Math 206B: Algebra

Final Exam Solutions
Thursday, March 18, 2021.

True/False and Short Answer

1. True or False: If R is a commutative ring with identity and R has a unique prime ideal then
R is a field.
Solution: This is false. For example, consider the subring of Q consisting of all rational
numbers with odd denominators. This has a unique prime ideal, (2).
We saw another example of such a ring on Midterm 1.

2. True or False: Let R be a PID, M be a finitely generated free R-module, and N be a
submodule of M. Then N is free.
Solution: This is true. This is part of the main theorem we used in proving the Classification
of Modules over a PID, Existence: Invariant Factor Form.
(Theorem 4 in Section 12.1 of Dummit and Foote.)

3. True or False: Let R be an integral domain, M be a finitely generated R-module and N be
a submodule of M. Then N is finitely generated.
There was a typo in this question. Everyone will receive full credit for it.
Solution: This is false. Let R be a ring that has an ideal I that is not finitely generated. R
is a module over itself and [ is a submodule that is not finitely generated.

4. True or False: Let V be a vector space and V =A& B =C& D with A= C. Then B= D.
Solution: When V is infinite dimensional it is not always true that B = D. For example,
suppose A = @;°, F and B = F and D = F?. Then we have A® B=C @ D, but B%C.
(Two free F-modules on sets of the same cardinality are isomorphic— Exercise 1 Section 10.3.)

5. Is there an example of a UFD that is not a PID?
Solution: Yes- Z[z] is a UFD that is not a PID. We know that Z is a UFD and that if R is
a UFD then R[z] is a UFD. We know that Z[z]/(x) = Z is an integral domain that is not a
field. Therefore (x) is a prime ideal that is not maximal, so Z[x] cannot be a PID.

6. Let F3 be a finite field of order 3. Let V' be a 3-dimensional vector space over F3. How many
2-dimensional subspaces are contained in V7
Solution: Let F' be a finite field of size ¢ and V' and n-dimensional vector space over F'.
We know that the number of k-dimensional subspaces of V' is
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In this case we get
(27 -1)(27—-3) 26-24
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1 Problems

1. Let V,U, and W be finite dimensional vector spaces over C. Suppose that ¢: V — U is an
injective linear transformation and ¢: U — W is a surjective linear transformation.
Suppose that ¢ o ¢ = 0 and that dimU = dim V + dim W.

Prove that ker(¢) = Im(¢) as subspaces of U.

Solution: Let vy,...,v, be a basis for V. Then ¢(V) is isomorphic to V' and ¢(v1), ..., ¢(vy,)
is a basis for it. We know that this can be extended to a basisof U : ¢(v1), ..., ¢(vn), w1, ..., ug.

Since dim U = dim V +dim W we see that dim W = k. Applying the surjective map 1 to our
basis vectors for U we see that ¢¥(¢(v1)), ..., 0 (d(vp)), ¥(u1), ..., (ug) is a generating set for

W. Since ¥ o ¢ = 0 we see that ¥(¢p(v1)) = -+ = ¢¥(¢p(vy)) = 0. Therefore, (u1),. .., (uk)
is a generating set of W of size k, so it is a basis for W. In particular, no nonzero linear
combination of uy, ..., u is in ker(¢)).

We conclude that ker(v)) is exactly equal to the subspace of U generated by ¢(v1),. .., ¢(vy).
We saw earlier that these vectors are a basis for the image of ¢.

2. Let R be a PID and let M be a finitely generated R-module.
Describe the structure of M/ Tor(M).

Solution: By the classification of finitely generated R-modules, we have that
M=R ®R/(a1)®---®R/(am)

where ay, ..., a, are nonzero nonunit elements of R satisfying aj | ag | -+ | apm.
We know that
Tor(M) = R/(a1) ® - ® R/(am).

We have a natural projection homomorphism 7: M — R by first applying the isomorphism
described above and then taking

m(x1,..., 21 mod (a),...,Yyyn mod (am)) = (x1,...,2y).

It is clear that 7 is surjective and ker(w) = Tor(M).
Applying the 1st Isomorphism Theorem completes the proof.



3. Let R be a ring and let M be a left R-module. Let

My CMyC---
be a chain of submodules of M. Let
N = U M;.
i=1

Prove that N is a submodule of M.

Solution: We apply the submodule criterion: N is a submodule if and only if for all z,y € N
and r € R we have x +r-y € N.

Suppose x,y € N. Then x € M; for some ¢ and y € M; for some j. Without loss of generality,
Jj >1t. Sox,y € M;. Since M; is a submodule of M, by the submodule criterion z+r-y € M;.
Therefore x4+ 17 -y € N.

4. Let R be a commutative ring with 1 and M be any R-module. Prove that R ®r M = M.

Solution: We claim that the map r ® m — m is an R-module isomorphism.

We know that the map R x M — M given by (r,m) — r - m is bilinear (this is basically the
definition of what it means for M to be an R-module). By the universal mapping property for
tensor products there exists a unique linear map L: R®gr M — M for which L(r @ m) = rm.
We claim that this R-module homomorphism is injective and surjective. It is surjective since
L(1 ® m) = m. Every element of R @ M is a finite sum of elementary tensors,
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then ", rym; =0, and Y ;" ;(r; ® m;) = 0. So this map is injective.

I will also point out that several people proved this result (and in particular the injectivity
part) by showing that f: M — R®p M defined by f(m) = 1®@m is a two-sided inverse for L.
This is the strategy Conrad uses in the proof of Theorem 4.5 in his ‘Tensor Products’ notes.
(This statement is the special case where I = 0.)

5. Suppose A is a finite abelian group, S is a Sylow p-subgroup of A, and p* is the order of S.
Prove that Z/p*Z ®7 A is isomorphic to S.



Solution: Let |[A] = n = p{" --- pi* where the p; are distinct primes. By the classification of
finite abelian groups,
A B1 D---P Bk

where B; is a finite abelian group of order p}“. Moreover, each B; can be written as a direct
sum of cyclic Z-modules of prime power order,

B; = Z/pf“Z S RERNC> Z/pfi’”Z.

We know that
Z)p*7 @7 A= (Z)p*Z.© B1) @ - (Z/p*Z @ By).

Then
Bi,ri

(Z/ka ®B;) =7/ gcd(pk,p'fi’l)Z @ DL/ gcd(pk,pl- )Z.

If p # p;, then this group is trivial. If p = p; then p* = |B;| and gcd(pk,pfi’j) = pfi’j.

We conclude that this group is isomorphic to B;, the Sylow p-subgroup of A.

I will also point out that several people used the fact from Example 4.6 in Conrad’s ‘Tensor
Products’ notes that Z/p*Z®z A = A/p*Z. But, then you need to show that A/p*A = S. One
way to do this is to consider the map [p¥]: A — A defined by [p¥](z) =z + - - +x (p*times).
By definition, the image is p¥A. It is also clear that = € ker([p*]) if and only if the order
of  divides p¥. The elements in a finite abelian group whose order divides |S| are exactly
the elements of the Sylow p-subgroup S. This shows that p¥A is the set of elements in A\ S
together with 0. So we can write A = S x p*A and consider the projection onto S, that is,
7(a,b) = a. The kernel is p* A.

. For which values of a € Z/57Z is the ring (Z/5Z)[x]/(x + az + 2) a field?
Solution: This is equivalent to asking for the values of a for which 2% + az + 2 has no roots
in Z/57Z. A cubic polynomial over a field F' is irreducible if and only if it has no roots in F'.

We work backwards and determine the values of a for which each of the elements of Z/57Z is
a root. We see that 0 is a root if and only if 2 = 0, that 1 is a root if and only if 3+ a = 0,
which means a = 2, that 2 is a root if and only if 3 + 2a + 2 = 0, which means a = 0, that 3
is a root if and only if —1 + 3a = 0, which means a = 2, and that 4 is a root if and only if
—a + 1 =0, which means that a = 1.

We conclude by noting that when a = 0, 1,2 this polynomial has a root and if a = 3,4 this
polynomial does not have a root.

. Prove that a finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let G be a finite subgroup of F*. By the Classification of Finite Abelian Groups,

G=Z/mZ % - X LInZ,



where each n; > 2 and n;4q | n; for each ¢ € {1,...,t—1}. We show that ¢t = 1, which implies
that G is cyclic.

An element of order dividing n; in G is an element of order dividing n; in F™*, which is a root
of the polynomial 2™ — 1 in F[z]. A polynomial of degree n; in F[x] has at most n; distinct
roots in F.

In the subgroup of G given by the last factor in the decomposition above, we have n; elements
of order dividing n;. We also have n; elements of order dividing n; in each of the other factors,
since ny divides n; for each j < t. Therefore, if ¢ > 2, then G has too many elements of order
dividing n¢. Sot = 1.

. Find the greatest common divisor d(X) of the polynomials
FX)=X* - X2 42X —1, and g(X) = X* +2X3 + X2 -1

in R[X].
Solution: We apply the Division Algorithm and see that

(X = X242X —1)=1-(X*+2X3 + X2 - 1) + (—2X3% — 2X?% 4 2X).
We apply the Division Algorithm again and see that

(X*+2X*+ X2 -1) = <_21X— ;) (—2X3 —2X%2 4 2X) + (X2 + X —1).

We apply the Division Algorithm again and see that
(—2X3 —2X? +2X) = (—2X) - (X? 4+ X - 1) +0.
Since X2 + X — 1 is the last nonzero remainder in this process, it is ged(f(X), g(X)).

. Show that Z[v/—5] is not a UFD.

Solution: We see that 6 =2-3 = (14 +/—5)(1 —+/—5) and claim that each of 2,3,1+ /-5
is irreducible in Z[v/—5] and that no two of these are associate.

In Z[/—5] we have the norm N(a + by/—5) = a? + 5b? and we know that « is a unit if and
only if N(a) = +1. Therefore, the only units are +1. So it is clear that no two of these
elements are associate. We note that this norm takes only nonnegative values.

We see that N(2) = 4, N(3) =9, and N(1 4+ +/=5) = 6. Since the norm is multiplicative,
showing that there are no elements of Z[v/—5] of norm 2 and no elements of norm 3, shows
that 2,3, and 1 4 /=5 are irreducible.

We see that 22 4+ 5y = 2 has no integer solutions (note that y? > 0 and 2 is not a square),
and similarly that 22 + 5y? = 3 has no solutions.



