Math 206A: Algebra

Midterm 1 Solutions

Friday, October 30, 2020.

Problems

1. State the First Isomorphism Theorem.

Solution: Let $\varphi \colon G \to H$ be a homomorphism between groups G and H. Then $\ker(\varphi)$ is a normal subgroup of G and

$$G/\ker(\varphi) \cong \operatorname{Im}(\varphi).$$

2. What is the order of the automorphism group of $\mathbb{Z}/8\mathbb{Z}$?

No explanation is necessary, you can just write a number.

Solution: We know that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^*$, the group of invertible elements of $\mathbb{Z}/n\mathbb{Z}$ under multiplication. We know that $|(\mathbb{Z}/n\mathbb{Z})^*| = \varphi(n)$.

Therefore, we see that $|\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z})| = 4$.

3. For which integers $n \geq 2$ is the group $\{id, (12)\}$ a normal subgroup of S_n ?

Prove that your answer is correct.

Solution: When n = 2 this subgroup is all of S_2 , so it is normal. For $n \ge 3$ we claim that this subgroup is not normal. A subgroup H is normal in G if and only if $gHg^{-1} = H$ for all $g \in G$. Let $H = \{id, (12)\}$. We see that $(2,3)^{-1} = (2,3)$ and that

$$(2,3)H(2,3)=\{\mathrm{id},(2,3)(1,2)(2,3)\}=\{\mathrm{id},(1,3)\}\neq H,$$

so H is not normal in S_n .

4. (a) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group. If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G.

Solution: This is false. Let $G = S_4$, $H = \{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$, and $K = \{id, (1,2)(3,4)\}$. We see that H is normal in G because it is a union of two conjugacy classes (the identity and the set of all permutations of cycle type (2,2)). We see that K is normal in H because it has index 2. But, K is not normal in G because it is not a union of conjugacy classes.

(b) Either prove that the following statement is true or give a counterexample showing that it is false: Suppose G is a group and H, K are subgroups of G such that $K \leq H$. If K is a normal subgroup of G, then K is a normal subgroup of H.

Solution: This is true. If K is normal in G then $gKg^{-1} = K$ for all $g \in G$. Since $H \leq G$, then clearly $hKh^{-1} = K$ for all $h \in H$, and K is normal in H.

5. Show that for any $n \geq 3$, A_n contains a subgroup isomorphic to S_{n-2} .

Solution: Consider the function $\varphi \colon S_{n-2} \to A_n$ defined by

$$\varphi(\sigma) = \sigma$$
 if σ is even.

$$\varphi(\sigma) = \sigma$$
 if σ is even.
 $\varphi(\sigma) = \sigma(n-1, n-2)$ if σ is odd.

Since the product of an odd permutation and a transposition is even, this function really does take S_{n-2} to A_n . Clearly it is injective—since $\sigma \in S_{n-2}$ is a permutation of $\{1, 2, \dots, n-2\}$, it is clear that $\sigma(n-1,n) \neq id$.

We check that φ is a homomorphism.

(a) Suppose $\sigma_1, \sigma_2 \in S_{n-2}$. If both are even, then so is $\sigma_1 \sigma_2$. We have

$$\varphi(\sigma_1)\varphi(\sigma_2) = \sigma_1\sigma_2 = \varphi(\sigma_1\sigma_2).$$

(b) If σ_1 is odd and σ_2 is even, then $\sigma_1\sigma_2$ is odd and

$$\varphi(\sigma_1)\varphi(\sigma_2) = (\sigma_1(n-1,n))\sigma_2 = \sigma_1\sigma_2(n-1,n) = \varphi(\sigma_1\sigma_2).$$

(c) If σ_1 is even and σ_2 is odd, then $\sigma_1\sigma_2$ is odd and

$$\varphi(\sigma_1)\varphi(\sigma_2) = \sigma_1(\sigma_2(n-1,n)) = \varphi(\sigma_1\sigma_2).$$

(d) If both are odd, then $\sigma_1\sigma_2$ is even. We have

$$\varphi(\sigma_1)\varphi(\sigma_2) = (\sigma_1(n-1,n))(\sigma_2(n-1,n)) = \sigma_1\sigma_2(n-1,n)^2 = \sigma_1\sigma_2 = \varphi(\sigma_1\sigma_2).$$

By the First Isomorphism Theorem, $S_{n-2}/\ker(\varphi) = S_{n-2}$ is isomorphic to a subgroup of A_n .

6. Let G be a finite group and $g \in G$. Let K be the conjugacy class of g. Show that $|\mathcal{K}|$ divides |G|.

Solution: Let G act on itself by conjugation. The orbit of g is \mathcal{K} , so by the orbit-stabilizer theorem we have

$$|\mathcal{K}| = \frac{|G|}{|\operatorname{Stab}_g|}.$$

We have Stab_g is equal to the centralizer of g, which is a subgroup of G.

Since $|\mathcal{K}||C_G(g)| = |G|$, we see that $|\mathcal{K}|$ divides |G|.

7. Either prove that the following statement is true or give a counterexample showing that it is false: Suppose that G_1 and G_2 are finite groups such that for each positive integer n, G_1 and G_2 have the same number of conjugacy classes of size n. Then G_1 and G_2 are isomorphic.

Solution: This is false. In an abelian group every conjugacy class has size 1. So, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z}$ are two non-isomorphic groups that each have four conjugacy classes of size 1 and no other conjugacy classes.

(You can see that they are not isomorphic by noting that one is cyclic and the other is not.)

8. Let G be a finite nontrivial p-group. Prove that Z(G) is nontrivial.

Solution: Let g_1, \ldots, g_r be representatives of the conjugacy classes of G of size larger than 1. By the class equation,

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)].$$

Since g_i is in a conjugacy class of size greater than 1, we see that $[G:C_G(g_i)] > 1$. Since $[G:C_G(g_i)]$ divides |G|, we see that $[G:C_G(g_i)] \equiv 0 \pmod{p}$. Also, p divides |G|, so p must also divide |Z(G)|. Since $1 \in Z(G)$, we see that $|Z(G)| \geq p$. Therefore Z(G) is nontrivial.

9. State Sylow's Theorem.

Solution: Let G be a finite group and let p be a prime dividing |G|. Let $|G| = p^{\alpha}m$ where $p \nmid m$. A Sylow p-subgroup of G is a subgroup of order p^{α} . Let $\mathrm{Syl}_p(G)$ denote the set of Sylow p-subgroups of G and let $n_p = |\mathrm{Syl}_p(G)|$.

- (a) $\operatorname{Syl}_p(G) \neq \emptyset$. That is, $n_p \geq 1$.
- (b) All Sylow *p*-subgroups are conjugate to each other.
- (c) $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$.
- (d) $n_p = [G: N_G(P)]$ where P is some Sylow p-subgroup and $N_G(P)$ is its normalizer.
- 10. (a) Let G be a group and $x \in G$ have order k. Prove that $x^n = 1$ if and only if $k \mid n$. Solution: By the division algorithm, there exist unique integers q, r with $0 \le r < k$ with n = qk + r. We have

$$x^{n} = x^{qk+r} = x^{qn} \cdot x^{r} = (x^{k})^{q} \cdot x^{r} = 1^{q} \cdot x^{r} = x^{r}.$$

Since the order of x is k we see that $x^n = 1$ if and only if r = 0. This occurs if and only if $k \mid n$.

(b) Suppose G is a group and $x, y \in G$ satisfy xy = yx. Suppose that the order of x is n and the order of y is m where gcd(n, m) = 1. Prove that the order of xy is nm.

Solution: We show that n divides the order of xy and that m divides order of xy. Because gcd(n, m) = 1, this implies that nm divides the order of xy. Note that because xy = yx, we see that

$$(xy)^{nm} = x^{nm}y^{nm} = (x^n)^m(y^m)^n = 1.$$

So nm is some positive integer k for which $(xy)^k = 1$, so since nm divides the order of xy, we see that nm is the order of xy.

Let k denote the order of xy. Then

$$(xy)^k = x^k y^k = 1.$$

We see that

$$(xy)^{nk} = x^{nk}y^{nk} = (x^n)^k y^{nk} = y^{nk}$$

By the first part of this problem, m divides nk. Since gcd(n, m) = 1, we must have m divides k.

We see that

$$(xy)^{mk} = x^{mk}y^{mk} = x^{mk}(y^m)^k = x^{mk}.$$

By the first part of this problem, n divides mk. Since gcd(n, m) = 1, we must have m divides k.

Note: A lot of people tried to argue like this. Let k be the order of xy. Then $(xy)^k = x^k y^k = 1$. This is only possible if $x^k = 1$ and $y^k = 1$. So by part (a) we have $m \mid k$ and $n \mid k$ and therefore $lcm(m,n) \mid k$. Since gcd(m,n) = 1 we have lcm(m,n) = mn. So $mn \leq k$. Since $(xy)^{mn} = 1$ we see that k = mn.

The problem with this argument is the assertion that $x^k y^k = 1$ implies $x^k = 1$ and $y^k = 1$. This needs to be justified. Here's one way: Suppose $x^k y^k = 1$ but $x^k \neq 1$ or $y^k \neq 1$. It is clear that both $x^k \neq 1$ and $y^k \neq 1$. We see that y^k is a nontrivial element of $\langle x \rangle$ and clearly $y^k \in \langle y \rangle$, so $\langle y^k \rangle$ is a nontrivial subgroup of $\langle x \rangle \cap \langle y \rangle$. But, by Lagrange's theorem, $|\langle y^k \rangle|$ divides m and also divides n. Since $\gcd(m,n)=1$, we see that $|\langle y^k \rangle|=1$, which contradicts the assumptions that $y^k \neq 1$.

Here's another way to justify this: Suppose $x^ky^k=1$. So $x^k=y^{-k}$. Proposition 5 in Section 2.3 of Dummit and Foote says that the order of x^k is $\frac{n}{\gcd(n,k)}$ and that the order of y^k is $\frac{m}{\gcd(m,k)}$. So $\frac{n}{\gcd(n,k)}=\frac{m}{\gcd(n,k)}$. Since $\frac{n}{\gcd(n,k)}\mid n$ and $\frac{m}{\gcd(m,k)}\mid m$, the condition that $\gcd(m,n)=1$ implies that $\frac{n}{\gcd(n,k)}=\frac{m}{\gcd(m,k)}=1$. Therefore, $n\mid k$ and $m\mid k$, and again since $\gcd(n,m)=1$ we have $mn\mid k$. Since $(xy)^{mn}=1$ we have $k\mid mn$ also, so k=mn.