### 2.3 Calculating Limits Using the Limit Laws

Calculating limits by testing values of $x$ close to $a$ is tedious. The following Theorem essentially says that any 'nice' combination of functions has exactly the limit you'd expect.

Theorem. Suppose $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist and that $c$ is constant.
Then the following limits exist and may be computed.

1. $\lim _{x \rightarrow a} c=c$
2. $\lim _{x \rightarrow a} x=a$
3. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
6. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad\left(\right.$ provided $\left.\lim _{x \rightarrow a} g(x) \neq 0\right)$

The Theorem also hold for one-sided limits and, with a little care $\int^{1}$ for infinite limits. For example, if $\lim _{x \rightarrow 2} f(x)=-3$ and $\lim _{x \rightarrow 2} g(x)=-\infty$, then

$$
\lim _{x \rightarrow 2}[f(x)+g(x)]=-\infty \quad \text { and } \quad \lim _{x \rightarrow 2} f(x) g(x)=\infty
$$

Corollary. Suppose that $p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ is a polynomial, then $\lim _{x \rightarrow a} p(x)=p(a)$. Moreover, if $r$ is any rational function, and $a \in \operatorname{dom}(r)$, then $\lim _{x \rightarrow a} r(x)=f(a)$.

Proof. Simply calculate:

$$
\begin{align*}
\lim _{x \rightarrow a} p(x) & =\lim _{x \rightarrow a} c_{n} x^{n}+\cdots+c_{1} \lim _{x \rightarrow a} x+\lim _{x \rightarrow a} c_{0}  \tag{rule4}\\
& =c_{n} \lim _{x \rightarrow a} x^{n}+\cdots+c_{1} \lim _{x \rightarrow a} x+c_{0}  \tag{rule3}\\
& =c_{n} a^{n}+\cdots+c_{1} a+c_{0} \\
& =p(a)
\end{align*}
$$

$$
=c_{n} a^{n}+\cdots+c_{1} a+c_{0} \quad \quad \text { (rule } 5 \text { (repeatedly) and 2) }
$$

If $r$ is rational, then $r(x)=\frac{p(x)}{q(x)}$ for some polynomials $p, q$. Rule 6 now finished things off.

[^0]
## Examples

1. Suppose that $\lim _{x \rightarrow a} f(x)=3, \lim _{x \rightarrow a} g(x)=-1, \lim _{x \rightarrow a^{-}} h(x)=\infty$, and $\lim _{x \rightarrow a^{+}} h(x)=6$. Then

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)+3 g(x)=3+3(-1)=0 \\
& \lim _{x \rightarrow a^{-}} 2 f(x) g(x) h(x)=2 \cdot 3 \cdot(-1) \lim _{x \rightarrow a^{-}} h(x)=-\infty \\
& \lim _{x \rightarrow a^{+}} 2 f(x) g(x) h(x)=2 \cdot 3 \cdot(-1) \cdot 6=36 \\
& \lim _{x \rightarrow a^{-}} \frac{g(x)}{f(x) h(x)}=\frac{-1}{3 \lim _{x \rightarrow a^{-}} h(x)}=0 \\
& \lim _{x \rightarrow a^{+}} \frac{g(x)}{f(x) h(x)}=\frac{-1}{3 \cdot 6}=-\frac{1}{18}
\end{aligned}
$$

2. Simple evaluation: $\lim _{x \rightarrow 1} \frac{x^{3}+2 x^{2}-x-1}{4 x^{2}-1}=\frac{1+2-1-1}{4-1}=\frac{1}{3}$
3. Factorizing: $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-7 x+10}{x^{2}-4 x+4}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x-5)}{(x-2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{x-5}{x-2}=-3 \lim _{x \rightarrow 2^{-}} \frac{1}{x-2}=\infty$

## Roots and Rationalizing

Theorem. $\lim _{x \rightarrow a} f(x)=L \Longrightarrow \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{L}$
Recall how you would convert an expression with surds in the denominator into one with surds in the numerator:

$$
\frac{4}{3+\sqrt{5}}=\frac{4}{3+\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3-\sqrt{5}}=\frac{4(3-\sqrt{5})}{9-5}=3-\sqrt{5}
$$

A similar approach can be used for limits.

## Examples

1. $\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ yields the indeterminate form $\frac{0}{0}$. Multiplying by $1=\frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}}=1$ fixes the problem:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} \cdot \frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}} \\
& =\lim _{x \rightarrow 0} \frac{x+3-3}{x(\sqrt{x+3}+\sqrt{3})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+3}+\sqrt{3}}=\frac{1}{2 \sqrt{3}}
\end{aligned}
$$

2. $\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-5}{x-4}=\frac{4}{5}$

## Comparing Limits and the Squeeze Theorem

While simple limits can be computed using the basic limit laws, more complicated functions are often best treated by comparison.
Theorem. Suppose that $f(x) \leq g(x)$ for all $x \neq a$ and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Theorem (Squeeze Theorem). Suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \neq a$, and that $\lim _{x \rightarrow a} f(x)=$ $\lim _{x \rightarrow a} h(x)=$ L. Then $\lim _{x \rightarrow a} g(x)$ exists and also equals $L$.


Example In this example we compare the complicated function $g(x)=x \sin \left(\frac{1}{x^{2}}\right)$ with the much simpler function $f(x)=|x|$. Since $-1 \leq \sin \left(\frac{1}{x^{2}}\right) \leq 1$ for all $x \neq 0$, we have that

$$
-|x| \leq x \sin \left(\frac{1}{x^{2}}\right) \leq|x|
$$

Since $\lim _{x \rightarrow 0}|x|=0$ it follows that

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x^{2}}\right)=0
$$



## Homework

1. (a) Prove that $x-y=\left(x^{1 / 3}-y^{1 / 3}\right)\left(x^{2 / 3}+x^{1 / 3} y^{1 / 3}+y^{2 / 3}\right)$.
(b) Hence or otherwise compute the limit $\lim _{x \rightarrow 8} \frac{\sqrt[3]{x}-2}{x-8}$
2. Suppose that $f(x)<g(x)$ for all $x \neq a$ and that limits of $f$ and $g$ both exist at $x=a$. Give an example which shows that we may only conclude that $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$. That is, the inequality need not be strict.
3. Show that $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$ exists and compute it.

[^0]:    ${ }^{1}$ If you end up with an indeterminate form $\frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty$, etc., then the rules don't apply. We will deal with these limits later using l'Hôpital's Rule.

