2.8 The Derivative as a Function

Typically, we can find the derivative of a function f at many points of its domain:
Definition. Suppose that f is a function which is differentiable at every point x of an open interval (a, b). Its derivative is the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The domain of f^{\prime} must include the interval (a, b).

A function and its derivative are drawn:
f is increasing $\Longleftrightarrow f^{\prime}>0$

f is decreasing $\Longleftrightarrow f^{\prime}<0$
f has a horizontal tangent line $\Longleftrightarrow f^{\prime}=0$

Example If $f(x)=x^{3}-x$, then its derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-(x+h)\right]-\left[x^{3}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x-h\right]-\left[x^{3}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1 \\
& =3 x^{2}-1
\end{aligned}
$$

The domains of both f and f^{\prime} are the real line \mathbb{R}. Note how the graphs correspond: when f is increasing, the derivative is positive, when f is decreasing, the derivative is negative.

We may compute similarly for many other functions 1 You should draw the graphs of these: do the graphs fit with your calculations?

1. $f(x)=\frac{1}{x} \Longrightarrow f^{\prime}(x)=-\frac{1}{x^{2}}$ both with domain $\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)$.
2. $f(x)=\sqrt{x} \Longrightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. The former has $\operatorname{dom}(f)=[0, \infty)$ while the latter has $\operatorname{dom}\left(f^{\prime}\right)=$ $(0, \infty)$.
3. Draw the graph of $y=\sin x$. Sketch underneath the graph of its derivative, just by thinking about when $\sin x$ is increasing and where it is decreasing. The new graph should look very familiar...
[^0]
Notation

If $y=f(x)$ there are many notations for the derivative function:

$$
f^{\prime}(x), \frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} f}{\mathrm{~d} x}, \frac{\mathrm{~d}}{\mathrm{~d} x} f(x), y^{\prime}, D f(x), D_{x} f(x)
$$

The value of the derivative function at $x=a$ is denoted

$$
f^{\prime}(a),\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=a},\left.\frac{\mathrm{~d} f}{\mathrm{~d} x}\right|_{x=a}, y^{\prime}(a), D f(a), D_{x} f(a)
$$

The symbol $\frac{\mathrm{d}}{\mathrm{d} x}$ may be thought of as an operator: turning a function into its derivative.
For example, if $y=f(x)=\sqrt{x}$ then we know that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. We could instead write $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$, or $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$. Moreover $f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$ and $\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=9}=\frac{1}{2 \sqrt{9}}=\frac{1}{6}$.

Higher Derivatives

We can differentiate derivatives! For example, the second derivative of f is the derivative of f^{\prime} : that is

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

if the limit exists. Leibniz's alternative notation for second derivatives reads as if one is squaring the derivative operator:

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\mathrm{~d} f}{\mathrm{~d} x}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} f
$$

This can help when trying to understand units. We can similarly compute higher order derivatives:
Third: $\quad f^{\prime \prime \prime}(x)=\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}$
Fourth: $\quad f^{(4)}(x)=\frac{\mathrm{d}^{4} f}{\mathrm{~d} x^{4}}$
Fifth: $\quad f^{(5)}(x)=\frac{\mathrm{d}^{5} f}{\mathrm{~d} x^{5}}$
and so on. The bracket notation $f^{(n)}(x)$ is preferred for derivatives higher than third because of the increased difficulty counting multiple prime symbols ${ }^{\prime}$.

Example $f(x)=3 x^{2}+2 x$ has $f^{\prime}(x)=6 x+2$ and $f^{\prime \prime}(x)=6$. Then $f^{(n)}(x)=0$ for all $n \geq 3$.
Acceleration When $s(t)$ is the distance traveled by a particle at time t, the derivative $v(t)=s^{\prime}(t)$ is the particle's velocity. The second derivative $a(t)=s^{\prime \prime}(t)=v^{\prime}(t)$ is the acceleration of the particle. ${ }^{2}$

Units: remember that each differentiation appends a 'per unit time' to the units. Acceleration is therefore measured as "distance-per-time-per-time:" for example,
$\mathrm{m} / \mathrm{s}^{2}=\mathrm{ms}^{-2}=$ meters per second per second
$\mathrm{ft} / \mathrm{hr}^{2}=\mathrm{ft} \mathrm{hr}^{-2}=$ feet per hour per hour

[^1]Example After t seconds, a ball has height $s(t)=1+20 t-4.9 t^{2}$ meters.
Its velocity is $v(t)=s^{\prime}(t)=20-9.8 t \mathrm{~m} / \mathrm{s}$.
Its acceleration is $a(t)=s^{\prime \prime}(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$. Note that this last is the gravitational constant.

What does a differentiable function look like? So much for calculating with limits. We want an intuitive ider ${ }^{3}$ of what to expect from the graphs of differentiable and non-differentiable functions. Similarly to how we understood the concept of continuity, we consider all the ways in which a function might fail to be differentiable. The most obvious way turns out to be related to continuity!

Theorem. If f is differentiable at $x=a$, then f is continuous at $x=a$.
Proof. Suppose that f differentiable at $x=a$. If $x \neq a$, then

$$
\begin{aligned}
& f(x)-f(a)=\frac{f(x)-f(a)}{x-a}(x-a) \\
& \Longrightarrow \lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)=f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Therefore f is continuous at a.
An equivalent statement of the Theorem is:

$$
\text { If } f \text { is discontinuous at } x=a \text { then } f \text { is non-differentiable at } x=a \text {. }
$$

Thus differentiable functions can be drawn without taking your pen off the page. The converse to this is false however. It is possible for a function to be continuous but non-differentiable. For this to happen, the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ cannot exist. There are two common possibilities \square^{4}

1. Corners For example $f(x)=|x|$ is continuous at $x=0$. What about its derivative? If $x \neq 0$, the derivative is

$$
f^{\prime}(x)= \begin{cases}1 & x>0 \\ -1 & x<0\end{cases}
$$

To find $f^{\prime}(0)$ we would need to calculate

$$
\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

which does not exist.
Therefore $|x|$ is continuous at $x=0$, but not differentiable.

[^2]2. Vertical tangents For example, $f(x)=\sqrt[3]{x}=x^{1 / 3}$ is continuous everywhere. If we want to search for a derivative at $x=0$ we must compute the limit
$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} h^{-2 / 3}=+\infty
$$

By computing limits we can see that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{1}{3 x^{2 / 3}}
$$

provided $x \neq 0$. Thus f is continuous at $x=0$, but not differentiable at $x=0$: it has a vertical tangent line.

Example: Choosing to make a function differentiable Find constants a, b such that

$$
f(x)= \begin{cases}a+b x & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}
$$

is differentiable for all x.

As the possible graphs of f show, to the left of $x=1$ the function is a straight line. Which choice of line will make the function differentiable at $x=1$?

We can answer this in words: firstly, a differentiable function must be continuous, so the straight line we choose must pass through the point $(1, f(1))=(1,1)$. Secondly, a differentiable function must ave the same rate of change when calculated as a left- or a right-limit, whence the required straight line must have the same slope as $y=x^{2}$ as $x=1$. Now we calculate:

Continuity at $x=1$: We require

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) \Longrightarrow a+b=1
$$

Any function f with $a+b=1$ will have the straight line intersecting the parabola at $(1,1)$.
Differentiability at $x=1$: We require

$$
\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} \Longrightarrow b=2
$$

Putting these together, we see that f is differentiable if and only if $a=-1$ and $b=2$. Indeed its derivative is

$$
f^{\prime}(x)= \begin{cases}2 & \text { if } x<1 \\ 2 x & \text { if } x>1\end{cases}
$$

Homework

1. Compute all of the derivatives not explicitly found above: use the limit definition!
2. Let $f(x)=x|x|= \begin{cases}x^{2} & \text { if } x \geq 0 \\ -x^{2} & \text { if } x<0\end{cases}$
(a) Calculate $f^{\prime}(x)$ for $f(x)=x|x|$.
(b) What about $f^{\prime \prime}(x)$? For what values of x does this make sense?
(c) Can you guess a formula for a function which is twice-differentiable at every value of x but not three-times differentiable everywhere? Compute its first, second and third derivatives.
3. The binomial theorem states that if n is a positive integer, then

$$
(x+h)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} h^{n-k}=x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient.
Use this to prove the power law for differentiation. If n is a positive integer, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=n x^{n-1}
$$

[^0]: ${ }^{1}$ For now this means using the limit definition. Nice formulæ such as the power law will have to wait until after the midterm...

[^1]: ${ }^{2}$ In this context, the third derivative $s^{\prime \prime \prime}$ is referred to as the jerk.

[^2]: ${ }^{3}$ Similarly to how a continuous function should be drawable without taking your pen off the page.
 ${ }^{4}$ There are more esoteric examples, such as the blancmange curve which is continuous everywhere and differentiatiable nowhere, but such things are well-beyond the scope of this course!

