1.3 New Functions from Old Functions

Let f be a function whose graph is known, and let c be a positive constant. The following basic transformations of graphs should be familiar.

- $y=f(x) \pm c$: shifts graph up/down
- $y=f(x \mp c)$: shift graph left/right
- $y=c f(x)$: stretch vertically by a factor c
- $y=f(c x)$: compress horizontally by a factor c
- $y=-f(x)$: reflect in the x-axis
- $y=f(-x)$: reflect in the y-axis

For example $y=8(x-3)^{2}+4$ will have the same parabolic shape as $y=x^{2}$ but will be stretched vertically, shifted 3 to the right, and 4 up.

Composition of functions $f \circ g$: do g first, then f. For example, let $f(x)=\sqrt{x-4}$ and $g(x)=$ $x^{2}+3 x$, then

$$
f \circ g(x)=f(g(x))=f\left(x^{2}+3 x\right)=\sqrt{x^{2}+3 x-4}
$$

and

$$
g \circ f(x)=g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+3 \sqrt{x-4}=x-4+3 \sqrt{x-4}
$$

You should be able to check that the domains and ranges of these functions are

Function	Domain	Range
f	$[4, \infty)$	$[0, \infty)$
g	\mathbb{R}	$\left[-\frac{9}{4}, \infty\right)$
$f \circ g$	$(-\infty,-4] \cup[1, \infty)$	$[0, \infty)$
$g \circ f$	$[4, \infty)$	$[0, \infty)$

The domain of $f \circ g$ is probably the most difficult to see. Completing the square, we see that

$$
f \circ g(x)=\sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{25}{4}}
$$

Therefore

$$
\begin{aligned}
x \in \operatorname{dom}(f \circ g) & \Longleftrightarrow\left(x+\frac{3}{2}\right)^{2} \geq \frac{25}{4} \Longleftrightarrow\left|x+\frac{3}{2}\right| \geq \frac{5}{2} \\
& \Longleftrightarrow x+\frac{3}{2} \geq \frac{5}{2} \quad \text { or } \quad x+\frac{3}{2} \leq-\frac{5}{2} \\
& \Longleftrightarrow x \geq 1 \quad \text { or } \quad x \leq-4
\end{aligned}
$$

Homework

1. Let $f(x)=\sec x$ and $g(x)=\left(x^{2}-1\right)^{-1 / 2}$. Find $f \circ g, g \circ f$ and their domains. Simplify if you can.
2. Repeat the question for $f(x)=\sin x$. What is the problem?
