2.6 Limits at Infinity: Horizontal Asymptotes
We want to describe what happens to functions for very large x.

Definition. Suppose that f has domain including (a, co) for some a € R. We write

lim f(x) =

X—r 00

if, as x gets unboundedly larger, the values of f(x) get arbitrarily clos«ﬂ to L.
lim f(x) = L is defined similarly.
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The line y = L is a horizontal asymptote of y = f(x) if either
lim f(x) =L or xg@mf(x) =L

X—»00

A curve y = f(x) necessarily has none, one, or two horizontal asymptotes.

Limit Laws Most of the limit laws from Section 1.6 also apply to limits at infinity: for example,

provided all three limits exist,

lim (£(x) + g(x)) = lim f(x) + lim g(x)

X—00

Examples
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2. Dividing top and bottom by the highest power of x in

the denominator can help compute limits: ‘ ‘ ‘
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3. Square-roots are continuous, so we can take the limit
operator inside. ..
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IThe strict definition is non-examinable: For all € > 0 there exists N such that x > N = |f(x) —
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4. Cosine is continuous, therefore,
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Example 6 can cause difficulties: remember that v x2 = |x|, so, if x # 0 we have

x+2 x(14+1/x)
= —
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Infinite Limits at Infinity

Definition. Suppose that, as x gets unboundedly larger, so do the values of f(x). We writ(ﬂ

lim f(x) = oo
J}l_I}l;lo f(x) = —ocand x1_1>rE100f(x) = +oo are similar.
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For rational functions we can again use the procedure of dividing numerator and denominator

by the highest power of x in the denominator.

2 Again the strict definition is non-examinable: For all M > 0 there exists N > 0 such thatx > N = f(x) > M.
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It is easy to get confused when calculating with infinite limits, so take your time.

Example In the following, the right hand side is meaningless:

lim 3x — x2 # lim 3x — lim x*> = 00 —
X—r00 X—r00 X—r00

Instead we must factorize:

lim 3x — x? = lim (3 — x) = —co
X—>00 X—»00

since x increases and 3 — x descreases without bound.

Homework

1. (a) The hyperbolic tangent function is defined by tanhx = ¢

oo Find its horizontal asymp-
totes.

(b) Suppose that x > y. Prove that tanh x > tanhy (can you do this algebraically, that is without
using any derivatives?). Use this to help sketch the graph of tanh.

2. Sketch the graphs of y = e*’ and y =el/ **Check for horizontal asympototes.
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