2.4 The Precise Definition of a Limit (Optional \& Non-examinable!)

In our earlier definition of limit we did not explain what the terms 'approaches' or 'arbitrarily close' mean. The concept of arbitrarily close in mathematics works something like a game. To say that one can find a number arbitrarily close to L, one must be able to give an example when told:
"Give a number closer to L than a distance ε "
regardless of how small a distance ε is given.
The idea of a limit $\lim _{x \rightarrow a} f(x)=L$ is that one can force the distance between $f(x)$ and L to be as small as one likes by choosing the distance between x and a to be small enough.

Definition. Suppose f is a function defined on an interval containing $x=a$, but not necessarily at a. We say that f has limit L as x approaches a if:
For all $\varepsilon>0$ there is some $\delta>0$ such that

$$
\begin{equation*}
0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon \tag{†}
\end{equation*}
$$

 $\lim _{x \rightarrow a} f(x)=L$ Regardless of the ε we are given, we can find some δ which satisfies (\dagger)

It is usually very difficult to find an explicit formula for a suitable δ in terms of ε : the Definition is instead used to prove a few basic examples and all of the limit laws and theorems from previous sections ${ }^{1}$

Example We prove that $\lim _{x \rightarrow 2} x^{2}=4$.
Let $\varepsilon>0$ be given, and define $\delta=\min \left(\frac{\varepsilon}{3}, 1\right)$.
If $0<|x-2|<\delta$, then $|x-2|<1 \Longrightarrow x+2<3$, and so

$$
\left|x^{2}-4\right|=|(x-2)(x+2)|=|x-2||x+2|<\delta \cdot 3 \leq \varepsilon .
$$

and so $\lim _{x \rightarrow 2} x^{2}=4$.
How did we come up with the choice of $\delta=\min \left(\frac{\varepsilon}{3}, 1\right)$? Scratch-work and creativity! Indeed it is far from the only suitable choice.

[^0]No Limit In this picture the left- and right-limits are different, hence there is no limit at $x=a$. How can we view this in terms of ε and δ ?

$\lim _{x \rightarrow a^{-}} f(x)=L$ says that L is the only possible candidate for the limit.
Suppose we were given the indicated value ε. Regardless of our choice of $\delta>0$, we will be able to find values of x (in the blue region) which satisfy both

$$
0<|x-a|<\delta \quad \text { and } \quad|f(x)-L| \geq \varepsilon
$$

The definition of limit does not hold for all $\varepsilon>0$, and so the limit does not exist.

Homework

1. Suppose that $\lim _{x \rightarrow a} f(x)=L$. That is, for all given $\hat{\varepsilon}>0$, there is some $\delta>0$ for which

$$
0<|x-a|<\delta \Longrightarrow|f(x)-L|<\hat{\varepsilon} .
$$

Let $c \neq 0$ be constant and assume that $\varepsilon>0$ is given. Show that there exists $\delta>0$ for which

$$
0<|x-a|<\delta \Longrightarrow|c f(x)-c L|<\varepsilon .
$$

This proves that $\lim _{x \rightarrow a} c f(x)=c L$. The other limit laws are proved similarly.

[^0]: ${ }^{1}$ The details are covered in the first two weeks of an Upper Division Analysis course...

