Math 206A: Algebra
Midterm 1 Solutions
Friday, October 30, 2020.

Problems

1.

4.

State the First Isomorphism Theorem.

Solution: Let ¢: G — H be a homomorphism between groups G and H. Then ker(yp) is a
normal subgroup of G and

G/ ker(p) = Im(p).

. What is the order of the automorphism group of Z/8Z?

No explanation is necessary, you can just write a number.

Solution: We know that Aut(Z/nZ) = (Z/nZ)*, the group of invertible elements of Z/nZ
under multiplication. We know that |(Z/nZ)*| = ¢(n).
Therefore, we see that |[Aut(Z/8Z)| = 4.

. For which integers n > 2 is the group {id, (12)} a normal subgroup of S,,?

Prove that your answer is correct.

Solution: When n = 2 this subgroup is all of S5, so it is normal. For n > 3 we claim that
this subgroup is not normal. A subgroup H is normal in G if and only if gHg~! = H for all
g € G. Let H = {id, (12)}. We see that (2,3)"! = (2,3) and that

(2,3)H(2,3) ={id, (2,3)(1,2)(2,3)} = {id, (1,3)} # H,
so H is not normal in S,,.

(a) Either prove that the following statement is true or give a counterexample
showing that it is false: Suppose G is a group. If H is a normal subgroup of G and
K is a normal subgroup of H, then K is a normal subgroup of G.
Solution: This is false. Let G = Sy, H = {id, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}, and
K = {id, (1,2)(3,4)}. We see that H is normal in G because it is a union of two
conjugacy classes (the identity and the set of all permutations of cycle type (2,2)). We
see that K is normal in H because it has index 2. But, K is not normal in G because
it is not a union of conjugacy classes.

(b) Either prove that the following statement is true or give a counterexample
showing that it is false: Suppose G is a group and H, K are subgroups of G such that
K < H. If K is a normal subgroup of GG, then K is a normal subgroup of H.
Solution: This is true. If K is normal in G then gK¢g~' = K for all g € G. Since
H < G, then clearly hKh™! = K for all h € H, and K is normal in H.



5. Show that for any n > 3, A, contains a subgroup isomorphic to S,_o.

Solution: Consider the function ¢: S,,_2 — A,, defined by

plo) = o if o is even.
plo) = on—-1,n—-2) ifoisodd.

Since the product of an odd permutation and a transposition is even, this function really does
take Sp,_o to A,. Clearly it is injective— since o € S,,_9 is a permutation of {1,2,...,n — 2},
it is clear that o(n — 1,n) # id.

We check that ¢ is a homomorphism.

(a) Suppose 01,09 € Sp_2. If both are even, then so is o102. We have
p(o1)p(02) = 0102 = p(0102).
(b) If o1 is odd and o9 is even, then o109 is odd and
p(o1)p(o2) = (o1(n — 1,n))oe = o102(n — 1,n) = p(o102).
(c) If o1 is even and o9 is odd, then o109 is odd and
p(o1)p(02) = 01(02(n — 1,n)) = @(0102).
(d) If both are odd, then o079 is even. We have
o(o1)p(o2) = (o1(n —1,n))(oo(n — 1,n)) = o102(n — 1,n)? = o109 = @(o109).
By the First Isomorphism Theorem, S,_2/ ker(¢) = S,_2 is isomorphic to a subgroup of A,.

6. Let G be a finite group and g € G. Let I be the conjugacy class of g.
Show that || divides |G|.

Solution: Let G act on itself by conjugation. The orbit of g is I, so by the orbit-stabilizer
theorem we have

L
| Staby |
We have Staby is equal to the centralizer of g, which is a subgroup of G.
Since |K||Cq(g)| = |G|, we see that || divides |G|.

7. Either prove that the following statement is true or give a counterexample show-
ing that it is false: Suppose that G; and G4 are finite groups such that for each positive



10.

integer n, G1 and G9 have the same number of conjugacy classes of size n. Then G; and G4
are isomorphic.

Solution: This is false. In an abelian group every conjugacy class has size 1. So, Z /27 x 7. /27
and 7 /47 are two non-isomorphic groups that each have four conjugacy classes of size 1 and
no other conjugacy classes.

(You can see that they are not isomorphic by noting that one is cyclic and the other is not.)

. Let G be a finite nontrivial p-group. Prove that Z(G) is nontrivial.

Solution: Let g1, ..., g, be representatives of the conjugacy classes of G of size larger than
1. By the class equation,

Gl = 12(6) + Y16+ Calgr).
i=1
Since g; is in a conjugacy class of size greater than 1, we see that [G : Cg(g;)] > 1. Since
[G : Cc(g:)] divides |G|, we see that [G : Cg(g;)] =0 (mod p). Also, p divides |G|, so p must
also divide |Z(G)|. Since 1 € Z(G), we see that |Z(G)| > p. Therefore Z(G) is nontrivial.

. State Sylow’s Theorem.

Solution: Let G be a finite group and let p be a prime dividing |G|. Let |G| = p*m where
p { m. A Sylow p-subgroup of G is a subgroup of order p*. Let Syl,(G) denote the set of
Sylow p-subgroups of G' and let n,, = [Syl,(G)|.
(a) Syl,(G) # 0. That is, n, > 1.

(b) All Sylow p-subgroups are conjugate to each other.
(c) np =1 (mod p) and ny, | m.
(d
(

)
)
) np =[G : Ng(P)] where P is some Sylow p-subgroup and Ng(P) is its normalizer.
)

a) Let G be a group and x € G have order k. Prove that ™ = 1 if and only if & | n.
Solution: By the division algorithm, there exist unique integers ¢, with 0 < r < k
with n = gk +r. We have

o = g = g0 gt = (F) g =19 2" = 2"
Since the order of x is k we see that 2™ = 1 if and only if » = 0. This occurs if and only
if k| n.
(b) Suppose G is a group and z,y € G satisfy xy = yx. Suppose that the order of z is n
and the order of y is m where ged(n, m) = 1. Prove that the order of xy is nm.
Solution: We show that n divides the order of zy and that m divides order of zy.

Because gcd(n, m) = 1, this implies that nm divides the order of zy. Note that because
xy = yx, we see that



So nm is some positive integer k for which (zy)* = 1, so since nm divides the order of
xy, we see that nm is the order of zy.

Let k denote the order of xy. Then
(zy)k = zFyk = 1.

We see that
(l_y)nk _ xnk:ynk _ (xn)kynk _ ynk.

By the first part of this problem, m divides nk. Since ged(n,m) = 1, we must have m
divides k.

We see that
(xy)Mk — xmkymk _ xmk<ym>k _ xmk.

By the first part of this problem, n divides mk. Since ged(n,m) = 1, we must have m
divides k.

Note: A lot of people tried to argue like this. Let k be the order of zy. Then (zy)* =
xFy* = 1. This is only possible if ¥ = 1 and y* = 1. So by part (a) we have m | k and
n | k and therefore lem(m,n) | k. Since ged(m,n) = 1 we have lem(m,n) = mn. So
mn < k. Since (zy)™" =1 we see that k = mn.

The problem with this argument is the assertion that z*y* = 1 implies ¥ = 1 and
y* = 1. This needs to be justified. Here’s one way: Suppose zFy* = 1 but 2* # 1 or
y* # 1. It is clear that both 2* # 1 and y* # 1. We see that 3" is a nontrivial element of
(z) and clearly y* € (y), so (y¥) is a nontrivial subgroup of (x) N (y). But, by Lagrange’s
theorem, |(y*)| divides m and also divides n. Since ged(m,n) = 1, we see that |(y*)| = 1,
which contradicts the assumptions that y* # 1.

Here’s another way to justify this: Suppose z*y* = 1. So 2% = y~*. Proposition 5 in

Section 2.3 of Dummit and Foote says that the order of z* is m and that the order

of y* is gty SO ged(nd) = aed(mA)” SINCC Zed(nE) | n and ed(m ) | m, the condition

o5 = seqregmy = 1. Therefore, n | k and m | k, and
ged(n,k) — ged(m,k)
again since ged(n,m) = 1 we have mn | k. Since (xy

k = mn.

that ged(m,n) = 1 implies that

)™ =1 we have k | mn also, so



