
Math 206B: Algebra
Final Exam Solutions
Thursday, March 18, 2021.

True/False and Short Answer

1. True or False: If R is a commutative ring with identity and R has a unique prime ideal then
R is a field.
Solution: This is false. For example, consider the subring of Q consisting of all rational
numbers with odd denominators. This has a unique prime ideal, (2).
We saw another example of such a ring on Midterm 1.

2. True or False: Let R be a PID, M be a finitely generated free R-module, and N be a
submodule of M . Then N is free.
Solution: This is true. This is part of the main theorem we used in proving the Classification
of Modules over a PID, Existence: Invariant Factor Form.
(Theorem 4 in Section 12.1 of Dummit and Foote.)

3. True or False: Let R be an integral domain, M be a finitely generated R-module and N be
a submodule of M . Then N is finitely generated.
There was a typo in this question. Everyone will receive full credit for it.
Solution: This is false. Let R be a ring that has an ideal I that is not finitely generated. R
is a module over itself and I is a submodule that is not finitely generated.

4. True or False: Let V be a vector space and V = A⊕B = C ⊕D with A ∼= C. Then B ∼= D.
Solution: When V is infinite dimensional it is not always true that B ∼= D. For example,
suppose A =

⊕∞
i=1 F and B = F and D = F 2. Then we have A⊕B ∼= C ⊕D, but B 6∼= C.

(Two free F -modules on sets of the same cardinality are isomorphic– Exercise 1 Section 10.3.)

5. Is there an example of a UFD that is not a PID?
Solution: Yes– Z[x] is a UFD that is not a PID. We know that Z is a UFD and that if R is
a UFD then R[x] is a UFD. We know that Z[x]/(x) ∼= Z is an integral domain that is not a
field. Therefore (x) is a prime ideal that is not maximal, so Z[x] cannot be a PID.

6. Let F3 be a finite field of order 3. Let V be a 3-dimensional vector space over F3. How many
2-dimensional subspaces are contained in V ?
Solution: Let F be a finite field of size q and V and n-dimensional vector space over F .
We know that the number of k-dimensional subspaces of V is

(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

.
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In this case we get
(27− 1)(27− 3)

(9− 1)(9− 3)
=

26 · 24

8 · 6
= 13.

1 Problems

1. Let V,U , and W be finite dimensional vector spaces over C. Suppose that φ : V → U is an
injective linear transformation and ψ : U →W is a surjective linear transformation.
Suppose that ψ ◦ φ = 0 and that dimU = dimV + dimW .
Prove that ker(ψ) = Im(φ) as subspaces of U .

Solution: Let v1, . . . , vn be a basis for V . Then φ(V ) is isomorphic to V and φ(v1), . . . , φ(vn)
is a basis for it. We know that this can be extended to a basis of U : φ(v1), . . . , φ(vn), u1, . . . , uk.

Since dimU = dimV + dimW we see that dimW = k. Applying the surjective map ψ to our
basis vectors for U we see that ψ(φ(v1)), . . . , ψ(φ(vn)), ψ(u1), . . . , ψ(uk) is a generating set for
W . Since ψ ◦ φ = 0 we see that ψ(φ(v1)) = · · · = ψ(φ(vn)) = 0. Therefore, ψ(u1), . . . , ψ(uk)
is a generating set of W of size k, so it is a basis for W . In particular, no nonzero linear
combination of u1, . . . , uk is in ker(ψ).

We conclude that ker(ψ) is exactly equal to the subspace of U generated by φ(v1), . . . , φ(vn).
We saw earlier that these vectors are a basis for the image of φ.

2. Let R be a PID and let M be a finitely generated R-module.
Describe the structure of M/Tor(M).

Solution: By the classification of finitely generated R-modules, we have that

M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(am)

where a1, . . . , am are nonzero nonunit elements of R satisfying a1 | a2 | · · · | am.
We know that

Tor(M) ∼= R/(a1)⊕ · · · ⊕R/(am).

We have a natural projection homomorphism π : M → Rr by first applying the isomorphism
described above and then taking

π(x1, . . . , xr, y1 mod (a), . . . , ym mod (am)) = (x1, . . . , xr).

It is clear that π is surjective and ker(π) ∼= Tor(M).
Applying the 1st Isomorphism Theorem completes the proof.
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3. Let R be a ring and let M be a left R-module. Let

M1 ⊆M2 ⊆ · · ·

be a chain of submodules of M . Let

N =
∞⋃
i=1

Mi.

Prove that N is a submodule of M .

Solution: We apply the submodule criterion: N is a submodule if and only if for all x, y ∈ N
and r ∈ R we have x+ r · y ∈ N .

Suppose x, y ∈ N . Then x ∈Mi for some i and y ∈Mj for some j. Without loss of generality,
j ≥ i. So x, y ∈Mj . Since Mj is a submodule of M , by the submodule criterion x+r ·y ∈Mj .
Therefore x+ r · y ∈ N .

4. Let R be a commutative ring with 1 and M be any R-module. Prove that R⊗RM ∼= M .

Solution: We claim that the map r ⊗m→ m is an R-module isomorphism.

We know that the map R×M →M given by (r,m)→ r ·m is bilinear (this is basically the
definition of what it means for M to be an R-module). By the universal mapping property for
tensor products there exists a unique linear map L : R⊗RM →M for which L(r⊗m) = rm.
We claim that this R-module homomorphism is injective and surjective. It is surjective since
L(1⊗m) = m. Every element of R⊗RM is a finite sum of elementary tensors,

n∑
i=1

(ri ⊗mi) =
n∑
i=1

(1⊗ rimi).

If

L

(
n∑
i=1

(1⊗ rimi

)
=

n∑
i=1

rimi = 0

then
∑n

i=1 rimi = 0, and
∑n

i=1(ri ⊗mi) = 0. So this map is injective.

I will also point out that several people proved this result (and in particular the injectivity
part) by showing that f : M → R⊗RM defined by f(m) = 1⊗m is a two-sided inverse for L.
This is the strategy Conrad uses in the proof of Theorem 4.5 in his ‘Tensor Products’ notes.
(This statement is the special case where I = 0.)

5. Suppose A is a finite abelian group, S is a Sylow p-subgroup of A, and pk is the order of S.
Prove that Z/pkZ⊗Z A is isomorphic to S.
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Solution: Let |A| = n = pα1
1 · · · p

αk
k where the pi are distinct primes. By the classification of

finite abelian groups,
A ∼= B1 ⊕ · · · ⊕Bk

where Bi is a finite abelian group of order pαi
i . Moreover, each Bi can be written as a direct

sum of cyclic Z-modules of prime power order,

Bi ∼= Z/pβi,1i Z⊕ · · · ⊕ Z/pβi,rii Z.

We know that
Z/pkZ⊗Z A ∼= (Z/pkZ⊕B1)⊕ · · · (Z/pkZ⊕Bk).

Then
(Z/pkZ⊕Bi) ∼= Z/ gcd(pk, p

βi,1
i )Z⊕ · · · ⊕ Z/ gcd(pk, p

βi,ri
i )Z.

If p 6= pi, then this group is trivial. If p = pi then pk = |Bi| and gcd(pk, p
βi,j
i ) = p

βi,j
i .

We conclude that this group is isomorphic to Bi, the Sylow p-subgroup of A.

I will also point out that several people used the fact from Example 4.6 in Conrad’s ‘Tensor
Products’ notes that Z/pkZ⊗ZA ∼= A/pkZ. But, then you need to show that A/pkA ∼= S. One
way to do this is to consider the map [pk] : A→ A defined by [pk](x) = x+ · · ·+ x (pktimes).
By definition, the image is pkA. It is also clear that x ∈ ker([pk]) if and only if the order
of x divides pk. The elements in a finite abelian group whose order divides |S| are exactly
the elements of the Sylow p-subgroup S. This shows that pkA is the set of elements in A \ S
together with 0. So we can write A ∼= S × pkA and consider the projection onto S, that is,
π(a, b) = a. The kernel is pkA.

6. For which values of a ∈ Z/5Z is the ring (Z/5Z)[x]/(x3 + ax+ 2) a field?
Solution: This is equivalent to asking for the values of a for which x3 + ax+ 2 has no roots
in Z/5Z. A cubic polynomial over a field F is irreducible if and only if it has no roots in F .

We work backwards and determine the values of a for which each of the elements of Z/5Z is
a root. We see that 0 is a root if and only if 2 = 0, that 1 is a root if and only if 3 + a = 0,
which means a = 2, that 2 is a root if and only if 3 + 2a+ 2 = 0, which means a = 0, that 3
is a root if and only if −1 + 3a = 0, which means a = 2, and that 4 is a root if and only if
−a+ 1 = 0, which means that a = 1.

We conclude by noting that when a = 0, 1, 2 this polynomial has a root and if a = 3, 4 this
polynomial does not have a root.

7. Prove that a finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let G be a finite subgroup of F ∗. By the Classification of Finite Abelian Groups,

G ∼= Z/n1Z× · · · × Z/ntZ,
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where each nj ≥ 2 and ni+1 | ni for each i ∈ {1, . . . , t−1}. We show that t = 1, which implies
that G is cyclic.

An element of order dividing nt in G is an element of order dividing nt in F ∗, which is a root
of the polynomial xnt − 1 in F [x]. A polynomial of degree nt in F [x] has at most nt distinct
roots in F .

In the subgroup of G given by the last factor in the decomposition above, we have nt elements
of order dividing nt. We also have nt elements of order dividing nt in each of the other factors,
since nt divides nj for each j ≤ t. Therefore, if t ≥ 2, then G has too many elements of order
dividing nt. So t = 1.

8. Find the greatest common divisor d(X) of the polynomials

f(X) = X4 −X2 + 2X − 1, and g(X) = X4 + 2X3 +X2 − 1

in R[X].

Solution: We apply the Division Algorithm and see that

(X4 −X2 + 2X − 1) = 1 · (X4 + 2X3 +X2 − 1) + (−2X3 − 2X2 + 2X).

We apply the Division Algorithm again and see that

(X4 + 2X3 +X2 − 1) =

(
−1

2
X − 1

2

)
(−2X3 − 2X2 + 2X) + (X2 +X − 1).

We apply the Division Algorithm again and see that

(−2X3 − 2X2 + 2X) = (−2X) · (X2 +X − 1) + 0.

Since X2 +X − 1 is the last nonzero remainder in this process, it is gcd(f(X), g(X)).

9. Show that Z[
√
−5] is not a UFD.

Solution: We see that 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) and claim that each of 2, 3, 1±

√
−5

is irreducible in Z[
√
−5] and that no two of these are associate.

In Z[
√
−5] we have the norm N(a + b

√
−5) = a2 + 5b2 and we know that α is a unit if and

only if N(α) = ±1. Therefore, the only units are ±1. So it is clear that no two of these
elements are associate. We note that this norm takes only nonnegative values.

We see that N(2) = 4, N(3) = 9, and N(1 ±
√
−5) = 6. Since the norm is multiplicative,

showing that there are no elements of Z[
√
−5] of norm 2 and no elements of norm 3, shows

that 2, 3, and 1±
√
−5 are irreducible.

We see that x2 + 5y2 = 2 has no integer solutions (note that y2 ≥ 0 and 2 is not a square),
and similarly that x2 + 5y2 = 3 has no solutions.
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