2.7 Derivatives and Rates of Change

Differentiation is the process of calculating and analyzing the rate of change of a function. By looking at a graph, we can say qualitative things about the rate of change of a function. For example in the picture, as x increases, the value of $f(x)=x^{3}-x$ is alternately increasing, decreasing, and increasing.

The question for a mathematician is how to quantify this? Before we do that, we need to agree what we mean by rate of change.

Definition. The rate of change of a function $f(x)$ at $x=a$ is the slope of the tangent line to the graph $y=f(x)$ at $x=a$, if such a tangent line exists.

Recall from Section 2.1 how we compute the tangent line at a point.
Example For $f(x)=x^{3}-x$ at $(1,0)$ we construct secant lines through $(1,0)$ and $\left(\hat{x}, \hat{x}^{3}-\hat{x}\right)$ and compute the limit of their slopes:

$$
\begin{aligned}
m_{\hat{x}} & =\frac{f(\hat{x})-f(1)}{\hat{x}-1}=\frac{\hat{x}^{3}-\hat{x}}{\hat{x}-1} \\
& =\frac{(\hat{x}-1)\left(\hat{x}^{2}+\hat{x}\right)}{\hat{x}-1} \\
& =\hat{x}^{2}+\hat{x} \\
\Longrightarrow m & =\lim _{\hat{x} \rightarrow 1} m_{\hat{x}}=2
\end{aligned}
$$

The rate of change of the function $f(x)=x^{3}-x$ at $x=1$ is therefore 2 .

Tangent Lines in the Abstract Given a general curve $y=f(x)$ we follow the same procedure.
Definition. The tangent line to the curve $y=f(x)$ at $(a, f(a))$ is
the line through $(a, f(a))$ with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

supposing the limit exists. The tangent line has equation

$$
y=m(x-a)+f(a)
$$

Often we think of $h=x-a$ as being important, and the definition becomes

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Since 'slope of the tangent line' is such a mouthful, we have a special term...

Definition 2.1. A function f is differentiable at $x=a$ if the above limits

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exist. If f is differentiable at $x=a$, then this limit is denoted $f^{\prime}(a)$ or $\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=a}$ and is termed the derivative of f at $x=a$.

Examples

1. If $f(x)=x^{2}$, then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} & =\lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
& =\lim _{h \rightarrow 0} 6+h=6
\end{aligned}
$$

hence f is differentiable at $x=3$ with derivative $f^{\prime}(3)=6$.
2. Show that the function $f(x)=\frac{3 x}{x^{2}+2}$ is differentiable at $x=1$, and compute the equation of its tangent line.

First compute the limit: a little algebraic simplifica- - 3 tion is required.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1} \frac{\frac{3 x}{x^{2}+2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{3 x-x^{2}-2}{(x-1)\left(x^{2}+2\right)} \\
& =\lim _{x \rightarrow 1} \frac{(2-x)(x-1)}{(x-1)\left(x^{2}+2\right)}=\lim _{x \rightarrow 1} \frac{2-x}{\left(x^{2}+2\right)}=\frac{1}{3}
\end{aligned}
$$

Thus f is differentiable at $x=1$ with derivative $f^{\prime}(1)=\frac{1}{3}$. The tangent line therefore has gradient $\frac{1}{3}$ and passes through the point $(1, f(1))=(1,1)$. Its equation is then

$$
y=m(x-1)+1=\frac{1}{3}(x-1)+1=\frac{1}{3}(x+2)
$$

We could alternatively have computed $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$.
Leibniz notation and rates of change The two most famous contributors to Calculus, Issac Newton and Gottfried Wilhelm Leibniz, had different notations for derivative. The $f^{\prime}(a)$ notation is a modification of Newton's approach ${ }^{1}$ while $\frac{\mathrm{d} f}{\mathrm{~d} x}$ is Leibniz's notation. The importance of Leibniz's notation is that it reminds us what derivatives are: rates of change of one quantity with respect to another. The units of a derivative should then be obvious in any situation. For example:

[^0]Velocity is the rate of change of position with respect to time. If a particle is at distance $s(t)$ from a fixed point at time t, then the average velocity of the particle between times $t=a$ and $t=b$ is

$$
v_{a v}=\frac{\text { distance }}{\text { time }}=\frac{s(b)-s(a)}{b-a}
$$

The instantaneous velocity at $t=a$ is the derivative

$$
v(a)=\left.\frac{\mathrm{d} s}{\mathrm{~d} t}\right|_{t=a}=\lim _{b \rightarrow a} \frac{s(b)-s(a)}{b-a}=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

The notation helps us get units right: velocity has units of distance divided by time, e.g. m/s, $\mathrm{mph}, \mathrm{ft} / \mathrm{s}$, miles/year, furlongs per fortnight, etc.

Electric Current is the rate of change of charge with respect to time. For example, suppose that the charge Q coulombs stored in a capacitor at time t seconds is

$$
Q(t)=10-\frac{10}{1+t}
$$

The current flow at $t=3$ seconds is then

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=\lim _{h \rightarrow 0} \frac{Q(3+h)-Q(3)}{h}=\frac{5}{8} \mathrm{C} / \mathrm{s} .
$$

This unit, coulombs per second, is usually called an ampere.

Marginal Profit (economics) Suppose that a tea seller selling $x \mathrm{lb}$ of tea makes $\$ p(x)$ profit.
If the tea seller is currently selling 100 lb of tea and intends to sell a small amount $\Delta x \mathrm{lb}$ more tea is sold, then the increase in profit will be

$$
\Delta p=p(100+\Delta x)-p(100)
$$

The instantaneous rate of change of p is the derivative:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta p}{\Delta x}=p^{\prime}(100)
$$

measured in dollars per pound. If, for instance, $p^{\prime}(100)=0.7 \$ / \mathrm{lb}$, then selling 101 lb of tea will yield approximately 70 cents more profit than selling 100 lb .

A Function with no Rate of Change Let $f(x)=|x-4|$. What happens if we try to differentiate this at $x=4$? We are obliged to calculate the limit

$$
\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

However,

$$
\frac{|h|}{h}= \begin{cases}1 & \text { if } h>0 \\ -1 & \text { if } h<0\end{cases}
$$

whence the left- and right-limits of $\frac{|h|}{h}$ are non-equal and the limit does not exist. If you think about why, the function $f(x)$ has a corner at $x=4$. Is the function still decreasing, or is it increasing, or neither? Hopefully, you agree that the very idea of rate of change makes no sense for this function at $x=4$: we say that f is not differentiable at $x=4$.

Homework

A company sells cellphone plans. The cost of data is priced dependent on how much you use: if you use x megabytes of data per month, the cost in dollars will be

$$
c(x)=x+10\left(1-\frac{1}{1+x^{2}}\right)
$$

1. What are the units of the rate of change $c^{\prime}(a)$?
2. Use the limit definition to compute the value of $c^{\prime}(a)$ for all positive values of a.
3. You should find that $c^{\prime}(a)>1$ for all $a>0$. Interpret what this means in terms of the cost of an additional megabyte of data.

[^0]: ${ }^{1}$ In fact Newton used a dot over a variable and always differentiated with respect to time, so if $y=f(t)$, the derivative of f with respect to t would be denoted \dot{y}.

