
2.8 The Derivative as a Function

Typically, we can find the derivative of a function f at many points of its domain:

Definition. Suppose that f is a function which is differentiable at every point x of an open interval (a, b). Its
derivative is the function

f ′(x) = lim
h→0

f (x + h)− f (x)
h

The domain of f ′ must include the interval (a, b).

A function and its derivative are drawn:

f is increasing ⇐⇒ f ′ > 0
f is decreasing ⇐⇒ f ′ < 0
f has a horizontal tangent line ⇐⇒ f ′ = 0

Example If f (x) = x3 − x, then its derivative is

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

[(x + h)3 − (x + h)]− [x3 − x]
h

= lim
h→0

[x3 + 3x2h + 3xh2 + h3 − x− h]− [x3 − x]
h

= lim
h→0

3x2h + 3xh2 + h3 − h
h

= lim
h→0

3x2 + 3xh + h2 − 1

= 3x2 − 1

The domains of both f and f ′ are the real line R. Note how the graphs
correspond: when f is increasing, the derivative is positive, when f is
decreasing, the derivative is negative.
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We may compute similarly for many other functions.1 You should draw the graphs of these: do the
graphs fit with your calculations?

1. f (x) = 1
x =⇒ f ′(x) = − 1

x2 both with domain R \ {0} = (−∞, 0) ∪ (0, ∞).

2. f (x) =
√

x =⇒ f ′(x) = 1
2
√

x . The former has dom( f ) = [0, ∞) while the latter has dom( f ′) =
(0, ∞).

3. Draw the graph of y = sin x. Sketch underneath the graph of its derivative, just by thinking
about when sin x is increasing and where it is decreasing. The new graph should look very
familiar. . .

1For now this means using the limit definition. Nice formulæ such as the power law will have to wait until after the
midterm. . .



Notation

If y = f (x) there are many notations for the derivative function:

f ′(x),
dy
dx

,
d f
dx

,
d

dx
f (x), y′, D f (x), Dx f (x)

The value of the derivative function at x = a is denoted

f ′(a),
dy
dx

∣∣∣∣
x=a

,
d f
dx

∣∣∣∣
x=a

, y′(a), D f (a), Dx f (a)

The symbol d
dx may be thought of as an operator: turning a function into its derivative.

For example, if y = f (x) =
√

x then we know that f ′(x) = 1
2
√

x . We could instead write dy
dx = 1

2
√

x , or
d

dx
√

x = 1
2
√

x . Moreover f ′(4) = 1
2
√

4
= 1

4 and d f
dx

∣∣∣
x=9

= 1
2
√

9
= 1

6 .

Higher Derivatives

We can differentiate derivatives! For example, the second derivative of f is the derivative of f ′: that is

f ′′(x) = lim
h→0

f ′(x + h)− f ′(x)
h

if the limit exists. Leibniz’s alternative notation for second derivatives reads as if one is squaring the
derivative operator:

d2 f
dx2 =

d
dx

d f
dx

=

(
d

dx

)2

f

This can help when trying to understand units. We can similarly compute higher order derivatives:

Third: f ′′′(x) =
d3 f
dx3

Fourth: f (4)(x) =
d4 f
dx4

Fifth: f (5)(x) =
d5 f
dx5

and so on. The bracket notation f (n)(x) is preferred for derivatives higher than third because of the
increased difficulty counting multiple prime symbols ′.

Example f (x) = 3x2 + 2x has f ′(x) = 6x + 2 and f ′′(x) = 6. Then f (n)(x) = 0 for all n ≥ 3.

Acceleration When s(t) is the distance traveled by a particle at time t, the derivative v(t) = s′(t) is
the particle’s velocity. The second derivative a(t) = s′′(t) = v′(t) is the acceleration of the particle.2

Units: remember that each differentiation appends a ‘per unit time’ to the units. Acceleration is
therefore measured as “distance-per-time-per-time:” for example,

m/s2 =ms−2 = meters per second per second
ft/hr2 =ft hr−2 = feet per hour per hour

2 In this context, the third derivative s′′′ is referred to as the jerk.



Example After t seconds, a ball has height s(t) = 1 + 20t− 4.9t2 meters.
Its velocity is v(t) = s′(t) = 20− 9.8t m/s.
Its acceleration is a(t) = s′′(t) = −9.8 m/s2. Note that this last is the gravitational constant.

What does a differentiable function look like? So much for calculating with limits. We want an
intuitive idea3 of what to expect from the graphs of differentiable and non-differentiable functions.
Similarly to how we understood the concept of continuity, we consider all the ways in which a func-
tion might fail to be differentiable. The most obvious way turns out to be related to continuity!

Theorem. If f is differentiable at x = a, then f is continuous at x = a.

Proof. Suppose that f differentiable at x = a. If x 6= a, then

f (x)− f (a) =
f (x)− f (a)

x− a
(x− a)

=⇒ lim
x→a

( f (x)− f (a)) = lim
x→a

f (x)− f (a)
x− a

· lim
x→a

(x− a) = f ′(a) · 0 = 0

Therefore f is continuous at a.

An equivalent statement of the Theorem is:

If f is discontinuous at x = a then f is non-differentiable at x = a.

Thus differentiable functions can be drawn without taking your pen off the page. The converse to
this is false however. It is possible for a function to be continuous but non-differentiable. For this to
happen, the limit lim

h→0

f (a+h)− f (a)
h cannot exist. There are two common possibilities.4

1. Corners For example f (x) = |x| is continuous at
x = 0. What about its derivative? If x 6= 0, the deriva-
tive is

f ′(x) =

{
1 x > 0
−1 x < 0

To find f ′(0) we would need to calculate

lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

which does not exist.
Therefore |x| is continuous at x = 0, but not differen-
tiable. −1

1f′
(x
)

−2 −1 1 2
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−2 −1 0 1 2
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3Similarly to how a continuous function should be drawable without taking your pen off the page.
4There are more esoteric examples, such as the blancmange curve which is continuous everywhere and differentiatiable

nowhere, but such things are well-beyond the scope of this course!

https://en.wikipedia.org/wiki/Blancmange_curve


2. Vertical tangents For example, f (x) = 3
√

x = x1/3

is continuous everywhere. If we want to search for a
derivative at x = 0 we must compute the limit

lim
h→0

f (h)− f (0)
h

= lim
h→0

h−2/3 = +∞

By computing limits we can see that

f ′(x) = lim
h→0

f (x + h)− f (x)
h

=
1

3x2/3

provided x 6= 0. Thus f is continuous at x = 0, but not
differentiable at x = 0: it has a vertical tangent line.
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Example: Choosing to make a function differentiable Find constants a, b such that

f (x) =

{
a + bx if x < 1
x2 if x ≥ 1

is differentiable for all x.

As the possible graphs of f show, to the left of x = 1 the
function is a straight line. Which choice of line will make the
function differentiable at x = 1?

2

4y

−1 0 1 2
x

We can answer this in words: firstly, a differentiable function must be continuous, so the straight line
we choose must pass through the point (1, f (1)) = (1, 1). Secondly, a differentiable function must
ave the same rate of change when calculated as a left- or a right-limit, whence the required straight
line must have the same slope as y = x2 as x = 1. Now we calculate:

Continuity at x = 1: We require

lim
x→1−

f (x) = lim
x→1+

f (x) = f (1) =⇒ a + b = 1

Any function f with a + b = 1 will have the straight line intersecting the parabola at (1, 1).

Differentiability at x = 1: We require

lim
h→0−

f (1 + h)− f (1)
h

= lim
h→0+

f (1 + h)− f (1)
h

=⇒ b = 2

Putting these together, we see that f is differentiable if and only if a = −1 and b = 2. Indeed its
derivative is

f ′(x) =

{
2 if x < 1
2x if x > 1



Homework

1. Compute all of the derivatives not explicitly found above: use the limit definition!

2. Let f (x) = x |x| =
{

x2 if x ≥ 0
−x2 if x < 0

(a) Calculate f ′(x) for f (x) = x |x|.
(b) What about f ′′(x)? For what values of x does this make sense?

(c) Can you guess a formula for a function which is twice-differentiable at every value of x but
not three-times differentiable everywhere? Compute its first, second and third derivatives.

3. The binomial theorem states that if n is a positive integer, then

(x + h)n =
n

∑
k=0

(
n
k

)
xkhn−k = xn + nxn−1h +

n(n− 1)
2

xn−2h2 + · · ·+ nxhn−1 + hn

where
(

n
k

)
=

n!
k!(n− k)!

is the binomial coefficient.

Use this to prove the power law for differentiation. If n is a positive integer, then

d
dx

xn = nxn−1
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