## 2.4 The Precise Definition of a Limit (Optional & Non-examinable!)

In our earlier definition of limit we did not explain what the terms 'approaches' or 'arbitrarily close' mean. The concept of arbitrarily close in mathematics works something like a game. To say that one can find a number arbitrarily close to *L*, one must be able to give an example when told:

"Give a number closer to *L* than a distance  $\varepsilon$ "

*regardless* of how small a distance  $\varepsilon$  is given.

The idea of a limit  $\lim_{x\to a} f(x) = L$  is that one can *force* the distance between f(x) and L to be as small as one likes by *choosing* the distance between x and a to be small enough.

**Definition.** Suppose f is a function defined on an interval containing x = a, but not necessarily at a. We say that f has limit L as x approaches a if:

For all  $\varepsilon > 0$  there is some  $\delta > 0$  such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \tag{(†)}$$

$$\lim_{x \to a} f(x) = L$$

Regardless of the  $\varepsilon$  we are given, we can find some  $\delta$  which satisfies (†)

It is usually very difficult to find an explicit formula for a suitable  $\delta$  in terms of  $\varepsilon$ : the Definition is instead used to *prove* a few basic examples and all of the limit laws and theorems from previous sections.<sup>1</sup>

**Example** We *prove* that  $\lim_{x\to 2} x^2 = 4$ . Let  $\varepsilon > 0$  be given, and define  $\delta = \min(\frac{\varepsilon}{3}, 1)$ . If  $0 < |x - 2| < \delta$ , then  $|x - 2| < 1 \implies x + 2 < 3$ , and so

$$|x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2| < \delta \cdot 3 \le \varepsilon.$$

and so  $\lim_{x \to 0} x^2 = 4$ .

How did we come up with the choice of  $\delta = \min(\frac{\varepsilon}{3}, 1)$ ? Scratch-work and creativity! Indeed it is far from the only suitable choice.

<sup>&</sup>lt;sup>1</sup>The details are covered in the first two weeks of an Upper Division Analysis course...

**No Limit** In this picture the left- and right-limits are different, hence there is no limit at x = a. How can we view this in terms of  $\varepsilon$  and  $\delta$ ?



 $\lim_{x \to a^{-}} f(x) = L$  says that *L* is the only possible candidate for the limit. Suppose we were given the indicated value  $\varepsilon$ . Regardless of our choice of  $\delta > 0$ , we will be able to find values of *x* (in the blue region) which satisfy both

 $0 < |x - a| < \delta$  and  $|f(x) - L| \ge \varepsilon$ 

The definition of limit does not hold for all  $\varepsilon > 0$ , and so the limit does not exist.

## Homework

1. Suppose that  $\lim_{x\to a} f(x) = L$ . That is, for all given  $\hat{\varepsilon} > 0$ , there is some  $\delta > 0$  for which

$$0 < |x-a| < \delta \implies |f(x) - L| < \hat{\varepsilon}.$$

Let  $c \neq 0$  be constant and assume that  $\varepsilon > 0$  is given. Show that there exists  $\delta > 0$  for which

$$0 < |x-a| < \delta \implies |cf(x) - cL| < \varepsilon.$$

This proves that  $\lim_{x \to a} cf(x) = cL$ . The other limit laws are proved similarly.