Math 230A: Algebra Midterm 2 Solutions

Wednesday, November 16, 2022.

1. State the Sylow Theorem.

(You can label the parts I,II,III, and III*, but you don't have to state it this way.)

Solution: Let G be a finite group and p be a prime dividing |G|. We can write $|G| = p^{\alpha} \cdot m$ where $p \nmid m$.

- (a) There exists a $P \leq G$ with $|P| = p^{\alpha}$. (This is a Sylow *p*-subgroup of *G*. Let $\text{Syl}_p(G)$ denote the set of Sylow *p*-subgroups of *G*.)
- (b) If $P, Q \in \text{Syl}_p(G)$, then there exists $g \in G$ such that $Q = gPg^{-1}$.
- (c) Let $n_p \equiv |\operatorname{Syl}_p(G)|$. Then $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$.
- (d) Let $P \in \text{Syl}_p(G)$. Then $n_p = [G \colon N_G(P)]$.

Classify groups of order 99 up to isomorphism. That is, give a list of groups such that every group of order 99 is isomorphic to exactly one of the groups in your list.

Solution: By Sylow III, $n_3 \mid 11$ and $n_3 \equiv 1 \pmod{3}$. So $n_3 = 1$. Similarly, $n_{11} \mid 9$ and $n_{11} \equiv 1 \pmod{11}$, so $n_{11} = 1$. Let $P \in \text{Syl}_3(G)$ and $Q \in \text{Syl}_{11}(G)$. Since $n_3 = 1$, $P \leq G$. Similarly, $Q \leq G$. So $PQ \leq G$. By Lagrange's theorem $P \cap Q = \{1\}$. This implies $|PQ| = |P| \cdot |Q| = |G|$, so PQ = G.

The Recognition Theorem for Direct Products implies that $G \cong P \times Q$. Since |Q| = 11, which is prime, we see that $Q \cong \mathbb{Z}/11\mathbb{Z}$. Since $|P| = 3^2$, we know that P is abelian, which implies that $P \cong \mathbb{Z}/9\mathbb{Z}$ or $P \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. (Every group of order p^2 is abelian– this follows from the fact that the center of a p-group is nontrivial and the fact that if G/Z(G) is cyclic then G is abelian.)

We conclude that $G \cong \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$ or $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$. These groups are not isomorphic to each other- one is cyclic and the other is not.

3. (a) State the Fundamental Theorem for Finitely Generated Abelian Groups (also called the Classification Theorem for Finitely Generated Abelian Groups).

Solution: Let G be a finitely generated abelian group. Then

$$G \cong \mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \mathbb{Z}/n_t\mathbb{Z}$$

where $r, t \ge 0$, each $n_i \ge 2$ for each $i \in \{1, 2, ..., t\}$, and $n_{i+1} \mid n_i$ for each $i \in \{1, 2, ..., t-1\}$. Moreover, this decomposition is unique in the sense that if

$$G \cong \mathbb{Z}^u \times \mathbb{Z}/m_1\mathbb{Z} \times \cdots \mathbb{Z}/m_v\mathbb{Z}$$

where $u, v \ge 0$, each $m_i \ge 2$, and $m_{i+1} \mid m_i$, then u = r, v = t, and $n_i = m_i$ for each i.

(b) Classify abelian groups of order 100 up to isomorphism. That is, give a list of abelian groups such that every abelian group of order 100 is isomorphic to exactly one of the groups in your list.
Solution: Since 100 = 2² ⋅ 5² By the fundamental theorem, we have G is isomorphic to

one of the following groups:

$$\mathbb{Z}/100\mathbb{Z}, \ \mathbb{Z}/50\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}, \ \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}.$$

- (c) How many isomorphism classes are there are abelian groups of order 27000 = 2³ ⋅ 3³ ⋅ 5³? You only need to write a number. No additional explanation is needed. Solution: It is easier to do this count using the Primary Decomposition Theorem. Let |G| = 27000. The number of possibilities for the Sylow 2-subgroup of G is equal to the number of partitions of 3, which is 3. (This group could be isomorphic to Z/2³Z or Z/2^Z × Z/2^Z or Z/2^Z × Z/2^Z × Z/2^Z.) The number of choices for the other two Sylow subgroups is the same. So the total number of possibilities is 3 ⋅ 3 ⋅ 3 = 27.
- 4. (a) Let R be a ring with identity 1. Let u be a unit in R. Prove that the multiplicative inverse of u in R is unique.
 Solution: Since u is a unit, there exists a v ∈ R such that uv = vu = 1. Suppose uw = 1. Then v(uw) = v · 1 = v. But we also have v(uw) = (vu)w = 1 · w = w. So v = w.
 - (b) What is the inverse of the element $2 + \sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$? Give a **brief explanation** for how you know this is the inverse. **Solution**: We have that $(2 + \sqrt{2})(2 - \sqrt{2}) = 2^2 - (\sqrt{2})^2 = 2$. Therefore, $(2 + \sqrt{2}) \cdot (1 - \frac{1}{2} \cdot \sqrt{2}) = 1$. So $(2 + \sqrt{2})^{-1} = 1 - \frac{1}{2}\sqrt{2}$.
- 5. Let p be a prime and H be a subgroup of S_p of order p. What is $|N_{S_p}(H)|$, the order of the normalizer of H? **Prove that your answer is correct.**

Solution: Since $|S_p| = p!$ is not divisible by p^2 , a Sylow *p*-subgroup of S_p has order *p*. Every such subgroup is cyclic because *p* is prime. The order of an element is S_n is the least common multiple of the lengths of the cycles that occur in the decomposition into a product of disjoint cycles. The only elements of order *p* in S_p are therefore the *p*-cycles.

There are (p-1)! p-cycles in S_p . (Write your cycle with 1 listed first. There are (p-1)! to arrange the remaining numbers.) Each subgroup of order p contains p-1 of these p-cycles. The intersection of any pair of these subgroups is trivial by Lagrange's theorem. We recall that if G has k subgroups of order p then it has k(p-1) elements of order p. Since S_p has (p-1)! elements of order p, it must have $\frac{(p-1)!}{p-1} = (p-2)!$ subgroups of order p.

We see that $H \in \text{Syl}_p(S_p)$. By Sylow III*, $n_p = (p-2)! = [S_p: N_{S_p}(H)]$. This implies that $(p-2)! = \frac{p!}{|N_{S_p}(H)|}$. Therefore, $|N_{S_p}(H)| = p(p-1)$.

6. Prove that no group of order $150 = 2 \cdot 3 \cdot 5^2$ is simple.

Solution: Suppose G is a simple group with |G| = 150. By Sylow III, $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 6$. If G is simple, then $n_5 \neq 1$, which means $n_5 = 6$. Let $P \in \text{Syl}_5(G)$. By Sylow III*, $6 = n_5 = [G: N_G(P)]$.

Therefore, $N_G(P) \leq G$ has index 6. Let G act on the cosets of this subgroup by left multiplication. This is a group action, which gives a homomorphism $\varphi: G \to S_{G/N_G(P)} \cong S_6$.

The kernel of this homomorphism is contained in $N_G(P)$. This is because $g \in \ker(\varphi)$ implies $g \cdot 1N_G(P) = gN_G(P) = 1N_G(P)$. Since $\ker(\varphi) \trianglelefteq G$ and G is simple, we have $\ker(\varphi) = \{1\}$. By the First Isomorphism Theorem, we have $|G| = |\varphi(G)| | |S_6| = 720$. Since 150 does not divide 720, this is a contradiction.

7. (a) Define what it means for a group G to be solvable.Solution: G is solvable if there is a chain of subgroups,

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq \cdots \trianglelefteq G_n = G$$

such that G_{i+1}/G_i is abelian for all $i \in \{0, 1, \ldots, n-1\}$.

(b) Give an example of a nonabelian group of order 60 that is solvable. Solution: D_{60} is a nonabelian group of order 60. It is solvable because

 $\{1\} \trianglelefteq \langle r \rangle \trianglelefteq D_{60}$

and $D_{60}/\langle r \rangle \cong \mathbb{Z}/2\mathbb{Z}$ (this quotient has order 2), and $\langle r \rangle/\{1\} \cong \langle r \rangle$ is abelian.

- 8. Let H and K be groups and $\varphi \colon K \to \operatorname{Aut}(H)$ be a homomorphism. Let $G = H \rtimes_{\varphi} K$.
 - (a) Let $(h_1, k_1), (h_2, k_2) \in G$. What is $(h_1, k_1) \cdot (h_2, k_2)$? Solution: We have $(h_1, k_1) \cdot (h_2, k_2) = (h_1 \varphi_{k_1}(h_2), k_1 k_2)$, where φ_{k_1} is just different notation for $\varphi(k_1)$.
 - (b) Let $(a, x), (b, y), (c, z) \in G$. Prove that

$$((a,x)\cdot(b,y))\cdot(c,z) = (a,x)\cdot((b,y)\cdot(c,z)).$$

Solution: We have $(a, x) \cdot (b, y) = (a\varphi_x(b), xy)$ and $(b, y) \cdot (c, z) = (b\varphi_y(c), yz)$. Therefore,

$$((a,x)\cdot(b,y))\cdot(c,z) = (a\varphi_x(b),xy)\cdot(c,z) = (a\varphi_x(b)\varphi_{xy}(c),(xy)z).$$

Also,

$$(a,x)\cdot((b,y)\cdot(c,z)) = (a,x)\cdot(b\varphi_y(c),yz) = (a\varphi_x((b\varphi_y(c))),x(yz)).$$

We have (xy)z = x(yz) since K is a group. Therefore, we need only show that

$$a\varphi_x(b)\varphi_{xy}(c) = a\varphi_x(b\varphi_y(c)).$$

Since $\varphi_x \in \operatorname{Aut}(H)$ we have $\varphi_x(\varphi_y(c)) = \varphi_{xy}(c)$ and so $a\varphi_x(b)\varphi_{xy}(c) = a\varphi_x(b \cdot \varphi_y(c))$.

9. (a) Define what it means for a commutative ring with identity $1 \neq 0$ to be an integral domain.

Solution: A commutative ring with identity $1 \neq 0$ is an integral domain if and only if it has no zero divisors. (A zero divisor is a nonzero element $a \in R$ such that there exists a nonzero element b with $a \cdot b = 0$.)

- (b) Which of the following rings are integral domains?No explanation is needed. Just say whether each ring is or is not an integral domain.
 - i. $\mathbb{Z}[x]$.
 - ii. $\mathbb{Z}/10\mathbb{Z}$.
 - iii. $M_2(\mathbb{R})$.

Solution: $\mathbb{Z}[x]$ is an integral domain. $\mathbb{Z}/10\mathbb{Z}$ is not because 5 is a zero divisor. $M_2(R)$ is not because $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is a zero divisor.