ∈ S and q(x)n1 ∈ S. By Proposition 2.1, we have ω(x) ≤ ω(q(x)n1) + ω(n1n2 + r(x)).

Now let q′(x) =
⌊

x+n1n2
n1

⌋
. We likewise see that q′(x) ≥ 2n2+1 and that x+n1n2 = q′(x)n1+r′(x)

for some r′(x) satisfying 0 ≤ r′(x) < n1. Thus, q′(x)n1 = x + (n1n2 − r′(x)). We need only note
that n1n2 − r′(x) is again greater than the Frobenius number of S, and thus we have ω(q′(x)n1) ≤
ω(x) + ω(n1n2 − r′(x)).

We now set B = max {ω(x) | x ∈ S, x ≤ n1n2 + n1}. Then we have

ω(q′(x)n1)− ω(n1n2 − r′(x)) ≤ ω(x) ≤ ω(q(x)n1) + ω(n1n2 + r(x)).

Thus, ω(q′(x)n1)−B ≤ ω(x) ≤ ω(q′(x)n1) + B, and so we have the following

(1)
ω(q′(x)n1)

x
− B

x
≤ ω(x)

x
≤ ω(q(x)n1)

x
+

B

x
.

We observe that lim
x→∞

q(x)
x

= lim
x→∞

q′(x)
x

=
1
n1

. We also see that q(x), q′(x) → ∞ as x → ∞, and

thus by Lemma 4.8, lim
x→∞

ω(q(x)n1)
q(x)

= lim
x→∞

ω(q′(x)n1)
q′(x)

= lim
x→∞

ω(xn1)
x

= 1. We then see that

lim
x→∞

ω(q′(x)n1)
x

− B

x
= lim

x→∞

(
ω(q′(x)n1)

q′(x)

)(
q′x

x

)
− B

x
= (1)

(
1
n1

)
− 0 =

1
n1

.

Likewise, we have

lim
x→∞

ω(q(x)n1)
t

+
B

x
= lim

x→∞

(
ω(q(x)n1)

q(x)

)(
q(x)
x

)
+

B

x
= (1)

(
1
n1

)
+ 0 =

1
n1

.

By (1), we then see that lim
x→∞

ω(x)
x

=
1
n1

. �
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