
Math 230A: Algebra
Midterm 2 Solutions

Wednesday, November 16, 2022.

1. State the Sylow Theorem.
(You can label the parts I,II,III, and III*, but you don’t have to state it this way.)

Solution: Let G be a finite group and p be a prime dividing |G|. We can write |G| = pα ·m
where p - m.

(a) There exists a P ≤ G with |P | = pα. (This is a Sylow p-subgroup of G. Let Sylp(G)
denote the set of Sylow p-subgroups of G.)

(b) If P,Q ∈ Sylp(G), then there exists g ∈ G such that Q = gPg−1.

(c) Let np = |Sylp(G)|. Then np ≡ 1 (mod p) and np | m.

(d) Let P ∈ Sylp(G). Then np = [G : NG(P )].

2. Classify groups of order 99 up to isomorphism.
That is, give a list of groups such that every group of order 99 is isomorphic to exactly one
of the groups in your list.

Solution: By Sylow III, n3 | 11 and n3 ≡ 1 (mod 3). So n3 = 1. Similarly, n11 | 9 and n11 ≡ 1
(mod 11), so n11 = 1. Let P ∈ Syl3(G) and Q ∈ Syl11(G). Since n3 = 1, P E G. Similarly,
Q E G. So PQ ≤ G. By Lagrange’s theorem P∩Q = {1}. This implies |PQ| = |P |·|Q| = |G|,
so PQ = G.

The Recognition Theorem for Direct Products implies that G ∼= P ×Q. Since |Q| = 11, which
is prime, we see that Q ∼= Z/11Z. Since |P | = 32, we know that P is abelian, which implies
that P ∼= Z/9Z or P ∼= Z/3Z× Z/3Z. (Every group of order p2 is abelian– this follows from
the fact that the center of a p-group is nontrivial and the fact that if G/Z(G) is cyclic then
G is abelian.)

We conclude that G ∼= Z/9Z× Z/11Z or G ∼= Z/3Z× Z/3Z× Z/11Z. These groups are not
isomorphic to each other– one is cyclic and the other is not.

3. (a) State the Fundamental Theorem for Finitely Generated Abelian Groups (also called the
Classification Theorem for Finitely Generated Abelian Groups).

Solution: Let G be a finitely generated abelian group. Then

G ∼= Zr × Z/n1Z× · · ·Z/ntZ

where r, t ≥ 0, each ni ≥ 2 for each i ∈ {1, 2, . . . , t}, and ni+1 | ni for each i ∈
{1, 2, . . . , t− 1}. Moreover, this decomposition is unique in the sense that if

G ∼= Zu × Z/m1Z× · · ·Z/mvZ
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where u, v ≥ 0, each mi ≥ 2, and mi+1 | mi, then u = r, v = t, and ni = mi for each i.

(b) Classify abelian groups of order 100 up to isomorphism.
That is, give a list of abelian groups such that every abelian group of order 100 is
isomorphic to exactly one of the groups in your list.

Solution: Since 100 = 22 · 52 By the fundamental theorem, we have G is isomorphic to
one of the following groups:

Z/100Z, Z/50Z× Z/2Z, Z/20Z× Z/5Z, Z/10Z× Z/10Z.

(c) How many isomorphism classes are there are abelian groups of order 27000 = 23 ·33 ·53?
You only need to write a number. No additional explanation is needed.

Solution: It is easier to do this count using the Primary Decomposition Theorem. Let
|G| = 27000. The number of possibilities for the Sylow 2-subgroup of G is equal to the
number of partitions of 3, which is 3. (This group could be isomorphic to Z/23Z or
Z/22Z×Z/2Z or Z/2Z×Z/2Z×Z/2Z.) The number of choices for the other two Sylow
subgroups is the same. So the total number of possibilities is 3 · 3 · 3 = 27.

4. (a) Let R be a ring with identity 1. Let u be a unit in R.
Prove that the multiplicative inverse of u in R is unique.

Solution: Since u is a unit, there exists a v ∈ R such that uv = vu = 1. Suppose
uw = 1. Then v(uw) = v · 1 = v. But we also have v(uw) = (vu)w = 1 · w = w. So
v = w.

(b) What is the inverse of the element 2 +
√

2 in Q(
√

2)?
Give a brief explanation for how you know this is the inverse.

Solution: We have that (2 +
√

2)(2−
√

2) = 22 − (
√

2)2 = 2. Therefore,
(2 +

√
2) · (1− 1

2 ·
√

2) = 1. So (2 +
√

2)−1 = 1− 1
2

√
2.

5. Let p be a prime and H be a subgroup of Sp of order p.
What is |NSp(H)|, the order of the normalizer of H?
Prove that your answer is correct.

Solution: Since |Sp| = p! is not divisible by p2, a Sylow p-subgroup of Sp has order p. Every
such subgroup is cyclic because p is prime. The order of an element is Sn is the least common
multiple of the lengths of the cycles that occur in the decomposition into a product of disjoint
cycles. The only elements of order p in Sp are therefore the p-cycles.

There are (p− 1)! p-cycles in Sp. (Write your cycle with 1 listed first. There are (p− 1)! to
arrange the remaining numbers.) Each subgroup of order p contains p − 1 of these p-cycles.
The intersection of any pair of these subgroups is trivial by Lagrange’s theorem. We recall
that if G has k subgroups of order p then it has k(p − 1) elements of order p. Since Sp has

(p− 1)! elements of order p, it must have (p−1)!
p−1 = (p− 2)! subgroups of order p.
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We see that H ∈ Sylp(Sp). By Sylow III*, np = (p − 2)! = [Sp : NSp(H)]. This implies that

(p− 2)! = p!
|NSp (H)| . Therefore, |NSp(H)| = p(p− 1).

6. Prove that no group of order 150 = 2 · 3 · 52 is simple.

Solution: Suppose G is a simple group with |G| = 150. By Sylow III, n5 ≡ 1 (mod 5) and
n5 | 6. If G is simple, then n5 6= 1, which means n5 = 6. Let P ∈ Syl5(G). By Sylow III*,
6 = n5 = [G : NG(P )].

Therefore, NG(P ) ≤ G has index 6. Let G act on the cosets of this subgroup by left multi-
plication. This is a group action, which gives a homomorphism ϕ : G→ SG/NG(P )

∼= S6.

The kernel of this homomorphism is contained in NG(P ). This is because g ∈ ker(ϕ) implies
g · 1NG(P ) = gNG(P ) = 1NG(P ). Since ker(ϕ) E G and G is simple, we have ker(ϕ) = {1}.
By the First Isomorphism Theorem, we have |G| = |ϕ(G)| | |S6| = 720. Since 150 does not
divide 720, this is a contradiction.

7. (a) Define what it means for a group G to be solvable.

Solution: G is solvable if there is a chain of subgroups,

1 = G0 E G1 E G2 E · · · E Gn = G

such that Gi+1/Gi is abelian for all i ∈ {0, 1, . . . , n− 1}.
(b) Give an example of a nonabelian group of order 60 that is solvable.

Solution: D60 is a nonabelian group of order 60. It is solvable because

{1} E 〈r〉 E D60

and D60/〈r〉 ∼= Z/2Z (this quotient has order 2), and 〈r〉/{1} ∼= 〈r〉 is abelian.

8. Let H and K be groups and ϕ : K → Aut(H) be a homomorphism. Let G = H oϕ K.

(a) Let (h1, k1), (h2, k2) ∈ G. What is (h1, k1) · (h2, k2)?
Solution: We have (h1, k1) · (h2, k2) = (h1ϕk1(h2), k1k2), where ϕk1 is just different
notation for ϕ(k1).

(b) Let (a, x), (b, y), (c, z) ∈ G. Prove that

((a, x) · (b, y)) · (c, z) = (a, x) · ((b, y) · (c, z)).

Solution: We have (a, x) · (b, y) = (aϕx(b), xy) and (b, y) · (c, z) = (bϕy(c), yz). Therefore,

((a, x) · (b, y)) · (c, z) = (aϕx(b), xy) · (c, z) = (aϕx(b)ϕxy(c), (xy)z).
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Also,
(a, x) · ((b, y) · (c, z)) = (a, x) · (bϕy(c), yz) = (aϕx((bϕy(c))), x(yz)).

We have (xy)z = x(yz) since K is a group. Therefore, we need only show that

aϕx(b)ϕxy(c) = aϕx(bϕy(c)).

Since ϕx ∈ Aut(H) we have ϕx(ϕy(c)) = ϕxy(c) and so aϕx(b)ϕxy(c) = aϕx(b · ϕy(c)).

9. (a) Define what it means for a commutative ring with identity 1 6= 0 to be an integral
domain.

Solution: A commutative ring with identity 1 6= 0 is an integral domain if and only if
it has no zero divisors. (A zero divisor is a nonzero element a ∈ R such that there exists
a nonzero element b with a · b = 0.)

(b) Which of the following rings are integral domains?
No explanation is needed. Just say whether each ring is or is not an integral domain.

i. Z[x].

ii. Z/10Z.

iii. M2(R).

Solution: Z[x] is an integral domain. Z/10Z is not because 5 is a zero divisor. M2(R)

is not because

(
1 0
0 0

)
is a zero divisor.
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