
Math 354: Number Theory
Summary of Lectures- Spring 2015.

In this document I will give a summary of what we have covered so far in the course, provide
references, and given some idea of where we are headed next. There will be a lot of overlap between
the descriptions given here and the introductory comments on each homework assignment.

1 Lecture 1

In the first lecture of the course I gave an overview of some of the types of problems that number
theorists are interested in. Number theory is a huge subject so I cannot possibly cover everything.
There was definitely a bias towards the type of number theory I like. Some of these problems are
the types of things we will cover in this course and others would be covered in a more advanced
number theory course.

Here are some examples of the types of problems we discussed. How do you classify rational solutions
to x2 + y2 = 1? Do these ideas extend to classifying solutions to similar types of equations? What
if we look at equations of these types modulo n for different values of n? How often can we write
n as a sum of two integer squares? How is this related to finding primes in the set of Gaussian

integers Z[i] or Eisenstein integers Z[−1+
√
−3

2 ]? Which positive integers can be written as sums
of three squares? What about four squares? Which triangular numbers are also squares? What
does this have to do with Pell’s equation x2 − dy2 = 1, and how does this equation relate to
continued fractions? We also discussed the distribution of prime numbers and stated the prime
number theorem. At the end of this lecture we showed an example of how the computer algebra
system Sage can be used to investigate many of these questions.

2 Lecture 2

In this lecture we got started on the actual material of the course by proving unique factorization
of integers into primes, closely following Chapter 1 of Ireland and Rosen. We skipped some of the
material including unique factorization of polynomials in k[x] and unique factorization in principal
ideal domains. We defined the greatest common divisor and introduced the Euclidean algorithm.

3 Lecture 3

We started by reviewing the Euclidean algorithm and gave some examples. We defined finite simple
continued fractions and proved a theorem relating the two. This material is not really covered in
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detail in Ireland and Rosen, but is contained in the first few sections of Nathanson.

We then transitioned to talking about counting prime numbers, pretty closely following Ireland and
Rosen Chapter 2. We gave Euclid’s proof of the infinitude of primes and used it to prove a weak
lower bound on π(x). We gave another proof of the infinitude of primes that involved writing every
integer n as ab2. We gave a better lower bound for π(x) by introducing a function that counts the
number of integers less than x that only have prime divisors in a finite set S.

4 Lecture 4

We continued our discussion of counting primes following Ireland and Rosen Chapter 2. We proved
that the sum of the reciprocals of the prime numbers diverges and proved the Euler product
expansion for the Riemann zeta function. We stated several theorems where values of ζ(s) appear
in asymptotic counts for number theoretic questions. We then used properties of the binomial
coefficient

(
2n
n

)
to give the upper bound in Chebyshev’s theorem.

5 Lecture 5

We proved the lower bound for Chebyshev’s theorem by again considering the primes dividing
(
2n
n

)
.

We stated a number of difficult results involving sets whose sum of reciprocals diverge, including
Szemeredi’s theorem, the Green-Tao theorem, and the Erdös-Turan conjecture. This involved
defining asymptotic/natural density for an infinite set.

We then started the proof of Bertrand’s postulate, that there is always a prime between n and 2n,
closely following the presentation in Proofs from the Book (PFTB). This involved more carefully
considering the primes dividing

(
2n
n

)
.

6 Lecture 6

We started by going over the last details of the proof of Bertrand’s postulate. We gave the Euclid
style argument that there are infinitely many primes congruent to 3 modulo 4. We proved some
of the basic properties of congruences following Chapter 3 of Ireland and Rosen. We showed that
Z/mZ forms a ring and that Z/pZ is a field and reviewed some necessary algebraic background.
We discussed counting solutions to congruences modulo n.
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7 Lecture 7

We started by considering when a linear congruence is solvable modulo n. We introduced the
Euler phi function and reviewed Lagrange’s theorem from group theory and some of its basic
consequences. We used this to prove Euler’s theorem and Fermat’s Little Theorem. This all
pretty closely follows Ireland and Rosen, although the necessary statements about group theory
are contained in Nathanson. As a consequence we gave another proof of the infinitude of primes
by considering factors of Mersenne numbers. This is one of the arguments in PFTB. We stated the
Chinese Remainder theorem and prove some lemmas to lead up to its proof.

8 Lecture 8

We proved the Chinese Remainder Theorem. We introduced the concept of a numerical semigroup.
This is not covered in Ireland and Rosen but is the subject of Section 1.6 of Nathanson. We
then returned to Chapter 3 of Ireland and Rosen and gave the isomorphism between Z/mZ and
Z/m1Z ⊕ · · · ⊕ Z/mtZ. This had nice consequences for Euler’s phi function, which allowed us to
prove some of the results in Chapter 2 that we had originally skipped. We then moved on to prove
that a degree d polynomial in k[x] has at most d distinct roots in k.

9 Lecture 9

We started by proving that the multiplicative group of a finite field is cyclic following the argument
given in PFTB. We proved Wilson’s theorem in two different ways, first by grouping together
residues modulo p and then by factoring xp−1 − 1. We briefly discussed the converse. We showed
how Euler’s theorem can show that a number is composite but that it can fail in some cases. We
defined a pseudoprime base a and a Carmichael number. We showed that there are infinitely many
pseudoprimes base a by some clever polynomial arithmetic combined with Euler’s theorem. We
stated and proved one direction of Korselt’s criterion for Carmichael numbers.

Nathanson has a section on pseudoprimes and Carmichael numbers, but unfortunately it does not
have the existence of pseudoprimes result from lecture or Korselt’s criterion. This first argument
is trickier to find (I learned it from a book of Crandall and Pomerance), but Korselt’s criterion
should be very ‘google-able’.

10 Lecture 10

We started by finishing the proof of Korselt’s criterion and then stating Giuga’s conjecture. We
gave a statement of the Miller-Rabin primality testing algorithm but did not discuss the proof
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that it works. Stein’s book Elementary Number Theory: A Computational Approach gives a nice
discussion of this and is available for free online.

We then shifted back to talk about primitive roots modulo n and showed that there always exist
primitive roots modulo pe for any odd prime p and any e ≥ 1. We also characterized the group
structure of (Z/2eZ)∗. This closely follows Chapter 4 of Ireland and Rosen.

11 Lecture 11

We will start by characterizing the set of n such that there exists a primitive root modulo n.
We then stated Artin’s Primitive Root Conjecture, an important unsolved problem. We briefly
discussed solving equations modulo n and mentioned some cases we will consider later on in the
course, for example binary quadratic forms and elliptic curves. We then began to talk about n-th
power residues following the end of Ireland and Rosen Chapter 4. We stated some results about
n-th power residues without proving them. We will discuss Hensel’s lemma after the midterm,
which is a nice tool for using solutions of equations modulo p to get solutions modulo higher powers
of p, and is directly relevant to these types of questions.

12 Lecture 12

We first stated and proved Hensel’s lemma, which is Theore 3.18 in Nathanson. We then started
to discuss the structure of the set of quadratic residues modulo p, introducing the Legendre symbol
and proving some of its basic properties. This closely followed the presentation in the beginning of
Chapter 5 of Ireland and Rosen. We showed the −1 is a quadratic residue modulo an odd prime p
if and only if p ≡ 1 (mod 4). We used this to show that there are infinitely many primes congruent
to 1 modulo 4. We stated Gauss’ lemma and used it to determine when 2 is a quadratic residue
modulo p. We then used this to show that there are infinitely many primes congruent to 7 modulo
8.

13 Lecture 13

We proved Gauss’ Lemma following the argument in Proofs from the Book. We then used it to
prove quadratic reciprocity (again from PFTB). This argument involves cleverly dividing up a
certain set of lattice points so that the number of lattice points in two special regions correspond
to the exponents in Gauss’ lemma, and there is a nice involution on the rest of the points.

We then gave the first PFTB proof that every prime p ≡ 1 (mod 4) is a sum of two squares. This
involved a clever application of the pigeonhole principle. We started (but did not finish) the next
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proof, which involves considering the set of integer points solving 4xy+ z2 where x, y > 0, focusing
in on two special subsets, and studying a few special involutions on this set. At the end of class I
gave out Zagier’s one sentence proof of this theorem.

14 Lecture 14

We finished the Heath-Brown proof about sums of two squares and noted that this actually gives
us more information, telling us the number of ways of writing p = (2x)2 + y2 with x, y > 0 is odd.
In fact, it is unique which we also proved. We also gave a complete characterization of the set of
integers n that are the sum of two squares. We stated, but did not prove, the theorem giving the
number of ways of writing n as a sum of two squares.

15 Lecture 15

We followed the beginning of Chapter 7 of Ireland and Rosen pretty closely. We considered the
factorization of xq − q in F [x] where F is a finite field of size q. We then showed that every finite
field has prime power order. We classified the possible subfields of a finite field of size pn Finally,
we showed that Z/pZ[x]/〈f〉, where f is an irreducible polynomial of degree n, gives a finite field
of size pn.

I do not think that this section of Ireland and Rosen is as clear as it could be. I would recommend
the course notes of Sophie Huczynska found here:
http://www.math.rwth-aachen.de/~Max.Neunhoeffer/Teaching/ff2013/ff2013.pdf

I think it would be particularly helpful to read through Sections 4 and 5. Chapter 3 is all about
finite fields and contains more information than we will cover. I would also recommend reading
Section 6.1 of Ireland and Rosen to see how some of the material about algebraic numbers is
presented there. Lots of this can be carried over to the finite field setting, which is what I-R means
in the comment following Proposition 7.2.2: ?The proof of this proposition is the same as that of
Proposition 6.1.8 and its corollary. One replaces Q by k and the complex number alpha by the
above alpha?.

Proposition 6.1.7 introduces the notion of the minimal polynomial of a complex number alpha.
This is in definition 4.9 in the reference above (for ?algebraic over? see definition 4.7). The result
we want to prove is then a version of parts (i) and (ii) Theorem 5.9 here. Part (i) is basically what
we did in class and part (ii) is the statement from the end, that {1, α, α2, . . . , αn−1} give a basis of
K(α) over K, that is, they span K(α) and are linearly independent.
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16 Lecture 16

We now know that an irreducible polynomial in Z/pZ[x] of degree n gives a finite field of size pn. So
in order to show that there exists a finite field of every prime power order we need only show that
for each prime p and each n ≥ 1, there is an irreducible polynomial of degree n with coefficients in
Z/pZ. We will show something stronger, using the Möbius inversion formula to count the number
of such polynomials.

We first considered the factorization of xp
n − x in Z/pZ[x]. Comparing degrees gave an expression

involving sums of Nd, the number of irreducible polynomials of degree d. The Möbius-Inversion
formula then gives an expression for Nd that is clearly at least 1 for each d. We followed the
presentation of the ring of arithmetic functions given in Section 6.1 of Nathanson. We gave many
examples of arithmetic functions and then focused on the Möbius µ-function. We proved Möbius
inversion, which is actually a very simple statement about the Dirichlet convolution of two arith-
metic functions. Finally, we showed that the probability as p goes to infinity that a randomly
chosen polynomial in Z/pZ[x] of degree d is irreducible converges to 1/d.

The part of Chapter 2 of Ireland and Rosen that we previously skipped is a nice reference for this
material as are Sections 6.1 and 6.3 of Nathanson.

17 Lecture 17

We gave a second proof of quadratic reciprocity following Proofs from the Book. This argument
involves working in a cyclic subgroup of size p inside a finite field of size qp−1. We consider a certain
kind of Gauss sum G, computing Gq in two different ways.

Ireland and Rosen also give an introduction to Gauss sums in Chapter 6, but their point of view
is a little different. Their Gauss sums involve sums of powers of complex pth roots of unity. It is
a good exercise to read this chapter and see how the argument we presented matches up with the
argument of this reference. We briefly discussed the sign of the Gauss sum, Section 6.3 of Ireland
and Rosen, but did not give the proof.

We discussed the problem of finding the least quadratic residue modulo p. We stated the Polya-
Vinogradov theorem, which shows that the Legendre symbol cannot take too many consecutive
values of the same sign. As a consequence we see that the least quadratic residue is always at most√
p log(p) + 1. We can do a little better on the least quadratic residue problem. We showed that

the least quadratic residue is always prime, and that it is at most 1 +
√
p.
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18 Lecture 18

We gave the proof of Polya-Vinogradov, which is probably the most difficult argument we have
given so far. This proof is basically what is written here:
http://planetmath.org/polyavinogradovinequality

I mentioned that this result can be improved. The Burgess bound is a more difficult result about
‘short character sums’. This involves analytic number theory tools that we have not seen yet so do
not worry if you cannot follow the argument. An exposition is given here:
http://www.math.harvard.edu/~elkies/M259.06/burgess.pdf

We then started to talk about cyclotomic polynomials the monic polynomials whose roots are the
primitive nth roots of unity. We proved some of their basic properties and introduced some problem
about their coefficients. This is not covered in either of our textbooks. The best reference is these
notes of Abhinav Kumar’s MIT number theory course:
http://ocw.mit.edu/courses/mathematics/18-781-theory-of-numbers-spring-2012/lecture-notes/

MIT18_781S12_lec12.pdf

19 Lecture 19

We began by considering roots of cyclotomic polynomials modulo p. We then adapted the argument
that we used to show that there are infinitely many primes congruent to 1 modulo 4, using Φn(x)
to show that there are infinitely many primes congruent to 1 modulo n. I mentioned that there
is also an elementary argument that shows that there are infinitely many primes congruent to −1
modulo n, but it is much harder. For details, see this paper:
http://www.jstor.org/discover/10.4169/amer.math.monthly.122.01.48?uid=3739832&uid=

2&uid=4&uid=3739256&sid=21106424517013

In general, the infinitude of primes in arithmetic progressions is given by Dirichlet’s Theorem which
involves complex analysis. Proofs are given in Serre’s book A Course in Arithmetic or in Stein and
Shakarchi’s Fourier Analysis. I stated the prime number theorem for primes in progressions, which
combines Dirichlet’s theorem with the prime number theorem. For a proof of the prime number
theorem, see Stein and Shakarchi’s Complex Analysis (or a number of other references).

We then switched gears and began discussing Lagrange’s theorem on sums of four squares. We first
showed that by Euler’s identity it is enough to show this for odd primes p. We shows that there is
some m satisfying 1 ≤ m < p such that mp is a sum of four squares. Our goal is then to show that
the minimal such m is 1.

For this topic we closely follow the presentation of Laĺın:
http://www.dms.umontreal.ca/~mlalin/Lagrange.pdf
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20 Lecture 20

We completed the proof of Lagrange’s theorem. We then talked about sums of higher powers,
giving an overview of what is known about Waring’s problem.

Our next main goal is to prove Fermat’s Last Theorem for n = 4. We first gave a careful statement
of this theorem. We then focused in on Pythagorean triples, giving two different ways to under-
stand the classification of them, one algebraic and one more geometric. The best reference for this
material is Kumar’s notes:
http://ocw.mit.edu/courses/mathematics/18-781-theory-of-numbers-spring-2012/lecture-notes/

MIT18_781S12_lec23.pdf

21 Coming Up

We have four remaining lectures: Tuesday April 14th, Thursday April 16th, then the exam on April
21st, lecture on April 23rd, and a final lecture during reading period on April 28th.

Our first goal is to prove Fermat’s last theorem for n = 4. We will then discuss other instances
of the ‘method of infinite descent’ and connections to the congruent number problem on areas of
right triangles with rational sides.

We will discuss the Chevalley-Warning theorem, which is the subject of Section 10.2 of Ireland and
Rosen. This has to do with zeros of equations over finite fields. We will also talk a little more
about the geometry of finite fields and low-degree curves.

22 References

At this point we have covered most of Ireland and Rosen up through Chapter 7 except that we
presented a different take on the material of Chapter 6. We have also covered some topics that are
not covered in Ireland and Rosen, but are discussed in Nathanson. We have covered everything in
Nathanson up through the end of Chapter 2 except Section 2.7. We have also covered Sections 3.1
and 3.2, and Sections 6.1 and 6.3. We followed the proof of Chebyshev’s theorem in Ireland and
Rosen, but Nathanson gives a similar proof in Section 8.1.

We gave some arguments not contained in either of these books. For example, we gave five of
the six proofs of infinitude of primes given in PFTB and closely followed the proof of Bertrand’s
postulate given there. We also gave the argument that the multiplicative group of a finite field is
cyclic given on page 28 there. We also gave the two proofs about sums of two squares, the proof of
Gauss’ lemma, and the both proofs of quadratic reciprocity from this text.
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There are also some additional topics not covered in these references. Links to where you can read
about them are given in the relevant section of the notes above. If you are having a hard time
finding a reference for anything please let me know and I can update this document.
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