2.6 Limits at Infinity: Horizontal Asymptotes

We want to describe what happens to functions for very large x.
Definition. Suppose that f has domain including (a, ∞) for some $a \in \mathbb{R}$. We write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, as x gets unboundedly larger, the values of $f(x)$ get arbitrarily clos \rrbracket to L.
$\lim _{x \rightarrow-\infty} f(x)=L$ is defined similarly.
The line $y=L$ is a horizontal asymptote of $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

A curve $y=f(x)$ necessarily has none, one, or two horizontal asymptotes.

Limit Laws Most of the limit laws from Section 1.6 also apply to limits at infinity: for example, provided all three limits exist,

$$
\lim _{x \rightarrow \infty}(f(x)+g(x))=\lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x)
$$

Examples

1. $f(x)=\frac{1}{x^{2}} \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$

More generally, $\frac{1}{x^{r}} \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$ for $r>0$
2. Dividing top and bottom by the highest power of x in the denominator can help compute limits:

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+3 x-1}{x^{3}+2 x^{2}+4} & =\lim _{x \rightarrow \pm \infty} \frac{2 x^{-1}+3 x^{-2}-x^{-3}}{1+2 x^{-1}+4 x^{-3}} \\
& =\frac{\lim _{x \rightarrow \pm \infty}\left(2 x^{-1}+3 x^{-2}-x^{-3}\right)}{\lim _{x \rightarrow \pm \infty}\left(1+2 x^{-1}+4 x^{-3}\right)} \\
& =0
\end{aligned}
$$

3. Square-roots are continuous, so we can take the limit operator inside...

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{4 x^{2}+1}}{\sqrt{x^{2}+9}} & =\sqrt{\lim _{x \rightarrow \pm \infty} \frac{4 x^{2}+1}{x^{2}+9}} \\
& =\sqrt{\frac{\lim _{x \rightarrow \pm \infty} 4+x^{-2}}{\lim _{x \rightarrow \pm \infty} 1+9 x^{-2}}}=\frac{\sqrt{4}}{\sqrt{1}}=2
\end{aligned}
$$

[^0]
Examples

4. Cosine is continuous, therefore,

$$
\begin{aligned}
=\lim _{x \rightarrow \pm \infty} \cos \left(\frac{1}{x}\right) & =\cos \left(\lim _{x \rightarrow \pm \infty} \frac{1}{x}\right) \\
& =\cos 0=1
\end{aligned}
$$

5. $f(x)=\frac{x^{2}-1}{2 x^{2}-2 x-12}=\frac{(x+1)(x-1)}{2(x-3)(x+2)}$ has one horizontal and two vertical asymptotes:

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{x^{2}-1}{2 x^{2}-2 x-12}=\frac{1}{2} \\
& \lim _{x \rightarrow-2^{ \pm}} \frac{x^{2}-1}{2 x^{2}-2 x-12}=\mp \infty \\
& \lim _{x \rightarrow 3^{ \pm}} \frac{x^{2}-1}{2 x^{2}-2 x-12}= \pm \infty
\end{aligned}
$$

6. $f(x)=\frac{x+2}{\sqrt{4 x^{2}+3 x-1}}=\frac{x+2}{\sqrt{(4 x-1)(x+1)}}$ has two horizontal and two vertical asymptotes:

$$
\begin{array}{lr}
\lim _{x \rightarrow \infty} f(x)=\frac{1}{2} & \lim _{x \rightarrow-\infty} f(x)=-\frac{1}{2} \\
\lim _{x \rightarrow-1^{-}} f(x)=\infty & \lim _{x \rightarrow \frac{1}{4}^{+}} f(x)=\infty
\end{array}
$$

Example 6 can cause difficulties: remember that $\sqrt{x^{2}}=|x|$, so, if $x \neq 0$ we have

$$
\frac{x+2}{\sqrt{4 x^{2}+3 x-1}}=\frac{x(1+1 / x)}{|x| \sqrt{4+3 / x-1 / x^{2}}} \Longrightarrow \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{x}{|x| \sqrt{4}}= \pm \frac{1}{2}
$$

Infinite Limits at Infinity

Definition. Suppose that, as x gets unboundedly larger, so do the values of $f(x)$. We writ \int^{2}

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

$\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x)= \pm \infty$ are similar.
For rational functions we can again use the procedure of dividing numerator and denominator by the highest power of x in the denominator.

[^1]Example $\lim _{x \rightarrow-\infty} \frac{x^{2}-x}{2 x+1}=\frac{\lim _{x \rightarrow-\infty}\left(x-x^{-1}\right)}{\lim _{x \rightarrow-\infty}\left(2+x^{-1}\right)}=\frac{-\infty}{2}=-\infty$.
It is easy to get confused when calculating with infinite limits, so take your time.
Example In the following, the right hand side is meaningless:
$\lim _{x \rightarrow \infty} 3 x-x^{2} \neq \lim _{x \rightarrow \infty} 3 x-\lim _{x \rightarrow \infty} x^{2}=\infty-\infty$
Instead we must factorize:

$$
\lim _{x \rightarrow \infty} 3 x-x^{2}=\lim _{x \rightarrow \infty} x(3-x)=-\infty
$$

since x increases and $3-x$ descreases without bound.

Homework

1. (a) The hyperbolic tangent function is defined by $\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$. Find its horizontal asymptotes.
(b) Suppose that $x>y$. Prove that $\tanh x>\tanh y$ (can you do this algebraically, that is without using any derivatives?). Use this to help sketch the graph of tanh.
2. Sketch the graphs of $y=e^{x^{2}}$ and $y=e^{1 / x^{2}}$. Check for horizontal asympototes.

[^0]: ${ }^{1}$ The strict definition is non-examinable: For all $\varepsilon>0$ there exists N such that $x>N \Longrightarrow|f(x)-L|<\varepsilon$.

[^1]: ${ }^{2}$ Again the strict definition is non-examinable: For all $M>0$ there exists $N>0$ such that $x>N \Longrightarrow f(x)>M$.

