1 Functions and Models

No questions from ch 1 in final. Just for review: all this should be familiar. If not, study!

1.1 Four Ways to Represent a Function

Interval notation Should be familiar with notation for different types of interval. All intervals are subsets of the real numbers $\mathbb{R}=(-\infty, \infty)$. For example:

Open: $(-3,5)=\{x \in \mathbb{R}:-3<x<5\}$. All numbers strictly between -3 and 5 .
Closed: $[-3,5]=\{x \in \mathbb{R}:-3 \leq x \leq 5\}$. All numbers between and including -3 and 5 .
Half-open: $[-3,5)=\{x \in \mathbb{R}:-3 \leq x<5\}$. Includes one but not the other endpoint. Could also have $(-3,5]$.

We use the union symbol \cup to join together two or more intervals to make a larger set: e.g.

$$
(1,3) \cup[7,9)=\{x \in \mathbb{R}: 1<x<3 \text { or } 7 \leq x<9\}
$$

Definition. A function f is a rule that assigns to each element x in a set D exactly one element $f(x)$ in a set E.

The domain of f is the set D
The range of f is a subset of E consisting of the values attained by applying f to all of the values in the domain:

$$
\operatorname{range}(f)=\{f(x): x \in D\} \subseteq E
$$

x is the independent variable
$y=f(x)$ is the dependent variable
In this class, both domain and range will always be subsets of the real numbers \mathbb{R}.
Representations We may describe a function in several ways:

1. Verbally E.g. 'Take the integer part'
2. Numerically Give a table of values
3. Visually Draw a graph
4. Algebraically $f(x)=\lfloor x\rfloor$

Should be able to convert between these descriptions and find domains of functions from formulas and graphs.

Example The function $f(x)=\sqrt{x^{2}-4}$ has domain $(-\infty,-2] \cup[2, \infty)$.

Vertical Line test A curve in the $x y$-plane is the graph of a function if and only if each vertical line intersects the curve no more than once.

Piecewise functions Any function where multiple formuæ are required to describe the function. For example

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ 4-x & \text { if } x \geq 1\end{cases}
$$

Symmetry Let a be a positive real number and I be one of the symmetric intervals $(-a, a)$ or $[-a, a]$. We say that:

- f is even on I if, for all $x \in I$, we have $f(-x)=f(x)$.
- f is odd on I if, for all $x \in I$, we have $f(-x)=-f(x)$.

Increasing and Decreasing Functions

Definition. f is increasing on an interval I $i f$,
For all $x_{1}, x_{2} \in I$, we have that $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
Decreasing is similar: $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$.

Homework

1. Consider the function $f(x)=\frac{1}{x^{2}-1}$.
(a) Suppose that the domain of f is chosen to be the set of real numbers x for which the formula $f(x)$ is defined. What is the domain?
(b) Find all the intervals on which f is increasing or decreasing. Prove your assertions.
2. Suppose that f and g are both even functions.
(a) Decide whether the functions $f+g$ and $f g$ are even, odd or neither. Prove your assertions.
(b) Repeat part (a) in the situation that f and g are both odd.
(c) What if f is odd and g even?
