Math 206A: Algebra Final Exam Solutions

Thursday, December 17, 2020.

Solutions

1. (a) Define a field.

Solution: A field is a commutative ring with identity $1 \neq 0$ where every nonzero element is a unit.

(b) Define an integral domain.

Solution: An integral domain is a commutative ring with identity $1 \neq 0$ that has no zero divisors.

(c) Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain and let $x \in R$ be a nonzero element. We will show that x is a unit. This will show that every nonzero element of R is a unit. We conclude that R is a field.

Consider the map $\varphi \colon R \to R$ defined by $\varphi(a) = a \cdot x$. We show that it is injective. An injective map between finite sets of the same size is automatically surjective. Once we know φ is surjective, there exists $y \in R$ such that $\varphi(y) = yx = 1$. Since R is commutative xy = 1 also. So x is a unit.

We now need only prove that φ is injective. Suppose that $\varphi(a) = \varphi(b)$. This implies ax = bx. This means ax - bx = (a - b)x = 0. Since R is an integral domain, a - b and x are not zero divisors. Therefore, a - b = 0 or x = 0. Since we assumed $x \neq 0$, we know that a - b = 0, so a = b. Therefore, φ is injective.

- 2. Decide which of the following are subrings of \mathbb{Q} . Give a brief justification for your answer.
 - (a) The set of nonnegative rational numbers.

Solution: This is not a subring of \mathbb{Q} because it is not an additive subgroup of \mathbb{Q} . For example 1 does not have an additive inverse.

- (b) The set of all rational numbers with odd numerators (when written in lowest terms) **Solution**: This is not a subring of \mathbb{Q} because it is not an additive subgroup of \mathbb{Q} . For example 1 is in this set, but 1 + 1 = 2 is not in this set.
- (c) The set of all rational numbers with even numerators (when written in lowest terms) **Solution**: This is a subring of \mathbb{Q} . We first check that it is an additive subgroup of \mathbb{Q} . The set consists of all rational numbers $\frac{2a}{b}$ where a is any nonzero integer, b is a nonzero

odd positive integer and gcd(a, b) = 1, and also 0. We see that

$$\frac{2a_1}{b_1} - \frac{2a_2}{b_2} = \frac{2a_1b_2 - 2a_2b_1}{b_1b_2}.$$

This fraction may not be in lowest terms, but since b_1b_2 is odd, when we write it in lowest terms, the denominator is odd. By the subgroup criterion, this set is an additive subgroup of \mathbb{Q} .

We now show that this set is closed under multiplication. We have

$$\frac{2a_1}{b_1} \cdot \frac{2a_2}{b_2} = \frac{4a_1a_2}{b_1b_2}.$$

This fraction may not be in lowest terms, but since b_1b_2 is odd, when we write it in lowest terms, the denominator is odd.

Note: For this question we are using Dummit and Foote's definition of a subring. That is, a subring does not necessarily have to contain an identity.

- 3. Decide which of the following are ideals of $\mathbb{Z}[x]$:
 - (a) The set of all polynomials whose coefficient of x^2 is a multiple of 3. **Solution**: This is not an ideal because it is not closed under left multiplication by

elements of $\mathbb{Z}[x]$. For example, $1 + 0x^2$ is in this set, but $x^2 = x^2(1 + 0x^2)$ is not.

(b) The set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero.

Solution: This is an ideal of $\mathbb{Z}[x]$. The set described here is the set of all polynomials divisible by x^3 . This is the ideal generated by x^3 .

- (c) The set of all polynomials whose coefficients sum to zero.
 - **Solution**: This is an ideal of $\mathbb{Z}[x]$. The set described here is the set of $p(x) \in \mathbb{Z}[x]$ such that p(1) = 0, since p(1) is the sum of the coefficients of p(x). This is the set of all polynomials divisible by x 1, which is the ideal generated by x 1.
- 4. Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z}/30\mathbb{Z}$. Explain how you know your list is complete.

Note: For this question we are using Dummit and Foote's definition of a ring homomorphism. That is, a ring homomorphism $\varphi \colon R \to S$ between rings with identities does not necessarily have to take the identity of R to the identity of S.

Solution: A group homomorphism from a cyclic group G to another group is determined by where it sends a generator of G. Therefore, we need only consider $\varphi \colon \mathbb{Z} \to \mathbb{Z}/30\mathbb{Z}$ defined by $\varphi(1) = x$. We check which of these group homomorphisms have the property that $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$, and are therefore ring homomorphisms.

We first note that

$$x = \varphi(1) = \varphi(1 \cdot 1) = \varphi(1) \cdot \varphi(1) = x^2.$$

So we need only consider x for which $x^2 = x$ in $\mathbb{Z}/30\mathbb{Z}$, or equivalently $x^2 - x = x(x-1) \equiv 0 \pmod{30}$.

It is not difficult to see that this holds if and only if each of 2, 3 and 5 divide either x or x-1. That is, x is either: a multiple of 5 or one more than a multiple of 5, a multiple of 3 or one more than a multiple of 3, and a multiple of 2 or one more than a multiple of 2. This last condition is always satisfied and the first two are easy to check.

We see that the only possibilities are $x \in \{0, 1, 6, 10, 15, 16, 21, 25\}.$

We claim that each of these values of x determines a ring homomorphism. We have

$$\varphi(a) = \varphi(1 + \dots + 1) = a \cdot \varphi(1) = ax.$$

Similarly,

$$\varphi(b) = \varphi(1 + \dots + 1) = b \cdot \varphi(1) = bx,$$

and

$$\varphi(ab) = \varphi(1 + \dots + 1) = ab \cdot \varphi(1) = abx.$$

Now,

$$\varphi(a) \cdot \varphi(b) = (ax)(bx) = abx^2 = abx = \varphi(ab)$$

5. (a) State the Orbit-Stabilizer Theorem.

Solution: $|\operatorname{Orb}_x| = [G : \operatorname{Stab}_x].$

(b) Let G be a finite p-group acting on a finite set X. Prove that

$$|X| \equiv \#\{\text{Fixed points of this action}\} \pmod{p}.$$

Solution: Let x_1, \ldots, x_r be representatives of the orbits of this action of size larger than 1. Since the orbits of a group action partition X, we have

$$|X| = \#\{\text{Fixed points of this action}\} + \sum_{i=1}^{r} |\operatorname{Orb}_{x_i}|.$$

By the Orbit-Stabilizer Theorem, we have $|\operatorname{Orb}_{x_i}| = [G : \operatorname{Stab}_{x_i}]$ for each i. Since $|\operatorname{Orb}_{x_i}| > 1$, we know that $[G : \operatorname{Stab}_{x_i}] > 1$ for each i. The index of a proper subgroup of G divides |G|, so we see that for each i, $[G : \operatorname{Stab}_{x_i}] \equiv 0 \pmod{p}$. Therefore,

$$\begin{split} |X| &= \#\{\text{Fixed points of this action}\} + \sum_{i=1}^r |\operatorname{Orb}_{x_i}| \\ &\equiv \#\{\text{Fixed points of this action}\} + \sum_{i=1}^r |\operatorname{Orb}_{x_i}| \pmod{p} \\ &\equiv \#\{\text{Fixed points of this action}\} \pmod{p}. \end{split}$$

6. Does there exist a group G where $G \times G$ contains an element of order 15, but G does not contain an element of order 15?

Either give an example of such a G or prove that such an example does not exist.

Solution: Yes. Take $G = S_5$. The element ((1,2,3),(1,2,3,4,5)) has order 15 = lcm(3,5) in $S_5 \times S_5$. But, S_5 has no element of order 15. The order of an element in S_n is the least common multiple of its cycle lengths when written as a product of disjoint cycles. So the only elements of order divisible by 5 in S_5 are the 5-cycles, which all have order 5.

- 7. Let p < q be odd primes. Let G be a group of order 2pq.
 - (a) Prove that G is not simple.

Solution: We use the fact that for a prime r dividing |G| a Sylow r-subgroup of G is normal if and only if $n_r = 1$.

By Sylow III, we have $n_q \equiv 1 \pmod{q}$ and $n_q \mid 2p$. Since q > 2 and q > p, if G is simple we must have $n_q = 2p$. This means that G contains 2p(q-1) elements of order q. We also have $n_p \equiv 1 \pmod{p}$ and $n_p \mid 2q$. If G is simple, $n_p \neq 1$ and therefore $n_p \geq q$. So n_p has at least q(p-1) elements of order p. But then, G contains at least 2p(q-1) + q(p-1) > 2pq elements (note that $q \geq 5$), which is a contradiction.

(b) Define what it means for a group to be solvable.

Solution: A group G is solvable if there exist a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_r = G,$$

where each G_i is a normal subgroup of G_{i+1} and each quotient G_{i+1}/G_i is abelian.

(c) Prove that G is solvable.

Solution: Let P be a Sylow p-subgroup of G and let Q be a Sylow q-subgroup of G. In the first part we proved that either $P \subseteq G$ or $Q \subseteq G$. Either way, PQ is a subgroup of G of order pq. Since this subgroup has index 2, it is normal in G. Now, $G/PQ \cong \mathbb{Z}/2\mathbb{Z}$ is abelian.

Let H be either P or Q, whichever one is normal in G. Since H is normal in G it is also normal in PQ. Since PQ/H has prime order, it is cyclic, and therefore abelian.

We see that

$$1 \leq H \leq PQ \leq G$$
,

is a sequence of subgroups showing that G is solvable.

- 8. (a) Describe the conjugacy classes of S_4 .
 - (b) How many elements are in each conjugacy class?

Solution: The conjugacy classes of S_n correspond to cycle types. Therefore, in S_4 we have conjugacy classes consisting of all elements of cycle type: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). There are

$$\binom{4}{4} \cdot (4-1)! = 6$$
 permutations of cycle type (4),
 $\binom{4}{1} \cdot (3-1)! = 8$ permutations of cycle type (3,1),
 $\binom{4}{2}/2 = 3$ permutations of cycle type (2,2),
 $\binom{4}{2} \cdot 1! = 6$ permutations of cycle type (2,1,1),
 $1 = 1$ permutation of cycle type (1,1,1,1).

9. (a) Prove that a subgroup of a cyclic group is cyclic.

Solution: Let $G = \langle x \rangle = \{x^n : n \in \mathbb{Z}\}$ be a cyclic group. The trivial subgroup is cyclic: $\{1\} = \langle 1 \rangle$.

Let H be a nontrivial subgroup of G. So H contains $x^n \neq 1$ for some $n \in \mathbb{Z}$. Since H is closed under taking inverses, H contains x^{-n} also. Since $x^n \neq 1$, we see that $x^{-n} \neq 1$ also. Therefore, H contains an element $x^m \neq 1$ for some positive integer m.

Let m be the smallest positive integer for which $x^m \in H$. We claim that $H = \langle x^m \rangle$. Suppose that $y \in H$. Then $y = x^s$ for some integer s. By the division algorithm, s = qm + r for some $0 \le r < m$. Since $x^m \in H$, we have

$$x^s \cdot (x^m)^{-q} = x^{qm+r} \cdot x^{-qm} = x^r \in H.$$

Since we assumed that m was the smallest positive integer for which $x^m \in H$, we must have r = 0. Therefore $x^s = (x^m)^q \in \langle x^m \rangle$, completing the proof that $H = \langle x^m \rangle$.

- (b) Is the automorphism group of a cyclic group necessarily cyclic? Explain your answer. **Solution**: No. Aut($\mathbb{Z}/n\mathbb{Z}$) \cong ($\mathbb{Z}/n\mathbb{Z}$)*, and ($\mathbb{Z}/8\mathbb{Z}$)* \cong $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is not cyclic.
- 10. Let G be a group of order 42.
 - (a) Prove that G has a subgroup of order 6.

Solution: By Sylow III, $n_2 \equiv 1 \pmod{2}$ and $n_2 \mid 21$. So $n_2 \in \{1, 3, 7, 21\}$. Next, $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 14$. So $n_3 = 1$ or $n_3 = 7$. Finally, $n_7 \equiv 1 \pmod{7}$ and $n_7 \mid 6$, so $n_7 = 1$.

Let P be a Sylow 2-subgroup of G and Q be a Sylow 3-subgroup of G. If n_3 or n_2 is equal to 1, then PQ is a subgroup of G of order 6. If $n_3 \neq 1$, then $n_3 = 7 = [G : N_G(Q)]$, so $N_G(Q)$ is a subgroup of G of order 6.

So, in any case G has a subgroup H of order 6.

(b) Prove that G has a subgroup of order 21.

Solution: Let N be the unique Sylow 7-subgroup of G. So $N \subseteq G$. Then QN is a subgroup of G. We know that $|QN| = \frac{|Q||N|}{|Q| \cap |N|}$. By Lagrange's Theorem, $Q \cap N = 1$. So QN is a subgroup of G of order 21.

(c) Prove that G is isomorphic to a semidirect product of two nontrivial groups.

Solution: The Recognition Theorem for Semidirect Products states that if H, N are two subgroups of G such that HN = G, $H \cap N = 1$, and $H \subseteq G$, then $G \cong H \rtimes_{\varphi} N$, where φ is the action of N on H by conjugation.

We can use either of the previous two parts to finish this problem. By Lagrange's Theorem, $H \cap N = 1$. So HN = G. Since $N \subseteq G$, we see that $G \cong N \rtimes H$. Since QN is a subgroup of G of index 2, $QN \subseteq G$. By Lagrange's Theorem, $P \cap QN = 1$. So P(QN) = G. We see that $G \cong QN \rtimes P$.

11. Either prove the following statement or give a counterexample.

For any group G, the map $\varphi \colon G \to G$ defined by $\varphi(g) = g^2$ is a homomorphism.

Solution: This is false in general for groups that are not abelian. Let $G = S_3$, x = (1, 2), y = (1, 3). Then $\varphi(x) = \varphi(y) = 1$, but

$$\varphi(xy) = \varphi(1,3,2) = (1,2,3).$$

Since $\varphi(x)\varphi(y)\neq\varphi(xy)$, we see that φ is not a homomorphism.