Math 230A: Algebra Midterm 2 Solutions

Wednesday, November 16, 2022.

1. State the Sylow Theorem.
(You can label the parts I,II,III, and III*, but you don't have to state it this way.)
Solution: Let G be a finite group and p be a prime dividing $|G|$. We can write $|G|=p^{\alpha} \cdot m$ where $p \nmid m$.
(a) There exists a $P \leq G$ with $|P|=p^{\alpha}$. (This is a Sylow p-subgroup of G. Let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups of G.)
(b) If $P, Q \in \operatorname{Syl}_{p}(G)$, then there exists $g \in G$ such that $Q=g P g^{-1}$.
(c) Let $n_{p}=\left|\operatorname{Syl}_{p}(G)\right|$. Then $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid m$.
(d) Let $P \in \operatorname{Syl}_{p}(G)$. Then $n_{p}=\left[G: N_{G}(P)\right]$.
2. Classify groups of order 99 up to isomorphism.

That is, give a list of groups such that every group of order 99 is isomorphic to exactly one of the groups in your list.
Solution: By Sylow III, $n_{3} \mid 11$ and $n_{3} \equiv 1(\bmod 3)$. So $n_{3}=1$. Similarly, $n_{11} \mid 9$ and $n_{11} \equiv 1$ $(\bmod 11)$, so $n_{11}=1$. Let $P \in \operatorname{Syl}_{3}(G)$ and $Q \in \operatorname{Syl}_{11}(G)$. Since $n_{3}=1, P \unlhd G$. Similarly, $Q \unlhd G$. So $P Q \leq G$. By Lagrange's theorem $P \cap Q=\{1\}$. This implies $|P Q|=|P| \cdot|Q|=|G|$, so $P Q=G$.

The Recognition Theorem for Direct Products implies that $G \cong P \times Q$. Since $|Q|=11$, which is prime, we see that $Q \cong \mathbb{Z} / 11 \mathbb{Z}$. Since $|P|=3^{2}$, we know that P is abelian, which implies that $P \cong \mathbb{Z} / 9 \mathbb{Z}$ or $P \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. (Every group of order p^{2} is abelian- this follows from the fact that the center of a p-group is nontrivial and the fact that if $G / Z(G)$ is cyclic then G is abelian.)
We conclude that $G \cong \mathbb{Z} / 9 \mathbb{Z} \times \mathbb{Z} / 11 \mathbb{Z}$ or $G \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 11 \mathbb{Z}$. These groups are not isomorphic to each other- one is cyclic and the other is not.
3. (a) State the Fundamental Theorem for Finitely Generated Abelian Groups (also called the Classification Theorem for Finitely Generated Abelian Groups).
Solution: Let G be a finitely generated abelian group. Then

$$
G \cong \mathbb{Z}^{r} \times \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \mathbb{Z} / n_{t} \mathbb{Z}
$$

where $r, t \geq 0$, each $n_{i} \geq 2$ for each $i \in\{1,2, \ldots, t\}$, and $n_{i+1} \mid n_{i}$ for each $i \in$ $\{1,2, \ldots, t-1\}$. Moreover, this decomposition is unique in the sense that if

$$
G \cong \mathbb{Z}^{u} \times \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \mathbb{Z} / m_{v} \mathbb{Z}
$$

where $u, v \geq 0$, each $m_{i} \geq 2$, and $m_{i+1} \mid m_{i}$, then $u=r, v=t$, and $n_{i}=m_{i}$ for each i.
(b) Classify abelian groups of order 100 up to isomorphism.

That is, give a list of abelian groups such that every abelian group of order 100 is isomorphic to exactly one of the groups in your list.
Solution: Since $100=2^{2} \cdot 5^{2}$ By the fundamental theorem, we have G is isomorphic to one of the following groups:

$$
\mathbb{Z} / 100 \mathbb{Z}, \mathbb{Z} / 50 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 20 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}, \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z}
$$

(c) How many isomorphism classes are there are abelian groups of order $27000=2^{3} \cdot 3^{3} \cdot 5^{3}$? You only need to write a number. No additional explanation is needed.
Solution: It is easier to do this count using the Primary Decomposition Theorem. Let $|G|=27000$. The number of possibilities for the Sylow 2-subgroup of G is equal to the number of partitions of 3 , which is 3 . (This group could be isomorphic to $\mathbb{Z} / 2^{3} \mathbb{Z}$ or $\mathbb{Z} / 2^{2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.) The number of choices for the other two Sylow subgroups is the same. So the total number of possibilities is $3 \cdot 3 \cdot 3=27$.
4. (a) Let R be a ring with identity 1 . Let u be a unit in R.

Prove that the multiplicative inverse of u in R is unique.
Solution: Since u is a unit, there exists a $v \in R$ such that $u v=v u=1$. Suppose $u w=1$. Then $v(u w)=v \cdot 1=v$. But we also have $v(u w)=(v u) w=1 \cdot w=w$. So $v=w$.
(b) What is the inverse of the element $2+\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$?

Give a brief explanation for how you know this is the inverse.
Solution: We have that $(2+\sqrt{2})(2-\sqrt{2})=2^{2}-(\sqrt{2})^{2}=2$. Therefore, $(2+\sqrt{2}) \cdot\left(1-\frac{1}{2} \cdot \sqrt{2}\right)=1$. So $(2+\sqrt{2})^{-1}=1-\frac{1}{2} \sqrt{2}$.
5. Let p be a prime and H be a subgroup of S_{p} of order p.

What is $\left|N_{S_{p}}(H)\right|$, the order of the normalizer of H ?
Prove that your answer is correct.
Solution: Since $\left|S_{p}\right|=p!$ is not divisible by p^{2}, a Sylow p-subgroup of S_{p} has order p. Every such subgroup is cyclic because p is prime. The order of an element is S_{n} is the least common multiple of the lengths of the cycles that occur in the decomposition into a product of disjoint cycles. The only elements of order p in S_{p} are therefore the p-cycles.
There are $(p-1)$! p-cycles in S_{p}. (Write your cycle with 1 listed first. There are $(p-1)$! to arrange the remaining numbers.) Each subgroup of order p contains $p-1$ of these p-cycles. The intersection of any pair of these subgroups is trivial by Lagrange's theorem. We recall that if G has k subgroups of order p then it has $k(p-1)$ elements of order p. Since S_{p} has $(p-1)!$ elements of order p, it must have $\frac{(p-1)!}{p-1}=(p-2)!$ subgroups of order p.

We see that $H \in \operatorname{Syl}_{p}\left(S_{p}\right)$. By Sylow III*, $n_{p}=(p-2)!=\left[S_{p}: N_{S_{p}}(H)\right]$. This implies that $(p-2)!=\frac{p!}{\left|N_{S_{p}}(H)\right|}$. Therefore, $\left|N_{S_{p}}(H)\right|=p(p-1)$.
6. Prove that no group of order $150=2 \cdot 3 \cdot 5^{2}$ is simple.

Solution: Suppose G is a simple group with $|G|=150$. By Sylow III, $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 6$. If G is simple, then $n_{5} \neq 1$, which means $n_{5}=6$. Let $P \in \operatorname{Syl}_{5}(G)$. By Sylow III*, $6=n_{5}=\left[G: N_{G}(P)\right]$.
Therefore, $N_{G}(P) \leq G$ has index 6 . Let G act on the cosets of this subgroup by left multiplication. This is a group action, which gives a homomorphism $\varphi: G \rightarrow S_{G / N_{G}(P)}^{\cong} S_{6}$.
The kernel of this homomorphism is contained in $N_{G}(P)$. This is because $g \in \operatorname{ker}(\varphi)$ implies $g \cdot 1 N_{G}(P)=g N_{G}(P)=1 N_{G}(P)$. Since $\operatorname{ker}(\varphi) \unlhd G$ and G is simple, we have $\operatorname{ker}(\varphi)=\{1\}$. By the First Isomorphism Theorem, we have $|G|=|\varphi(G)|| | S_{6} \mid=720$. Since 150 does not divide 720 , this is a contradiction.
7. (a) Define what it means for a group G to be solvable.

Solution: G is solvable if there is a chain of subgroups,

$$
1=G_{0} \unlhd G_{1} \unlhd G_{2} \unlhd \cdots \unlhd G_{n}=G
$$

such that G_{i+1} / G_{i} is abelian for all $i \in\{0,1, \ldots, n-1\}$.
(b) Give an example of a nonabelian group of order 60 that is solvable.

Solution: D_{60} is a nonabelian group of order 60 . It is solvable because

$$
\{1\} \unlhd\langle r\rangle \unlhd D_{60}
$$

and $D_{60} /\langle r\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$ (this quotient has order 2), and $\langle r\rangle /\{1\} \cong\langle r\rangle$ is abelian.
8. Let H and K be groups and $\varphi: K \rightarrow \operatorname{Aut}(H)$ be a homomorphism. Let $G=H \rtimes_{\varphi} K$.
(a) Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in G$. What is $\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)$?

Solution: We have $\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)=\left(h_{1} \varphi_{k_{1}}\left(h_{2}\right), k_{1} k_{2}\right)$, where $\varphi_{k_{1}}$ is just different notation for $\varphi\left(k_{1}\right)$.
(b) Let $(a, x),(b, y),(c, z) \in G$. Prove that

$$
((a, x) \cdot(b, y)) \cdot(c, z)=(a, x) \cdot((b, y) \cdot(c, z)) .
$$

Solution: We have $(a, x) \cdot(b, y)=\left(a \varphi_{x}(b), x y\right)$ and $(b, y) \cdot(c, z)=\left(b \varphi_{y}(c), y z\right)$. Therefore,

$$
((a, x) \cdot(b, y)) \cdot(c, z)=\left(a \varphi_{x}(b), x y\right) \cdot(c, z)=\left(a \varphi_{x}(b) \varphi_{x y}(c),(x y) z\right) .
$$

Also,

$$
(a, x) \cdot((b, y) \cdot(c, z))=(a, x) \cdot\left(b \varphi_{y}(c), y z\right)=\left(a \varphi_{x}\left(\left(b \varphi_{y}(c)\right)\right), x(y z)\right)
$$

We have $(x y) z=x(y z)$ since K is a group. Therefore, we need only show that

$$
a \varphi_{x}(b) \varphi_{x y}(c)=a \varphi_{x}\left(b \varphi_{y}(c)\right)
$$

Since $\varphi_{x} \in \operatorname{Aut}(H)$ we have $\varphi_{x}\left(\varphi_{y}(c)\right)=\varphi_{x y}(c)$ and so $a \varphi_{x}(b) \varphi_{x y}(c)=a \varphi_{x}\left(b \cdot \varphi_{y}(c)\right)$.
9. (a) Define what it means for a commutative ring with identity $1 \neq 0$ to be an integral domain.
Solution: A commutative ring with identity $1 \neq 0$ is an integral domain if and only if it has no zero divisors. (A zero divisor is a nonzero element $a \in R$ such that there exists a nonzero element b with $a \cdot b=0$.)
(b) Which of the following rings are integral domains?

No explanation is needed. Just say whether each ring is or is not an integral domain.
i. $\mathbb{Z}[x]$.
ii. $\mathbb{Z} / 10 \mathbb{Z}$.
iii. $M_{2}(\mathbb{R})$.

Solution: $\mathbb{Z}[x]$ is an integral domain. $\mathbb{Z} / 10 \mathbb{Z}$ is not because 5 is a zero divisor. $M_{2}(R)$ is not because $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is a zero divisor.

