Math 2A Single Variable Calculus Homework Questions 3

3.1 Derivatives of Polynomials and Exponential Functions

- 1. Differentiate $f(x) = \pi^2$.
- 2. Differentiate h(x) = (x 2)(2x + 3).
- 3. Differentiate $y = x^{5/3} x^{2/3}$.
- 4. Differentiate $v = \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^2$.
- 5. Differentiate $y = \sqrt[4]{t} 4e^t$.
- 6. Differentiate $k(r) = e^r + r^e$.
- 7. Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure *P* of the gas is inversely proportional to the volume *V* of the gas.
 - (a) Suppose that the pressure of a sample that occupies 0.106 m^3 at 25°C is 50 kPa. Write *V* as a function of *P*.
 - (b) Calculate $\frac{dV}{dP}$ when P = 50 kPa. WHat is the meaning of the derivative? What are its units?
- 8. Find the *n*th derivative of each function by calculating the first few derivatives and observing the pattern that occurs:

(a)
$$f(x) = x^n$$
, (b) $f(x) = \frac{1}{x}$.

3.2 The Product and Quotient Rules

- 1. Find the derivative of $f(x) = (1 + 2x^2)(x x^2)$ in two ways: via the Product Rule and by multiplying out first. Do your answers agree?
- 2. Differentiate $F(y) = \left(\frac{1}{y^2} \frac{3}{y^4}\right)(y+5y^3).$
- 3. Differentiate $J(v) = (v^3 2v)(v^{-4} + v^{-2})$.
- 4. Differentiate $y = \frac{t}{(t-1)^2}$.
- 5. Differentiate $y = A + \frac{B}{x} + \frac{C}{x^2}$.
- 6. Differentiate $f(x) = \frac{ax+b}{cx+d}$.
- 7. Find an equation for the tangent line to the curve $y = \frac{2x}{x+1}$ at (1,1).
- 8. If $g(x) = \frac{x}{e^x}$, find $g^{(n)}(x)$.
- 9. The curve $y = x/(1 + x^2)$ is called a *serpentine*.

(a) Find an equation of the tangent line at the point (3, 0.3).

- (b) Illustrate part (a) by graphing the curve and the tangent line.
- 10. A manufacturer produces bolts of a fabric with a fixed width. The quantity q of this fabric (in yards) that is sold is a function of the selling price p (in dollars per yard), so we can write q = f(p). The total revenue earned is then R(p) = pf(p).
 - (a) What does it mean to say that f(20) = 10,000 and f'(20) = -350?
 - (b) Assuming the values in part (a), find R'(20) and interpret your answer.
- 11. At what numbers is the following function differentiable?

$$g(x) = \begin{cases} 2x & \text{if } x \le 0, \\ 2x - x^2 & \text{if } 0 < x < 2, \\ 2 - x & \text{if } x \ge 2. \end{cases}$$

Give a formula for g' and sketch the graphs of g and g'.

12. Sketch the parabolas $y = x^2$ and $y = x^2 - 2x + 2$. Do you think there is a line that is tangent to both curves? If so, find its equation. If not, why not?

3.3 Derivatives of Trigonometric Functions

- 1. Differentiate $y = 2 \sec x \csc x$.
- 2. Differentiate $y = u(a \cos u + b \cot u)$.

3. Differentiate
$$y = \frac{\cos x}{1 - \sin x}$$

- 4. Prove that $\frac{d}{dx} \sec x = \sec x \tan x$.
- 5. Find an equation of the tangent line to the curve $y = (1 + x) \cos x$ at (0,1).
- 6. (a) Find an equation of the tangent line to the curve $y = 3x + 6 \cos x$ at the point $(\pi/3, \pi + 3)$.
 - (b) Illustrate part (a) by graphing the curve and the tangent line.
- 7. Find the points on the curve $y = \frac{\cos x}{2 + \sin x}$ at which the tangent is horizontal.
- 8. A mass on a spring vibrates horizontally on a smooth level surface with equation of motion $x(t) = 8 \sin t$ where t is in seconds and x (in cm) is the distance of the mass to the right of its equilibrium point.
 - (a) Find the velocity and acceleration at time *t*.
 - (b) Find the position, velocity and acceleration of the mass at time $t = 2\pi/3$. In what direction is it moving at that time?
- 9. Find the derivative $\frac{d^{35}}{dx^{35}}(x \sin x)$ by calculating the first few derivatives and observing the pattern.

10. A semicircle with diameter *PQ* sits on an isosceles triangle *PQR* to form an ice-cream cone shape. If $A(\theta)$ is the area of the upper semicircle and $B(\theta)$ is the area of the triangle, find

$$\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$$

11. (HARD!) The figure shows an arc of length *s* and a chord of length *d* both subtended by a central angle θ . Find

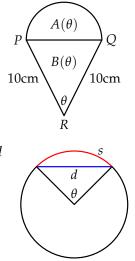
$$\lim_{\theta\to 0^+}\frac{s}{d}.$$

12. Let
$$f(x) = \frac{x}{\sqrt{1 - \cos 2x}}$$

- (a) Graph *f*. What type of discontinuity does it appear to have at 0?
- (b) Calculate the left and right limits of *f* at 0. Do these values confirm your answer to part (a)?

3.4 The Chain Rule

- 1. Let $y = sin(\cot x)$. Write *y* in the form f(g(x)) and find the derivative $\frac{dy}{dx}$.
- 2. Find the derivative of $F(x) = (4x x^2)^{100}$.
- 3. Find the derivative of $f(t) = \sqrt[3]{1 + \tan t}$.
- 4. Find the derivative of $F(t) = (3t 1)^4 (2t + 1)^{-3}$.
- 5. Find the derivative of $y = \frac{\cos \pi x}{\sin \pi x + \cos \pi x}$.
- 6. Find the derivative of $F(v) = \left(\frac{v}{v^3 + 1}\right)^6$.
- 7. Find the derivative of $y = \sin(\sin(\sin x))$.
- 8. Find the first and second derivative of $y = \cos^2 x$.
- 9. The function $f(x) = \sin(x + \sin 2x)$, $0 \le x \le \pi$ arises in applications to frequency modulation synthesis. Calculate f' and graph it along with f using a computer or calculator.
- 10. Air is pumped into a spherical weather balloon. At time *t* the volume of the balloon is V(t) and its radius is r(t).
 - (a) What do the derivatives $\frac{dV}{dr}$ and $\frac{dV}{dt}$ represent?
 - (b) Express $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$.



- 11. Suppose y = f(x) is a curve that always lies above the *x*-axis and never has a horizontal tangent and where *f* is differentiable everywhere. For what value of *y* is the rate of change of y^5 with respect to *x* eighty times the rate of change of *y* with respect to *x*?
- 12. Use the chain rule to show that if θ is measured in degrees, then

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\sin\theta = \frac{\pi}{180}\cos\theta.$$

(This explains why we use *radians* in calculus and not degrees!)

3.5 Implicit Differentiation

- 1. Find $\frac{dy}{dx}$ by implicit differentiation if $2\sqrt{x} + \sqrt{y} = 3$.
- 2. Find $\frac{dy}{dx}$ by implicit differentiation if $2x^3 + x^2y xy^3 = 2$.
- 3. Find $\frac{dy}{dx}$ by implicit differentiation if $\cos(xy) = 1 + \sin y$.
- 4. Find $\frac{dy}{dx}$ by implicit differentiation if $x \sin y + y \sin x = 1$.
- 5. If $g(x) + x \sin g(x) = x^2$, find g'(0).
- 6. Use implicit differentiation to find an equation of the tangent line to the hyperbola $x^2 + 2xy y^2 + x = 2$ at the point (1,2).
- 7. Use implicit differentiation to find an equation of the tangent line to the asteroid $x^{2/3} + y^{2/3} = 4$ at the point $(-3\sqrt{3}, 1)$.
- 8. The curve with equation $y^2 = x^3 + 3x^2$ is called the *Tschirnhausen cubic*.
 - (a) Find an equation for the tangent line to the curve at the point (1, -2).
 - (b) At what points does this curve have horizontal tangents?
 - (c) Illustrate parts (a) and (b) in a single plot.
- 9. Show by implicit differentiation that the tangent line to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point (x_0, y_0) is

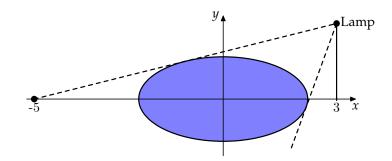
$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y = 1.$$

- 10. Show that the sum of the *x* and *y*-intercepts of any tangent line to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is equal to *c*.
- 11. The *van der Waals equation* for *n* moles of a gas is

$$\left(P+\frac{n^2a}{V^2}\right)(V-nb)=nRT,$$

where *P* is the pressure, *V* is the volume, and *T* is the temperature of the gas. The constant *R* is the universal gas constant and *a*, *b* are positive constants that are characteristics of a particular gas.

- (a) If *T* remains constant, use implicit differentiation to find $\frac{dV}{dP}$.
- (b) Find the rate of change of volume with respect to pressure of 1 mole of carbon dioxide at a volume of V = 10L and a pressure of P = 2.5 atm. Use a = 3.592L²-atm/mole² and b = 0.04267L/mole.
- 12. A lamp is located at the point (3, h), three units to the right of the *y*-axis and a shadow is created by the elliptical region $x^2 + 4y^2 \le 5$. If the point (-5, 0) is on the edge of the shadow, how far above the *x*-axis is the lamp located?



3.6 Derivatives of Logarithmic Functions

1–4 Differentiate the following functions:

1.
$$f(x) = \ln(\sin^2 x)$$

$$2. f(u) = \frac{u}{1+\ln u}.$$

3.
$$g(r) = r^2 \ln(2r+1)$$
.

4. $y = \log_2(e^{-x} \cos \pi x)$.

5. If
$$y = \frac{\ln x}{x^2}$$
, find y' and y'' .

- 6. Find an equation for the tangent line to the curve $y = x^2 \ln x$ at the point (1,0).
- 7. Let $f(x) = \log_a(3x^2 2)$. For what value of *a* is f'(1) = 3?
- 8–11 Use logarithmic differentiation to compute the derivatives of the following functions:

8.
$$y = \frac{e^{-x} \cos^2 x}{x^2 + x + 1}$$
.
9. $y = \frac{(x+2)^{1/2} (x^2 + 1)^{1/3}}{(x^3 + 7)^{1/5}}$
10. $y = x^{\cos x}$.
11. $y = (\ln x)^{\cos x}$.

3.8 Exponential Growth and Decay

- 1. A bacteria culture grows with constant relative growth rate. The bacteria count was 400 after 2 hours and 25,600 after 6 hours.
 - (a) What is the relative growth rate? Express your answer as a percentage.
 - (b) What was the initial size of the culture?
 - (c) Find an expression for the number of bacteria after *t* hours.
 - (d) Find the number of cells after 4.5 hours.
 - (e) Find the rate of growth after 4.5 hours.
 - (f) When will the population reach 50,000?
- 2. A sample of tritium-3 decayed to 94.5% of its original amount after a year.
 - (a) What is the half-life of tritium-3?
 - (b) How long would it take the sample to decay to 20% of its original amount?
- 3. A curve passes through the point (0,5) and has the property that the slope of the curve at every point *P* is twice the *y*-coordinate of *P*. What is the equation of the curve?
- 4. A freshly brewed cup of coffee has temperature 95°C in a 20°C room. When its temperature is 70°C, it is cooling at a rate of 1°C per minute. When does this occur?

3.9 Related Rates

- 1. A particle is moving along a hyperbola xy = 8. As it reaches the point (4,2), the *y*-coordinate is decreasing at a rate of 3 cm/s. How fast is the *x*-coordinate of the point changing at that instant?
- 2. If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, find the rate at which the diameter decreases when the diameter is 10 cm.
- 3. At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4 pm?
- 4. A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 12 ft³/min, how fast is the water level rising with the water is 6 inches deep?
- 5. Gravel is being dumped from a conveyor belt at a rate of 30 ft³/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high?
- 6. If two resistors with resistances R_1 and R_2 are connected in parallel, then the total resistance R measured in ohms (Ω), is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

If R_1 and R_2 are increasing at rates of 0.3 Ω /s and 0.2 Ω /s respectively, how fast is *R* changing when $R_1 = 80 \Omega$ and $R_2 = 100 \Omega$?

- 7. Brain weight *B* as a function of body weight *W* in fish has been modeled by the power function $B = 0.007W^{2/3}$, where *B* and *W* are measured in grams. A model for body weight as a function of body length *L* (in cm) is $W = 0.12L^{2.53}$. If, over 10 million years, the average length of a certain species of fish evolved from 15 cm to 20 cm at a constant rate, how fast was this species' brain growing when the average length was 18 cm?
- 8. (HARD!) The minute hand on a watch is 8 mm long and the hour hand is 4 mm long. How fast is the distance between the tips of the hands changing at one o'clock?

3.10 Linear Approximations and Differentials

- 1. Find the linearization of $f(x) = \sin x$ at $x = \pi/6$.
- 2. Find the linearization of $f(x) = x^{3/4}$ at x = 16.
- 3. Find the differential of

(a)
$$y = \frac{s}{1+2s'}$$
 (b) $y = u \cos u$.

- 4. Let $y = \cos \pi x$. Find the differential dy and evaluate it when $x = \frac{1}{3}$ and dx = -0.02.
- 5. Let $y = \frac{x+1}{x-1}$. Find the differential dy and evaluate it when x = 2 and dx = 0.05.
- 6. Use a linear approximation (or differentials) to estimate the number 1/4.002.
- 7. Use a linear approximation (or differentials) to estimate the number $\sqrt{99.8}$.
- 8. The radius of a circular disk is given as 24 cm with a maximum error in measurement of 0.2 cm.
 - (a) Use differentials to estimate the maximum error in the calculated area of the disk.
 - (b) What is the relative error? What is the percentage error?
- 9. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 m.