AN ALGORITHM TO COMPUTE ω-PRIMALITY IN A NUMERICAL MONOID

DAVID F. ANDERSON, SCOTT T. CHAPMAN, NATHAN KAPLAN, AND DESMOND TORKORNOO

Abstract

Let M be a commutative, cancellative, atomic monoid and x a nonunit in M. We define $\omega(x)=n$ if n is the smallest positive integer with the property that whenever $x \mid a_{1} \cdots a_{t}$, where each a_{i} is an atom, there is a $T \subseteq\{1,2, \ldots, t\}$ with $|T| \leq n$ such that $x \mid \prod_{k \in T} a_{k}$. The ω-function measures how far x is from being prime in M. In this paper, we give an algorithm for computing $\omega(x)$ in any numerical monoid. Simple formulas for $\omega(x)$ are given for numerical monoids of the form $\langle n, n+1, \ldots, 2 n-1\rangle$, where $n \geq 3$, and $\langle n, n+1, \ldots, 2 n-2\rangle$, where $n \geq 4$. The paper then focuses on the special case of 2 -generator numerical monoids. We give a formula for computing $\omega(x)$ in this case and also necessary and sufficient conditions for determining when x is an atom. Finally, we analyze the asymptotic behavior of $\omega(x)$ by computing $\lim _{x \rightarrow \infty} \frac{\omega(x)}{x}$.

1. Introduction

Problems involving non-unique factorizations in monoids and integral domains have gathered much recent attention in the mathematical literature (see the monograph [7] and the references therein). Much of this work was fueled by earlier study of the elasticity of a ring of algebraic integers R. The elasticity of R in some sense measures how far R is from being a half-factorial domain (i.e., an integral domain where every irreducible factorization of an element has the same length). A recent paper of Geroldinger and Hassler [8] has introduced a new invariant which essentially measures how far an element of an integral domain or a monoid is from being prime. Their definition is as follows.

Definition 1.1. Let M be a commutative, cancellative, atomic monoid with set of units M^{\times}and set of irreducibles (or atoms) $\mathcal{A}(M)$. For $x \in M \backslash M^{\times}$, we define $\omega(x)=n$ if n is the smallest positive integer with the property that whenever $x \mid a_{1} \cdots a_{t}$, where each $a_{i} \in \mathcal{A}(M)$, there is a $T \subseteq\{1,2, \ldots, t\}$ with $|T| \leq n$ such that $x \mid \prod_{k \in T} a_{k}$. If no such n exists, then $\omega(x)=\infty$. For $x \in M^{\times}$, we define $\omega(x)=0$. Finally, $\omega(M)=\left\{\omega(x): x \in M \backslash M^{\times}\right\}$.

It follows easily from the definition that an element $x \in M \backslash M^{\times}$is prime if and only if $\omega(x)=1$. Some basic properties of this function can be found not only in the paper mentioned above [8], but also in [7]. This function is also studied in the context of integral domains in [1]. As with many other constants in the theory of non-unique factorizations, the computation of specific values of $\omega(x)$ is often highly non-trivial, and even in the context of the references already mentioned, there are very few existing calculations. This led us to consider the ω-function in one of the most basic classes of monoids, namely numerical monoids (i.e., additive submonoids of the nonnegative integers \mathbb{N}_{0}). To our surprise, calculations even in this relatively simple additive structure were difficult. We produce in Section 3 an algorithm to compute $\omega(x)$ for any nonzero x in a given numerical monoid S. If S is the monoid $\langle n, n+1, \ldots, 2 n-1\rangle$ (for $n \geq 3$) or $\langle n, n+1, \ldots, 2 n-2\rangle$ (for $n \geq 4$), then we are able

[^0]from the algorithm to give an exact formula for $\omega(x)$ (see Propositions 3.1 and 3.2) which in turn yields the structure of $\omega(S)$. In Section 4, we focus on the case where S requires two generators (i.e., $\left.S=\left\langle n_{1}, n_{2}\right\rangle\right)$. In this case, Theorem 4.4 yields a formula which in turn gives an exact calculation of $\omega(S)$ (Theorem 4.7). Using these two theorems, we obtain an interesting characterization of the generators n_{1} and n_{2} (Theorem 4.5). While the results of Sections 3 and 4 yield sets $\omega(S)$ of the form $[k, \infty) \cap \mathbb{N}$ for $k \geq 1$, we show in Example 3.2 that this is not always the case. We close by considering the asymptotic behavior of $\omega(x)$ (Theorem 4.9).

Throughout, we will use the standard notation from the theory of non-unique factorizations as outlined in [7]. Let M be a commutative, cancellative monoid. The nonunit $x \in M$ is an atom if whenever $x=y z$, then either $y \in M^{\times}$or $z \in M^{\times}$. As mentioned above, $\mathcal{A}(M)$ will denote the set of atoms of M. If every $x \in M \backslash M^{\times}$can be written as a product of elements from $\mathcal{A}(M)$, we say that M is atomic. An element $x \in M \backslash M^{\times}$is prime if $x \mid y z$ implies $x \mid y$ or $x \mid z$. Let $x \in M \backslash M^{\times}$. We say $a_{1} \cdots a_{n}$ is a factorization of x if each $a_{i} \in \mathcal{A}(M)$ and $x=a_{1} \cdots a_{n}$, and the length of this factorization is n. Finally, for $x \in M \backslash M^{\times}$, we define the length set of x, denoted by $\mathcal{L}(x)$, as $\mathcal{L}(x)=\left\{n \mid x=a_{1} \cdots a_{n}\right.$, where $\left.a_{i} \in \mathcal{A}(M)\right\}$. We let $L(x)=\sup \mathcal{L}(x)$ and $l(x)=\inf \mathcal{L}(x)$. If $L(x)<\infty$ for every $x \in M \backslash M^{\times}$, then M is called a bounded factorization monoid (or BFM).

A submonoid S of \mathbb{N}_{0} under addition is called a numerical monoid. Every numerical monoid S has a unique minimal generating set, where the generators are precisely the atoms of the monoid. A numerical monoid $S=\left\langle n_{1}, \ldots, n_{t}\right\rangle$ is primitive if $\operatorname{gcd}\left(n_{1}, \ldots, n_{t}\right)=1$. Every primitive numerical monoid S has the property that $\mathbb{N}_{0} \backslash S$ is finite. Thus, there is a greatest element of \mathbb{N}_{0} not in S, which we call the Frobenius number of S and denote by $F(S)$. Since every numerical monoid is isomorphic to a primitive numerical monoid, we will only concern ourselves with primitive numerical monoids. A good general reference on numerical monoids is [6]. Properties of the length sets of a numerical monoid have been studied extensively in the recent literature (see for example [2], [3], [4], and [5]).

We note here some recent work of Omidali [9] on the catenary and tame degree of certain numerical monoids. A numerical monoid S is said to be generated by a generalized arithmetic sequence if $S=\langle a, h a+d, \ldots, h a+x d\rangle$ where a, d, h and x are positive integers and $\operatorname{gcd}(a, d)=1$. In [9, Theorem 3.10], the author shows for such an S that $\omega_{\min }(S)=\max \{\omega(a), \omega(h a+d), \ldots, \omega(h a+x d)\}$ coincides with the tame degree (denoted $t(S)$) of S (see [7, Chapter 3] for the definition of $t(S)$ and a summary of known facts concerning this constant). In general, it is clear that there are elements $x \in S$ with $\omega(x) \neq t(x)$. By our Proposition 3.1, the set $\omega(S)$ is unbounded, but by [9, Theorem 3.10], $t(S)=\{t(x) \mid x \in S\}$ is finite. We leave the question of whether or not there is a strong relationship between $\omega(x)$ and $t(x)$ in a general numerical monoid to future work.

2. Background and Basic Results

We begin with a basic, but important, observation.
Proposition 2.1. Let M be a commutative, cancellative, atomic BFM.
(a) $\omega(x y) \leq \omega(x)+\omega(y)$ for all x and $y \in M \backslash M^{\times}$.
(b) The set $\omega(M)$ is unbounded.

Proof. The proof of (a) can be found in [Lemma 3.3 [8]]. For (b), let $x \in M \backslash M^{\times}$and $x=a_{1} \cdots a_{t}$ be a longest factorization of x. Since there can be no subset $T \subseteq\{1,2, \ldots, t\}$ with $|T|<t$ such that $x \mid \prod_{i \in T} a_{i}$, we have $\omega(x) \geq t=L(x)$. Thus, $\omega(M)$ is unbounded since $\left\{L(x): x \in M \backslash M^{\times}\right\}$is unbounded.

Let $S=\left\langle n_{1}, \ldots, n_{t}\right\rangle$ be a minimally generated, primitive numerical monoid with $1<n_{1}<\cdots<$ n_{t}. Let $\bar{n}=\left(n_{1}, \ldots, n_{t}\right) \in \mathbb{N}_{0}^{t}$ be the vector representation of the generating set of S. Then for each $x \in S$, there exists a vector $\bar{x}=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{N}_{0}^{t}$ such that $x=\bar{x} \cdot \bar{n}=x_{1} n_{1}+\cdots+x_{t} n_{t}$. Thus, we can represent elements of S as vectors in \mathbb{N}_{0}^{t}.

Definition 2.1. (1) Let $\bar{x}=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{N}_{0}^{t}$ and $\bar{y}=\left(y_{1}, \ldots, y_{t}\right) \in \mathbb{N}_{0}^{t}$. We say that \bar{x} subsumes \bar{y} (or \bar{y} is subsumed by \bar{x}) if $\bar{x} \neq \bar{y}$ and $x_{i} \geq y_{i}$ for all $1 \leq i \leq t$.
(2) For each $1 \leq i \leq t$, define $m_{i}: S \rightarrow \mathbb{N}_{0}$ by $m_{i}(x)=\min \left\{d: d n_{i}-x \in S, d \in \mathbb{N}_{0}\right\}$.

From the definition of $m_{i}(x)$, we see that the function m_{i} computes the smallest multiplier such that x divides that multiple of the $i^{t h}$ generator in the monoid S.

Definition 2.2. Let $x \in S \backslash S^{\times}$; we define
(1) $\mathcal{D}(x)=\left\{\bar{v} \in \mathbb{N}_{0}^{t}: x \mid \bar{v} \cdot \bar{n}\right\}$,
(2) $\mathcal{F}(x)=\{\bar{v} \in \mathcal{D}(x): x=\bar{v} \cdot \bar{n}\}$, and
(3) $\mathrm{y}(x)=\{\bar{y} \in \mathcal{D}(x): \forall \bar{c} \in \mathcal{D}(x), \bar{y}$ does not subsume $\bar{c}\}$.

The set $\mathcal{D}(x)$ is the set of factorizations of elements of S divisible by x. The set $\mathcal{F}(x)$ is the factorization set of x. Let $\left(0, \ldots, 0, m_{i}(x), 0, \ldots, 0\right) \in \mathbb{N}_{0}^{t}$ such that $m_{i}(x)$ is in the $i^{t h}$ component for all $1 \leq i \leq t$. It follows from the definition of $y(x)$ that $\left(0, \ldots, 0, m_{i}(x), 0, \ldots, 0\right) \in y(x)$, and so $y(x)$ is nonempty. Using the above notation, we obtain an initial representation for $\omega(x)$.
Proposition 2.2. $\omega(x)=\max \left\{\sum_{1}^{t} y_{i}: \bar{y} \in y(x)\right\}$.
Proof. Let $\bar{k}=\left(k_{1}, \ldots, k_{t}\right) \in y(x)$ such that $\sum_{1}^{t} k_{i}=\max \left\{\sum_{1}^{t} y_{i}: \bar{y} \in y(x)\right\}$. Since, for every $\bar{c} \in \mathcal{D}(x)$ we have that \bar{c} is not subsumed by \bar{k}, we conclude that x does not divide any subsum of the $\operatorname{sum} \bar{k} \cdot \bar{n}=k_{1} n_{1}+\cdots+k_{t} n_{t}$. Thus, we have $\omega(x) \geq \sum_{1}^{t} k_{i}$ because $x \mid \bar{k} \cdot \bar{n}$. But, since $\sum_{1}^{t} k_{i}=\max \left\{\sum_{1}^{t} y_{i}:\left(y_{1}, \ldots, y_{t}\right) \in y(x)\right\}$, we also have that $\omega(x) \leq \sum_{1}^{t} k_{i}$. Therefore, $\omega(x)=\sum_{1}^{t} k_{i}$.

3. ω-Measure in General Numerical Monoids

Our main result of this section is an algorithm which computes $\omega(x)$ for any nonunit x in a given primitive numerical monoid.
The Omega Algorithm ($x,\left\{n_{1}, \ldots, n_{t}\right\}$).
Input: $\left\{n_{1}, \ldots, n_{t}\right\}$, the primitive set of generators for S, and $0 \neq x \in S$.
Output: $\omega(x)$.
(1) Compute $m_{i}(x)$, for $1 \leq i \leq t$. Let $M=\max \left\{m_{i}(x): 1 \leq i \leq t\right\}$.
(2) Solve $U_{0}(x)=\left\{\left(d_{1}, \ldots, d_{t}\right) \in \mathbb{N}_{0}^{t}: \sum_{1}^{t} d_{i}=M, d_{i}<m_{i}(x)\right\}$, and

$$
V_{0}(x)=\left\{\left(d_{1}, \ldots, d_{t}\right) \in \mathbb{N}_{0}^{t}: \sum_{1}^{t} d_{i}>M, d_{i}<m_{i}(x)\right\}
$$

(3) Set $U_{1}(x)=\left\{\bar{v} \in U_{0}(x): x \mid \bar{v} \cdot \bar{n}\right\}$.

Set $V_{1}(x)=\left\{\bar{v} \in V_{0}(x): \exists \bar{c} \in U_{1}(x)\right.$ such that \bar{v} subsumes $\left.\bar{c}\right\}$.
Set $V_{2}(x)=V_{0}(x) \backslash V_{1}(x)$.
(4) Set $V_{3}(x)=\left\{\bar{v} \in V_{2}(x): x \mid \bar{v} \cdot \bar{n}\right\}$.

Set $V_{4}(x)=\left\{\bar{v} \in V_{3}(x): \exists \bar{c} \in V_{3}(x)\right.$ such that \bar{v} subsumes $\left.\bar{c}\right\}$.
(5) Set $\mathcal{W}(x)=V_{3}(x) \backslash V_{4}(x)$.
(6) If $\mathcal{W}(x)$ is not empty, then $\omega(x)=\max \left\{\sum_{1}^{t} d_{i}:\left(d_{1}, \ldots, d_{t}\right) \in \mathcal{W}(x)\right\}$. Otherwise, $\omega(x)=M$.

Proof. Let $x \in S, M=\max \left\{m_{i}(x): 1 \leq i \leq t\right\}$, and $\mathcal{W}(x)$ be as constructed above. We will show that $\mathcal{W}(x)=\left\{\bar{v} \in \mathcal{Y}(x): \sum_{1}^{t} v_{i}>M\right\}$. Then, if $\mathcal{W}(x)$ is not empty, it is clear that $\omega(x)=\max \left\{\sum_{1}^{t} d_{i}:\left(d_{1}, \ldots, d_{t}\right) \in \mathcal{W}(x)\right\}=\max \left\{\sum_{1}^{t} y_{i}: \bar{y} \in \mathcal{y}(x)\right\}$.

We first show that $\bar{k} \in \mathcal{W}(x)$ implies $\bar{k} \in \mathcal{Y}(x)$. Since $\bar{k} \in \mathcal{W}(x)$ implies $\bar{k} \in V_{3}(x)$, we have $\bar{k} \in \mathcal{D}(x)$. Now we will show that \bar{k} does not subsume any $\bar{c} \in \mathcal{D}(x)$. Suppose that there is $\bar{b} \in \mathcal{D}(x)$ such that \bar{k} subsumes \bar{b} and $\sum_{1}^{t} b_{i}<M$. Then there exists $\bar{c} \in \mathcal{D}(x)$ with $\sum_{1}^{t} c_{i}=M$ and $b_{i} \leq c_{i} \leq k_{i}$ for all $1 \leq i \leq t$. Since $\bar{k} \in \mathcal{W}(x)$ implies $\bar{k} \notin V_{1}(x), \bar{k}$ does not subsume any $\bar{c} \in \mathcal{D}(x)$ with $\sum_{1}^{t} c_{i} \leq M$. Since $\bar{k} \in \mathcal{W}(x)$ implies $\bar{k} \notin V_{4}(x), \bar{k}$ does not subsume any $\bar{c} \in \mathcal{D}(x)$ with $\sum_{1}^{t} c_{i}>M$. Therefore, $\mathcal{W}(x) \subset y(x)$. It is clear that $\bar{y} \in y(x)$ is in $\mathcal{W}(x)$ if and only if $\sum_{1}^{t} y_{i}>M$.

If $\mathcal{W}(x)$ is empty, then $\sum_{1}^{t} y_{i} \leq M$ for all $\bar{y} \in \mathcal{y}(x)$. Since there exists an integer $j \in\{1,2, \ldots, t\}$ such that $\left(0, \ldots, 0, m_{j}(x), 0, \ldots, 0\right) \in y(x)$ and $m_{j}(x)=M$, we have $\max \left\{\sum_{1}^{t} y_{i}: \bar{y} \in y(x)\right\}=$ $M=\omega(x)$.

Example 3.1. The Omega Algorithm can be readily programmed using any standard computer algebra package. To demonstrate this, we compute the omega values of the generators for some three-generated numerical monoids.

$\left\langle n_{1}, n_{2}, n_{3}\right\rangle$	Ordering of Omega Values
$\langle 5,7,17\rangle$	$\omega(5)=5<\omega(7)=7<\omega(17)=9$
$\langle 5,7,11\rangle$	$\omega(5)=3<\omega(7)=\omega(11)=5$
$\langle 4,5,6\rangle$	$\omega(4)=2<\omega(5)=4>\omega(6)=3$
$\langle 6,9,11\rangle$	$\omega(6)=\omega(9)=3<\omega(11)=7$
$\langle 7,11,17\rangle$	$\omega(7)=\omega(11)=\omega(17)=5$
$\langle 6,7,11\rangle$	$\omega(6)=4>\omega(7)=3<\omega(11)=5$
$\langle 7,8,12\rangle$	$\omega(7)=5>\omega(8)=\omega(12)=4$

It is unclear whether or not the remaining 6 orderings (such as $\left.\omega\left(n_{1}\right)=\omega\left(n_{2}\right)>\omega\left(n_{3}\right)\right)$ are possible.
In Propositions 3.1 and 3.2 , we apply the algorithm to two specific classes of numerical monoids and obtain exact formulas for $\omega(x)$ and $\omega(S)$.

Proposition 3.1. Let $S=\langle n, n+1, \ldots, 2 n-1\rangle$, for an integer $n \geq 3$. If $0 \neq x \in S$, then

$$
\omega(x)=\left\lceil\frac{x}{n}\right\rceil+1
$$

and thus $\omega(S)=\{2,3,4,5, \ldots\}$.
Proof. Let $n \geq 3$ be an integer and $S=\langle n, n+1, \ldots, 2 n-1\rangle$. Then $S=\{0, n, n+1, n+2, \ldots\}$. Let $x \in S$. Then there exist unique positive integers q and r such that $x=q n+r$, where $q=\left\lfloor\frac{x}{n}\right\rfloor$ and $0 \leq r \leq n-1$. We consider two cases, where $r=0$ or $r>0$.

If $r=0$, we first show that $\omega(x) \leq q+1$. The sum of any $q+1$ atoms is at least $(q+1) n$. Since $(q+1) n-x=n \in S$, then x divides the sum of any $q+1$ atoms and $\omega(x) \leq q+1$.

To see that $\omega(x)=q+1$, consider $(q-1) n+2(n+1)$. We know that x divides this sum of $q+1$ atoms, but since $(q-1) n+2(n+1)-x-n=2<n$, we see that x does not divide any subsum of q atoms. So $\omega(x)=q+1=\left\lceil\frac{x}{n}\right\rceil+1$.

If $r>0$, we first show that $\omega(x) \leq q+2$. The sum of any $q+2$ atoms is at least $(q+2) n$. Since $(q+2) n-x=2 n-r>n \in S$, then x divides the sum of any $q+2$ atoms and $\omega(x) \leq q+2$. Since $x \mid(q+2) n$, but $(q+1) n-x=n-r \in[1, n-1]$, we see that x does not divide any subsum of $q+1$ atoms, and therefore $\omega(x) \geq q+2$. So $\omega(x)=q+2=\left\lceil\frac{x}{n}\right\rceil+1$. The structure of $\omega(S)$ now easily follows.

Proposition 3.2. Let $S=\langle n, n+1, \ldots, 2 n-2\rangle$, for an integer $n \geq 4, x \in S$, and let k be the unique integer such that $k n<x \leq(k+1) n$. Then,

$$
\omega(x)=\left\{\begin{array}{l}
k+3, \text { if } k+2 \text { divides } x-(k n+1) \\
k+2, \text { otherwise }
\end{array}\right.
$$

Moreover, it follows that

$$
\omega(S)= \begin{cases}\{2,3,4,5, \ldots\} & \text { if } n \text { is even } \\ \{3,4,5,6, \ldots\} & \text { if } n \text { is odd }\end{cases}
$$

Proof. Since $S=\{0, n, n+1, \ldots, 2 n-2,2 n, 2 n+1, \ldots\}$, we note that $x \mid y$ if and only if $y-x=0$, or $y-x \geq n$ and $y-x \neq 2 n-1$. We first see that $\omega(x) \leq k+3$ by noting that $(k+3) n-x \geq 2 n$, and therefore x divides the sum of any $k+3$ atoms.

Suppose that there is a sum of $k+3$ atoms such that x does not divide any subsum of $k+2$ atoms. Since $(k+2) n-x \geq n$, this is possible if and only if the difference between any subsum of $k+2$ atoms and x is equal to $2 n-1$. In this case, all of the $k+3$ atoms must be the same, say $n+t$ for $0 \leq t<n-1$ and $(k+2)(n+t)-x=2 n-1$. This is possible if and only if $x=k n+(k+2) t+1$. In this case, we have $\omega(x) \geq k+3$, and therefore $\omega(x)=k+3$. Otherwise, if x divides $k+3$ atoms, then it divides some subsum of $k+2$ atoms and $\omega(x) \leq k+2$.

We suppose that there is no t such that $x=k n+(k+2) t+1$, so in particular $x \neq k n+1$, and show that $\omega(x) \geq k+2$. If $x=(k+1) n$, then $x \mid k n+2(n+1)$, but x does not divide any subsum of $k+1$ atoms. If $x \not \equiv 0,1(\bmod n)$, then $x \mid(k+2) n$, but $(k+1) n-x \in[1, n-2] \notin S$. Therefore $\omega(x) \geq k+2$, and so $\omega(x)=k+2$.

For the second assertion, no matter the parity of n, we have $k n+2 \in S$ for all $k \geq 2$. By our formula, $\omega(k n+2)=k+2$, and hence $\{4,5,6,7, \ldots\} \subseteq \omega(S)$. If n is even, then easy computations yield $\omega(n)=2$ and $\omega(n+2)=3$, which completes the top formula. If n is odd, then $\omega(n)=3$. Since $k>0$ for all other elements of S, the second formula follows.

We close this section by showing that $\omega(S)$ does not always consist of an interval of integers. We will first require a proposition.
Proposition 3.3. Let $S=\left\langle n_{1}, \ldots, n_{t}\right\rangle$ be primitive with minimal set of generators $\left\{n_{1}, \ldots, n_{t}\right\}$. Let t be the Frobenius number of S. Define $F, L_{S}(F)$, and $T(k)$ as follows:

- $F=\langle t+1, t+2, \ldots, 2(t+1)-1\rangle$,
- $L_{S}(F)=\left\{L_{S}(x): x \in F \backslash\{0\}\right\}$ (where $L_{S}(x)$ denotes the longest length of x in S),
- For any positive integer k, let $T(k)$ be the set of all x in $\{t+1, t+2, \ldots, 2(t+1)-1\}$ such that $k \geq L_{S}(x)$.

A positive integer k is not in $\omega(S)$ if all of the following are true:
(1) $k \notin \omega(S \backslash F)$,
(2) $k \notin \omega(T(k))$, and
(3) If $T(k)$ is not empty, then $k<2 \cdot \min L_{S}(T(k))$.

Proof. Let $S, t, F, L_{S}(F)$, and $T(k)$ be as defined above. It is clear that $F=\{t+1, t+2, t+3, \ldots\} \subset$ S. Suppose k is a positive integer that satisfies the above criteria. Then it is clear from criterion (1) that $k \notin \omega(S \backslash F)$. Using criteria (2) and (3) we will show that $k \notin \omega(F)$.

The minimal set of generators for F is $\{t+1, t+2, \ldots, 2(t+1)-1\}$. Since every $x \in F$ is a linear combination of the generators of F, it is clear that $L_{S}(x) \geq \min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})$. Thus we have $\min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})=\min L_{S}(F)$. Since $\omega(x) \geq L_{S}(x)$, we have $\omega(x) \geq \min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})=\min L_{S}(F)$ for any $x \in F$.

If $T(k)$ is empty, then for all $x \in\{t+1, t+2, \ldots, 2(t+1)-1\}$ we have $k<L_{S}(x)$. Thus, $k<\min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})=\min L_{S}(F) \leq \omega(x)$ for all $x \in F$. Hence, $k \notin \omega(F)$.

Now, suppose $T(k)$ is not empty. We have that $k \notin \omega(\{t+1, t+2, \ldots, 2(t+1)-1\} \backslash T(k))$ because $k<L_{S}(x) \leq \omega(x)$ for any $x \in\{t+1, t+2, \ldots, 2(t+1)-1\} \backslash T(k)$. From criterion (2), we have $k \notin \omega(T(k))$, and so $k \notin \omega(\{t+1, t+2, \ldots, 2(t+1)-1\})$. Now, for $x \in F \backslash\{t+1, t+$ $2, \ldots, 2(t+1)-1\}$, it is clear that $L_{S}(x) \geq 2 \cdot \min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})$. Criterion (3) gives us $k<2 \cdot \min L_{S}(T(k))=2 \cdot \min L_{S}(\{t+1, t+2, \ldots, 2(t+1)-1\})$, which implies $k \notin \omega(F \backslash\{t+1, t+2, \ldots, 2(t+1)-1\})$. Hence, $k \notin \omega(F)$.

Example 3.2. Let $S=\langle 9,29,39\rangle$. Computer data indicates that 4 and 5 are not in $\omega(S)$, so let $k \in\{4,5\}$. The Frobenius number of S is 127 . Using the definitions given in the above proposition, we have:

- $F=\langle 128,129, \ldots, 255\rangle=\{128,129,130, \ldots\}$,
- $L_{S}(\{128,129, \ldots, 255\})=\{4,5,6, \ldots, 28\}$,
- $T(4)=\{136\}$ and $T(5)=\{136,145\}$.

We check the three criteria of the above proposition on 4 and 5 :
(1) $4,5 \notin \omega(S \backslash F)=\{3,6,7,8, \ldots, 22,23,24,27,28,29\}$,
(2) $4 \notin \omega(T(4))=\omega(\{136\})=\{27\}$ and $5 \notin \omega(T(5))=\omega(\{136,145\})=\{27,28\}$,
(3) $T(4)$ and $T(5)$ are not empty and we have $4<2 \cdot \min L_{S}(T(4))=2 \cdot L_{S}(136)=8$ and $5<2 \cdot \min L_{S}(T(5))=2 \cdot \min \{136,145\}=2 \cdot L_{S}(136)=8$.
Since 4 and 5 satisfy the criteria, we have that $4,5 \notin \omega(\langle 9,29,39\rangle)$, but as indicated above, $3 \in \omega(S)$.

4. ω-Measure in 2-Generator Numerical Monoids

Throughout this section, we will be dealing with the special class of numerical monoids generated by two elements. Thus, we let $S=\left\langle n_{1}, n_{2}\right\rangle$ be primitive with $1<n_{1}<n_{2}$. We determine an exact formula for $\omega(x)$ in Theorem 4.4, but we first require three Lemmas.

Lemma 4.1. Let $x \in S \backslash S^{\times}$, and let $\left(d_{1}, d_{2}\right) \in \mathcal{D}(x)$ such that $\left(d_{1}, d_{2}\right) \notin \mathcal{F}(x) \cup\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}$. Then, at least one of the following is true:
(1) There exists $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$ such that $\left(d_{1}, d_{2}\right)$ subsumes $\left(x_{1}, x_{2}\right)$,
(2) $\left(d_{1}, d_{2}\right)$ subsumes $\left(m_{1}(x), 0\right)$, or
(3) $\left(d_{1}, d_{2}\right)$ subsumes $\left(0, m_{2}(x)\right)$.

Proof. Let $x \in S \backslash S^{\times}$, and let $\left(d_{1}, d_{2}\right) \in \mathcal{D}(x)$ such that $\left(d_{1}, d_{2}\right) \notin \mathcal{F}(x) \cup\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}$. Then $d_{1} n_{1}+d_{2} n_{2}-x=c_{1} n_{1}+c_{2} n_{2} \in S$. If there is an $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$ such that $x_{1} \leq d_{1}$ and $x_{2} \leq d_{2}$, then we are done. So suppose that there is no such $\left(x_{1}, x_{2}\right)$. Then for any given $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$, either $x_{1}>d_{1}$ and $x_{2}<d_{2}$, or $x_{2}>d_{2}$ and $x_{1}<d_{1}$.

First, suppose that $x_{1}>d_{1}$ and $x_{2}<d_{2}$. Then $d_{1}-x_{1}<0$ and $d_{2}-x_{2}>0$. Since $\left(d_{1}-x_{1}\right) n_{1}+$ $\left(d_{2}-x_{2}\right) n_{2}=c_{1} n_{1}+c_{2} n_{2} \in S$, there exists a positive integer k such that $c_{1}=d_{1}-x_{1}+k n_{2} \geq 0$ and $c_{2}=d_{2}-x_{2}-k n_{1} \geq 0$. Then $d_{2}=c_{2}+x_{2}+k n_{1}$, and so $d_{2} n_{2}-x=\left(c_{2}+x_{2}+k n_{1}\right) n_{2}-\left(x_{1} n_{1}+x_{2} n_{2}\right)=$ $c_{2} n_{2}+\left(k n_{2}-x_{1}\right) n_{1}$. Because $c_{2} \geq 0$, if we can show that $k n_{2}-x_{1} \geq 0$, then we get $d_{2} n_{2}-x \in S$. Suppose $k n_{2}-x_{1}<0$. Let $a_{1}=x_{1}-k n_{2}$ and $a_{2}=x_{2}+k n_{1}$. Then $\left(a_{1}, a_{2}\right) \in \mathcal{F}(x)$ such that $d_{1}-a_{1} \geq 0$ and $d_{2}-a_{2} \geq 0$, which is a contradiction. Thus, we have $k n_{2}-x_{1}>0$, and so $d_{2} n_{2}-x \in S$. From the definition of $m_{2}(x)$, it follows that $m_{2}(x) \leq d_{2}$, and so $\left(d_{1}, d_{2}\right)$ subsumes ($0, m_{2}(x)$).

Now, suppose that $x_{2}>d_{2}$ and $x_{1}<d_{1}$. An argument similar to the above gives us $m_{1}(x) \leq d_{1}$, and thus $\left(d_{1}, d_{2}\right)$ subsumes $\left(m_{1}(x), 0\right)$.

Lemma 4.2. Let $x \in S \backslash S^{\times}$. Then $\max \left\{x_{1}+x_{2}:\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)\right\} \leq m_{1}(x)$.
Proof. Let $x \in S \backslash S^{\times}$. Let $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$ such that $\max \left\{x_{1}+x_{2}:\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)\right\}=x_{1}+x_{2}$. Then $x_{1}+x_{2}=L(x)$, the longest factorization length of x, and $x_{2}<n_{1}$. If $x_{2}=0$, then $x=x_{1} n_{1}$ and $L(x)=x_{1}$. By the definition of $m_{1}(x)$, we have $m_{1}(x)=x_{1}=L(x)$. Suppose that $x_{2}>0$. Since $0<n_{1}-x_{2}$ and $m_{1}(x) n_{1}-x=m_{1}(x) n_{1}-\left(x_{1} n_{1}+x_{2} n_{2}\right)=\left(m_{1}(x)-x_{1}\right) n_{1}+\left(-x_{2}\right) n_{2}=$ $\left(m_{1}(x)-x_{1}-n_{2}\right) n_{1}+\left(n_{1}-x_{2}\right) n_{2} \in S$, we have $m_{1}(x)-x_{1}-n_{2} \geq 0$. It follows from the minimality of $m_{1}(x)$ that $x_{1}+n_{2}=m_{1}(x)$. Now, since $x_{2}<n_{1}<n_{2}$, we get $L(x)=x_{1}+x_{2}<x_{1}+n_{2}=m_{1}(x)$.

Lemma 4.3. Let $x \in S \backslash S^{\times}$. Then $\omega(x)=\max \left\{m_{1}(x), m_{2}(x)\right\}$.
Proof. Let $x \in S \backslash S^{\times}$. It is clear that $\mathcal{F}(x) \cup\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}$ is a subset of $y(x)$. Let $\left(d_{1}, d_{2}\right) \in \mathcal{D}(x)$ such that $\left(d_{1}, d_{2}\right) \notin \mathcal{F}(x) \cup\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}$. By Lemma 4.1, $\left(d_{1}, d_{2}\right)$ subsumes some element of $\mathcal{F}(x) \cup\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}$. This implies that $\left(d_{1}, d_{2}\right) \notin \mathcal{y}(x)$, and so $\mathcal{F}(x) \cup$ $\left\{\left(m_{1}(x), 0\right),\left(0, m_{2}(x)\right)\right\}=y(x)$. Finally, we get $\omega(x)=\max \left\{m_{1}(x), m_{2}(x)\right\}$ by applying Lemma 4.2.

Theorem 4.4. Let $x \in S \backslash S^{\times}$and $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$. Then,

$$
\omega(x)=\max \left\{\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1},\left\lceil\frac{x_{1}}{n_{2}}\right\rceil n_{1}+x_{2}\right\}
$$

Proof. Let $x \in S \backslash S^{\times}$and $\left(x_{1}, x_{2}\right) \in \mathcal{F}(x)$. Then $x=x_{1} n_{1}+x_{2} n_{2}$. It follows from the definition of $m_{1}(x)$ that $m_{1}(x) n_{1}-x=y_{2} n_{2}$, where $y_{2}<n_{1}$. Then, $m_{1}(x) n_{1}-x=m_{1}(x) n_{1}-\left(x_{1} n_{1}+x_{2} n_{2}\right)=$ $\left(m_{1}(x)-x_{1}\right) n_{1}-x_{2} n_{2}=y_{2} n_{2} \in S$ implies $m_{1}(x)-x_{1} \geq 0$. Since $n_{2} \mid\left(m_{1}(x)-x_{1}\right) n_{1}$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, we have $n_{2} \mid\left(m_{1}(x)-x_{1}\right)$. Thus, there exists a nonnegative integer q such that $m_{1}(x)-x_{1}=q n_{2}$, and so $m_{1}(x)=q n_{2}+x_{1}$. Then $m_{1}(x) n_{1}-x=\left(q n_{2}+x_{1}\right) n_{1}-\left(x_{1} n_{1}+x_{2} n_{2}\right)=$ $\left(q n_{1}-x_{2}\right) n_{2} \in S$ implies $q n_{1}-x_{2} \geq 0$. Since $q \geq \frac{x_{2}}{n_{1}}$ and q is an integer, we get $q=\left\lceil\frac{x_{2}}{n_{1}}\right\rceil$. Hence, $m_{1}(x)=q n_{2}+x_{1}=\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}$. A similar proof shows that $m_{2}(x)=\left\lceil\frac{x_{1}}{n_{2}}\right\rceil n_{1}+x_{2}$.

Theorem 4.5. Let $x \in S \backslash S^{\times}$. Then $\omega(x)=x$ if and only if $x \in\left\{n_{1}, n_{2}\right\}$.
Proof. Theorem 4.4 implies $\omega\left(n_{1}\right)=m_{2}\left(n_{1}\right)=n_{1}$ and $\omega\left(n_{2}\right)=m_{1}\left(n_{2}\right)=n_{2}$. For the converse, suppose that $m_{1}(x)=x$. We have $m_{1}(x)=\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}=x_{2} n_{2}+x_{1} n_{1}$. We can write $x_{2}=k n_{1}+r$ for unique integers $k \geq 0$ and $0 \leq r \leq n_{1}-1$. Then $\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}=\left(k+\left\lceil\frac{r}{n_{1}}\right\rceil\right) n_{2}+x_{1}=\left(k n_{1}+r\right) n_{2}+x_{1} n_{1}$. We have $\left(k\left(n_{1}-1\right)+r-\left\lceil\frac{r}{n_{1}}\right\rceil\right) n_{2}+x_{1}\left(n_{1}-1\right)=0$. Therefore $k=x_{1}=0$ and $r=\left\lceil\frac{r}{n_{1}}\right\rceil$. Since $x \neq 0$ we cannot have $r=0$ as well; so $r=1$ and $x=n_{2}$.

A very similar argument shows $m_{2}(x)=x$ implies $x=n_{1}$. So $x \notin\left\{n_{1}, n_{2}\right\}$ implies $\omega(x) \neq x$.
Theorem 4.7 will describe the set $\omega(S)$. Its proof follows immediately from the following Lemma.

Lemma 4.6. Let S be a primitive numerical monoid of the form $S=\left\langle n_{1}, n_{2}\right\rangle$.
(i) If $x \in S$ and $\omega(x)<n_{1}$, then $x=0$.
(ii) If k is an integer such that $0 \leq k \leq n_{2}-n_{1}$, then $\omega\left(\left(n_{1}+k\right) n_{1}\right)=n_{1}+k$.
(iii) If $k \geq 0$, then $\omega\left(k n_{1}+n_{2}\right)=n_{2}+k$.

Proof. (i) Theorem 4.4 implies $\omega(x) \geq\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}$; so $\omega(x)<n_{1}$ implies $x_{2}=0$. Similarly $\omega(x) \geq\left\lceil\frac{x_{1}}{n_{2}}\right\rceil n_{1}+x_{2}$; so $\omega(x)<n_{1}$ implies $x_{1}=0$. Therefore, $\omega(x)<n_{1}$ implies $x=0$.
(ii) Let k be an integer such that $0 \leq k \leq n_{2}-n_{1}$. We will consider elements of the form $\left(n_{1}+k\right) n_{1}$ in S.

Let $x_{1}=n_{1}+k$ and $x_{2}=0$; then $\left(x_{1}, x_{2}\right) \in \mathcal{F}\left(\left(n_{1}+k\right) n_{1}\right)$. According to Theorem 4.4, we have

$$
\begin{aligned}
& m_{1}\left(\left(n_{1}+k\right) n_{1}\right)=\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}=\left\lceil\frac{0}{n_{1}}\right\rceil n_{2}+\left(n_{1}+k\right)=n_{1}+k \\
& m_{2}\left(\left(n_{1}+k\right) n_{1}\right)=\left\lceil\frac{x_{1}}{n_{2}}\right\rceil n_{1}+x_{2}=\left\lceil\frac{n_{1}+k}{n_{2}}\right\rceil n_{1}
\end{aligned}
$$

We note that $\left\lceil\frac{n_{1}}{n_{2}}\right\rceil \leq\left\lceil\frac{n_{1}+k}{n_{2}}\right\rceil \leq\left\lceil\frac{n_{2}}{n_{2}}\right\rceil$; so $m_{2}\left(\left(n_{1}+k\right) n_{1}\right)=n_{1}$ and $\omega\left(\left(n_{1}+k\right) n_{1}\right)=n_{1}+k$.
(iii) Let $k \geq 0$ be an integer. Consider the element $k n_{1}+n_{2} \in S$. Let $x_{1}=k$ and $x_{2}=1$. Then $\left(x_{1}, x_{2}\right) \in \mathcal{F}\left(k n_{1}+n_{2}\right)$. According to Theorem 4.4, we have

$$
\begin{aligned}
& m_{1}\left(k n_{1}+n_{2}\right)=\left\lceil\frac{x_{2}}{n_{1}}\right\rceil n_{2}+x_{1}=\left\lceil\frac{1}{n_{1}}\right\rceil n_{2}+k=n_{2}+k \\
& m_{2}\left(k n_{1}+n_{2}\right)=\left\lceil\frac{x_{1}}{n_{2}}\right\rceil n_{1}+x_{2}=\left\lceil\frac{k}{n_{2}}\right\rceil n_{1}+1
\end{aligned}
$$

Since $\left\lceil\frac{k}{n_{2}}\right\rceil n_{1}+1<\left(\frac{k}{n_{2}}+1\right) n_{1}+1<k+\left(n_{1}+1\right) \leq k+n_{2}$, we have $\omega\left(k n_{1}+n_{2}\right)=n_{2}+k$.
The next theorem follows immediately.
Theorem 4.7. $\omega(S)=\left\{n_{1}, n_{1}+1, n_{1}+2, \ldots\right\}$.
We close by showing that in the 2-generator case, the ω function has nice asymptotic behavior. We will first require a lemma. The existence of the limit below is guaranteed by [1, Theorem 2.8].

Lemma 4.8. Consider $t n_{1} \in S \backslash S^{\times}$and $t n_{2} \in S \backslash S^{\times}$for $t \in \mathbb{N}$.
(1) $\lim _{t \rightarrow \infty} \frac{\omega\left(t n_{1}\right)}{t}=1$, and there exists a $T \in \mathbb{N}$ such that $\omega\left(t n_{1}\right)=t$ for all $t>T$.
(2) $\lim _{t \rightarrow \infty} \frac{\omega\left(t n_{2}\right)}{t}=\frac{n_{2}}{n_{1}}$.

Proof. For the first statement, consider elements of the form $t n_{1}$, where $t \in \mathbb{N}$. It follows from the definition that $m_{1}\left(t n_{1}\right)=t$. Applying Theorem 4.4, we have $m_{2}\left(t n_{1}\right)=\left\lceil\frac{t}{n_{2}}\right\rceil n_{1} \leq(t+1) \frac{n_{1}}{n_{2}}$, which is less than t whenever $t>\frac{n_{1}}{n_{2}-n_{1}}$. So $\lim _{t \rightarrow \infty} \frac{\omega\left(t n_{1}\right)}{t}=\lim _{t \rightarrow \infty} \frac{m_{1}\left(t n_{1}\right)}{t}=1$.

For the second statement, consider elements of the from $t n_{2}$, where $t \in \mathbb{N}$. It follows from the definition that $m_{2}\left(t n_{2}\right)=t$. Applying Theorem 4.4, we have $m_{1}\left(t n_{2}\right)=\left\lceil\frac{t}{n_{1}}\right\rceil n_{2} \geq \frac{t n_{2}}{n_{1}}>t$. We have $\frac{n_{2}}{n_{1}} \leq \frac{m_{1}\left(t n_{2}\right)}{t} \leq \frac{n_{2}}{n_{1}}+\frac{n_{2}}{t}$. So $\lim _{t \rightarrow \infty} \frac{\omega\left(t n_{2}\right)}{t}=\lim _{t \rightarrow \infty} \frac{m_{1}\left(t n_{2}\right)}{t}=\frac{n_{2}}{n_{1}}$.
Theorem 4.9. Let $x \in S \backslash S^{\times}$. Then $\lim _{x \rightarrow \infty} \frac{\omega(x)}{x}=\frac{1}{n_{1}}$.

Proof. We may ignore all $x \in S \backslash S^{\times}$except for $x>n_{1} n_{2}+n_{1}$.
Let $q(x)=\left\lfloor\frac{x-n_{1} n_{2}}{n_{1}}\right\rfloor$. From $x>n_{1} n_{2}+n_{1}$, we know that $q(x) \geq 1$. We also know that $x-n_{1} n_{2}=q(x) n_{1}+r(x)$ for some $r(x)$ satisfying $0 \leq r(x)<n_{1}$. Thus, $x=q(x) n_{1}+\left(n_{1} n_{2}+r(x)\right)$. Since $n_{1} n_{2}+r(x)$ is greater than the Frobenius number of S, which is $n_{1} n_{2}-n_{1}-n_{2}$, it is clear that $n_{1} n_{2}+r(x) \in S$ and $q(x) n_{1} \in S$. By Proposition 2.1, we have $\omega(x) \leq \omega\left(q(x) n_{1}\right)+\omega\left(n_{1} n_{2}+r(x)\right)$.

Now let $q^{\prime}(x)=\left\lfloor\frac{x+n_{1} n_{2}}{n_{1}}\right\rfloor$. We likewise see that $q^{\prime}(x) \geq 2 n_{2}+1$ and that $x+n_{1} n_{2}=q^{\prime}(x) n_{1}+r^{\prime}(x)$ for some $r^{\prime}(x)$ satisfying $0 \leq r^{\prime}(x)<n_{1}$. Thus, $q^{\prime}(x) n_{1}=x+\left(n_{1} n_{2}-r^{\prime}(x)\right)$. We need only note that $n_{1} n_{2}-r^{\prime}(x)$ is again greater than the Frobenius number of S, and thus we have $\omega\left(q^{\prime}(x) n_{1}\right) \leq$ $\omega(x)+\omega\left(n_{1} n_{2}-r^{\prime}(x)\right)$.

We now set $B=\max \left\{\omega(x) \mid x \in S, x \leq n_{1} n_{2}+n_{1}\right\}$. Then we have

$$
\omega\left(q^{\prime}(x) n_{1}\right)-\omega\left(n_{1} n_{2}-r^{\prime}(x)\right) \leq \omega(x) \leq \omega\left(q(x) n_{1}\right)+\omega\left(n_{1} n_{2}+r(x)\right)
$$

Thus, $\omega\left(q^{\prime}(x) n_{1}\right)-B \leq \omega(x) \leq \omega\left(q^{\prime}(x) n_{1}\right)+B$, and so we have the following

$$
\begin{equation*}
\frac{\omega\left(q^{\prime}(x) n_{1}\right)}{x}-\frac{B}{x} \leq \frac{\omega(x)}{x} \leq \frac{\omega\left(q(x) n_{1}\right)}{x}+\frac{B}{x} \tag{1}
\end{equation*}
$$

We observe that $\lim _{x \rightarrow \infty} \frac{q(x)}{x}=\lim _{x \rightarrow \infty} \frac{q^{\prime}(x)}{x}=\frac{1}{n_{1}}$. We also see that $q(x), q^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$, and thus by Lemma 4.8, $\lim _{x \rightarrow \infty} \frac{\omega\left(q(x) n_{1}\right)}{q(x)}=\lim _{x \rightarrow \infty} \frac{\omega\left(q^{\prime}(x) n_{1}\right)}{q^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{\omega\left(x n_{1}\right)}{x}=1$. We then see that

$$
\lim _{x \rightarrow \infty} \frac{\omega\left(q^{\prime}(x) n_{1}\right)}{x}-\frac{B}{x}=\lim _{x \rightarrow \infty}\left(\frac{\omega\left(q^{\prime}(x) n_{1}\right)}{q^{\prime}(x)}\right)\left(\frac{q^{\prime} x}{x}\right)-\frac{B}{x}=(1)\left(\frac{1}{n_{1}}\right)-0=\frac{1}{n_{1}} .
$$

Likewise, we have

$$
\lim _{x \rightarrow \infty} \frac{\omega\left(q(x) n_{1}\right)}{t}+\frac{B}{x}=\lim _{x \rightarrow \infty}\left(\frac{\omega\left(q(x) n_{1}\right)}{q(x)}\right)\left(\frac{q(x)}{x}\right)+\frac{B}{x}=(1)\left(\frac{1}{n_{1}}\right)+0=\frac{1}{n_{1}} .
$$

By (1), we then see that $\lim _{x \rightarrow \infty} \frac{\omega(x)}{x}=\frac{1}{n_{1}}$.

References

[1] D. F. Anderson and S. T. Chapman, How far is an element from being prime?, to appear in J. Algebra Appl.
[2] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On Delta sets of numerical monoids, J. Algebra Appl. 5(2006), 1-24.
[3] S. T. Chapman, M. Holden and T. Moore, On full elasticity in atomic monoids and integral domains, Rocky Mountain J. Math. 36(2006), 1437-1455.
[4] S. T. Chapman, N. Kaplan and R. Hoyer, Delta sets of numerical monoids are eventually periodic, Aequationes Math 77(2009), 273-279.
[5] S. T. Chapman, N. Kaplan, T. Lemburg, A. Niles and C. Zlogar, Shifts of generators and delta sets of numerical monoids, to appear in J. Comm. Algebra.
[6] P.A. García-Sánchez and J.C. Rosales, Finitely Generated Commutative Monoids, Nova Science Publishers, Commack, New York, 1999.
[7] A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[8] A. Geroldinger and W. Hassler, Local tameness of v-Noetherian monoids, J. Pure Applied Algebra 212(2008), 1509-1524.
[9] M. Omidali, The catenary and tame degree of certain numerical monoids, preprint.
[10] W. Schmid, Differences in sets of lengths in Krull monoids with finite class group, J. Théor. Nombres Bordeaux 17(2005), 323-345.

University of Tennessee, Department of Mathematics, Knoxville, TN 37996-1300
E-mail address: anderson@math.utk.edu
Sam Houston State University, Department of Mathematics and Statistics, Box 2206, Huntsville, TX 77341-2206

E-mail address: scott.chapman@shsu.edu
Princeton University, Department of Mathematics, Princeton NJ 08544-1000
E-mail address: NKaplan@math.harvard.edu
Current address: Harvard University, Department of Mathematics, One Oxford Street, Cambridge MA 02138
University of Richmond, Department of Mathematics, 28 Westhampton Way, Richmond, Virginia 23173
E-mail address: dtork@berkeley.edu
Current address: University of California at Berkeley, Department of Industrial Engineering and Operations Research, 4141 Etcheverry Hall, Mail Code 1777, Berkeley, CA 94720-1777

[^0]: The third and fourth authors received support from the National Science Foundation under grant DMS-0648390. The authors wish to thank Rolf Hoyer, Jay Daigle and Terri Moore for discussions related to this work.

