Math 2A Single Variable Calculus Homework Questions Chapter 1

1 Functions and Models

1.1 Four Ways to Represent a Function

1. Temperature readings T (in °F) were recorded every two hours from midnight to 2pm. Time t was measured in hours from midnight.

t	0	2	4	6	8	10	12	14
Т	82	75	74	75	84	90	93	94

- (a) Use the readings to sketch a rough graph of *T* as a function of *t*.
- (b) Use your graph to estimate the temperature at 9pm.
- 2. A spherical baloon with radius *r* inches has volume $V(r) = \frac{4}{3}\pi r^3$. Find a function that represents the amount of air required to inflate the baloon from a radius of *r* inches to a radius of r + 1 inches.
- 3. Find the domain of the function $f(x) = \frac{x+4}{x^2-9}$.
- 4. Find the domain of the function $f(x) = \frac{2x^3-5}{x^2+x-6}$.
- 5. Find the domain of the function $f(u) = \frac{u+1}{1+\frac{1}{u+1}}$.
- 6. Find the domain and sketch the graph of the function

$$f(x) = \begin{cases} 3 - \frac{1}{2}x & \text{if } x \le 2, \\ 2x - 5 & \text{if } x > 2. \end{cases}$$

7. Find the domain and sketch the graph of the function

$$f(x) = \begin{cases} x+9 & \text{if } x < -3, \\ -2x & \text{if } |x| \le 3, \\ -6 & \text{if } x > 3. \end{cases}$$

- 8. A box (without lid) is to be made by cutting squares of side-length *x*in from the corners of a piece of card which is 12in by 20in and folding up the edges. Find the volume *V* of the box as a function of *x*.
- 9. A cell phone plan has a basic charge of \$35 per month and includes 400 free minutes and charges 10 cents per additional minute. Find and graph the monthly cost of the plan *C* as a function of the number of used minutes x for $0 \le x \le 600$.

1.2 Mathematical Models: A Catalog of Essential Functions

- 1. What do all members of the family of linear functions f(x) = 1 + m(x+3) have in common? Sketch several members of the family.
- 2. The average surface temperature of the earth is modeled by T = 0.02t + 8.50 where *T* is the temperature in °C and *t* represents years since 1900.
 - (a) What do the slope and *T*-intercept represent?
 - (b) Use the equation to predict the average global surface temperature in 2100.
- 3. The relationship between the Fahrenheit (*F*) and Celcius (*C*) temperature scales is given by the linear function $F = \frac{9}{5}C + 32$.
 - (a) Sketch a graph of this function.
 - (b) What is the slope of the graph and what does it represent? What is the *F*-intercept and what does it represent?
- 4. Many physical quantities are connected by *inverse square laws*, that is, by power functions of the form $f(x) = kx^{-2}$, where k is constant. I.e. the illumination of an object by a light source is inversely poroportional to the square of the distance from the source. Imagine after dark you are reading a book illuminated by a single light which is too dim. You move halfway towards the light. How much brighter is the lamp?
- 5. Ecologists have modeled the species-of-bat-per-unit-area relationship with a power function $S = 0.7A^{0.3}$, where *S* is the number of species living in an area *A*.
 - (a) If a cave has area $60m^2$, how many species would you expect to find in the cave?
 - (b) If only four species of bat live in a cave, estimate the area of the cave.

1.3 New Functions from Old Functions

- 1. Graph the function $y = (x 1)^3$ by transforming the graph of a standard function.
- 2. Graph the function $y = 4 \sin 3x$ by transforming the graph of a standard function.
- 3. Graph the function $y = 1 2\sqrt{x+3}$ by transforming the graph of a standard function.
- 4. A variable star has time between periods of maximum brightness of 5.4 days, average brightness 4.0 and the brightness varies by ± 0.35 magnitude. Find a function which models the brightness as a function of time.
- 5. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ and their domains for the following pairs of functions: f(x) = 1 3x, $g(x) = \cos x$.
- 6. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ and their domains for the following pairs of functions: $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$.
- 7. A spherical balloon is being inflated and the radius is increasing at a rate of 2cm/s.
 - (a) Express the radius *r* of the balloon as a function of the time *t* in seconds.
 - (b) If *V* is the volume of the balloon as a function of the radius, find $V \circ r$ and interpret it.

1.4/5 Exponential Functions

1. Use the law of Exponents to rewrite and simplify the expressions:

(a) $8^{4/3}$, (b) $x(3x^2)^3$.

- 2. Starting with the graph of $y = e^x$, find the equation of the graph that results from
 - (a) Reflecting about the line y = 4.
 - (b) Reflecting about the line x = 2.
- 3. Find the domain of each function:
 - (a) $g(t) = \sin(e^{-t})$, (b) $g(t) = \sqrt{1 2^t}$.

1.5/6 Inverse Functions and Logarithms

- 1. Is the function f(x) = 10 3x 1–1? What about $g(x) = \cos x$? Justify your answers.
- 2. If $f(x) = x^5 + x^3 + x$, find $f^{-1}(3)$ and $f(f^{-1}(2))$.
- 3. Find a formula for the inverse of the function $f(x) = \frac{4x-1}{2x+3}$.
- 4. Find the exact values of the expressions

(a) $e^{-2\ln 5}$, (b) $\ln(\ln(e^{e^{10}}))$.

5. When a camera flash goes off, the batteries immediately begin to recharge the flash's capacitor, which stores charge given by

$$Q(t) = Q_0(1 - e^{-t/a}).$$

(The maximum charge capacity is Q_0 and t is measured in seconds.)

- (a) Find the inverse of this function and explain its meaning.
- (b) How long does it take to recharge the capacitor to 90% of capacity if a = 2?
- 6. Simplify the expression $\cos(2\tan^{-1} x)$.