
Math 230B: Algebra
Midterm #1 Solutions

Wednesday, February 1, 2023.

Solutions

1. (a) Define Unique Factorization Domain (UFD).

(b) Define Principal Ideal Domain (PID).

(c) For the properties “UFD” and “PID” give an example of an integral domain that

i. satisfies both properties,

ii. satisfies neither property,

iii. satisfies one property but not the other.

Solution: An integral domain R is a UFD if every nonzero nonunit element α ∈ R can be
written uniquely as a finite product of irreducible elements of R. That is, if

α = p1 · · · pr = q1 · · · qs

where each pi, qj are irreducible, then r = s and there is a way to rearrange q1, . . . , qs such
that each qi is associated to p1 in R.

An integral domain R is a PID if every nontrivial proper ideal I ⊂ R is principal, that is,
there exists α ∈ R such that I = (α).

Z[i] is a PID that is a UFD.
Z[
√
−5] is not a UFD or a PID.

Z[x] is a UFD that is not a PID.

2. Factor 1300 into a product of irreducible elements in Z[i].

Solution: We have 1300 = 13 · 22 · 52. We have 2 = (1 + i)(1 − i). Both of these elements
have norm 2, so they are irreducible. We have 5 = (1 + 2i)(1 − 2i). Both of these elements
have norm 5, so they are irreducible. We have 13 = (2 + 3i)(2− 3i). Both of these elements
have norm 13, so they are irreducible. In conclusion,

1300 = (1 + i)2(1− i)2(1 + 2i)2(1− 2i)2(2 + 3i)(2− 3i).

3. Prove that x6 + 30x5 − 15x3 + 6x− 120 is irreducible in Z[x].

Solution: This polynomial has the form xn+an−1x
n−1+· · ·+a1x+a0 where 3 | a0, a1, . . . , an−1

but 32 - a0. By Eisenstein’s criterion at p = 3, this polynomial is irreducible.
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4. Let R be a commutative ring in which every ideal is finitely generated. Prove that if there is
an infinite sequence of proper ideals in R satisfying

I1 ⊆ I2 ⊆ · · ·

then there is some m such that Ik = Im for all k ≥ m.

Solution: The main idea is to consider

I =
⋃
i≥1

Ii.

We claim that this an ideal of R. Suppose a, b ∈ I. Then there exists integers j, k such that
a ∈ Ij and b ∈ Ik. Without loss of generality, suppose that j ≤ k. Since Ij ⊆ Ik we see that
a ∈ Ik also. Since Ik is an ideal, a − b ∈ Ik. So a − b ∈ I and I is an additive subgroup of
R by the subgroup criterion. Let r ∈ R. Since Ij is an ideal, ra ∈ Ij . So ra ∈ I. We see
that I is an ideal of R. In fact, it is a proper ideal. If 1 ∈ I, then 1 ∈ Ik for some k, which
contradicts the assumption that Ik is a proper ideal.

Since every ideal of R is finitely generated, I has a finite generating set (a1, . . . , ak). For each
i, there exists an integer ni such that ai ∈ Ini . Let N = max{n1, . . . , nk}. Since Ii ⊆ Ij for
i ≤ j, we see that each Ini ⊆ IN . Therefore, a1, . . . , ak ∈ IN , so IN = I. Since IN ⊆ Ik for all
k ≥ N , we see that Ik = IN = I for all k ≥ N .

5. Let R be a PID and α ∈ R be a nonzero nonunit element.
Prove that α has at least one irreducible factor in R.

Solution: Let α be a nonzero nonunit element of R. We first show that α has one irreducible
factor p. If α is irreducible, we are done. Suppose it is not. Then there exist nonunits a1, b1
such that α = a1b1. If either of a1, b1 is irreducible, we’re done. If not, then there exist
nonunits a2, b2 such that a1 = a2b2. If either of a2, b2 are irreducible, we’re done. If not, we
continue in this way.

We consider the chain of ideals of R : (a1) ( (a2) ( (a3) ( · · · . We know that each
containment is strict because if (a1) = (a2), then a2 ∈ (a1), which means that there exists
β ∈ R with a2 = a1β = (a2b2)β. Since R is an integral domain, we must have b2β = 1, so a2
is a unit.

We have an infinite chain of ideals of R. Since every ideal of R is finitely generated, this chain
must stabilize. In particular, this process cannot go on forever, which means that at some
point one of aN , bN must be irreducible.

6. (a) Determine whether the rings (Z/5Z)[x]/(x2 + 1) and (Z/5Z)[x]/(x2 + 2) are isomorphic.

(b) Prove that Z[x]/(3, x3 − 1) is isomorphic to (Z/3Z)[x]/(x3 − 1).
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(c) Give a complete list of the maximal ideals in the ring (Z/3Z)[x]/(x3 − 1).
Explain how you know your list is complete.

Solution: We first factor the polynomials x2 + 1 and x2 + 2 in (Z/5Z)[x]. A polynomial of
degree 2 over a field is irreducible if and only if it has a root. We see that 22 + 1 = 0 in Z/5Z,
so x− 2 divides x2 + 1. We can check that x2 + 1 = (x− 2)(x− 3) in (Z/5Z)[x]. By checking
each of the 5 elements of Z/5Z we see that x2 + 2 does not have any roots, which means it
is irreducible over Z/5Z. Therefore, (Z/5Z)/(x2 + 2) is a field. But, (Z/5Z)[x]/(x2 + 1) is
not an integral domain, for example x− 2 and x− 3 are nonzero elements of this ring that
multiply to 0.

By the Third Isomorphism Theorem for rings, we have

Z[x]/(3, x3 − 1) ∼= (Z[x]/(3))/((3, x3 − 1)/(3)).

We know that Z[x]/(3) ∼= (Z/3Z)[x] since (3) is the kernel of the homomorphism where we
reduce each coefficient modulo 3. Note that

(3, x3 − 1) = (3) + (x3 − 1) = {α3 + β(x3 − 1) : α, β ∈ Z[x]}.

We see that (3, x3 − 1)/(3) is isomorphic to (x3 − 1) in (Z/3Z)[x] by applying the First
Isomorphism Theorem for Rings to the map that takes α3+β(x3−1) to its reduction modulo 3.

For this part we could also consider the surjective ring homomorphism from Z[x] to (Z/3Z)[x]
where we first reduce all of the coefficients of f(x) modulo 3, which gives a polynomial in
(Z/3Z)[x], and then consider the natural projection to (Z/3Z)[x]/(x3− 1). The kernel of the
second map is the ideal generated by (x3 − 1) is (Z/3Z)[x], so the kernel of the composition
is the set of all polynomials f(x) = 3α+ (x3 − 1)β where α, β ∈ Z[x].

For the last part, we see that x3 − 1 has 1 as a root in (Z/3Z)[x]. We can factor

x3 − 1 = (x− 1)(x2 + x+ 1) = (x− 1)((x− 1)(x− 1)) = (x− 1)3.

We could also have said that in a field of characteristic 3, we have x3 − 13 = (x− 1)3.

By the Lattice Isomorphism Theorem for Rings, ideals of (Z/3Z)[x]/(x3 − 1) correspond to
ideas of (Z/3Z)[x] containing (x3 − 1). In F [x] all ideals are principal, and we see that
(f(x)) ⊆ (g(x)) if and only if g(x) | f(x). So the only ideals of (Z/3Z)[x] that contain
(x3 − 1) are (Z/3Z)[x], (x− 1), ((x− 1)2), and ((x− 1)3). In F [x] an ideal is maximal if and
only if it is prime and (g(x)) is prime if and only if g(x) is irreducible. Therefore, the only
one of these ideals that is maximal is (x− 1).

7. Let R = Z/nZ where n is a positive integer. Is it necessarily true that a polynomial f(x) ∈
R[x] with degree d has at most d distinct roots in R?
Explain your answer.

Solution: This is not necessarily true. Consider n = 8 and the polynomial x2 − 1. This has
4 roots, {1, 3, 5, 7}.
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8. Prove that Z[
√

10] is not a UFD.

Solution: We have 10 = 2 · 5 = (
√

10)2. We claim that 5,
√

10 are all irreducible elements in
this ring and that 2 and 5 are not associate to

√
10.

We first show that there are no elements of Z[
√

10] of norm ±5. We recall the norm on
Q(
√

10) given by N(a + b
√

10) = a2 − 10b2. This norm is multiplicative and a + b
√

10 is a
unit if and only if its norm is 1 or −1. We have N(5) = 25. So if 5 = αβ with both α, β
nonunits, then we must have N(α) = ±5. We will show that there are no elements of Z[

√
5]

of norm ±5.

Suppose a2 − 10b2 = ±5. Since −10b2 and ±5 are divisible by 5, we see that 5 | a. Write
a = 5a′. This gives 25(a′)2 − 10b2 = 5, so 5(a′)2 − 2b2 = ±1. Taking this equation modulo 5
gives 3b2 ≡ ±1 (mod 5). This has no solutions modulo 5.

Therefore, 5 is irreducible in Z[
√

10]. We see that
√

10 is irreducible also, sinceN(
√

10) = −10.
If we did have

√
10 = αβ with α, β nonunits, then one of α, β would have norm ±5 and the

other would have norm ±2. Since there are no elements of norm ±5, this is impossible.

Therefore, 10 =
√

10 ·
√

10 is a factorization into irreducibles. No matter how 2 factors into a
product of irreducibles (it is irreducible, but you don’t need that here), we have a factorization
of 10 into irreducibles that contains 5. It is clear that 5 is not associate to

√
10 because these

elements have different norms. We conclude that Z[
√

10] is not a UFD.

Note: There are other ways to do this. For example, you can do the same idea with the
factorizations:

−9 = (−3) · 3 = (1−
√

10)(1 +
√

10).

We claim that the elements 3, 1 +
√

10, 1 −
√

10 are all irreducible. This follows from the
fact that there are no elements of norm ±3. This is because a2 − 10b2 = ±3 has no integer
solutions. The easiest way to see this is the reduce this equation modulo 5 to get a2 ≡ ±3
(mod 5), which has no solutions. (You could so something similar if you reduce modulo 10.)
We see that 3 is not associate to either 1 +

√
10 or 1−

√
10 by taking the quotient in Q(

√
10)

and seeing that it is not in Z[
√

10]. Several people tried to say that the only units in Z[
√

10]
are ±1, but this is not true! This ring has infinitely many units. For example, 3 −

√
10 has

norm −1, so it is a unit.

Finally, a few people tried to show that there are no elements of norm ±2, which implies that
2 is irreducible (and gives a different argument that

√
10 is irreducible. The easiest way to

show that this is true is to take the equation a2 − 10b2 = ±2 modulo 5 or modulo 10 and see
that is has no solutions.
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