
3.10 Linear Approximations and Differentials

In the picture, the tangent line to y = x1/3 at
x = 8 is viewed as an approximation to the orig-
inal curve.

y = L(x) is the equation of the tangent line.

The error is the difference L(x)− x1/3 between
the approximate and correct values, shown
correct to 5 d.p.

Theorem. Suppose that y = f (x) is a differentiable curve at x = a. Then the tangent line at x = a has
equation

y = f (a) + f ′(a)(x− a)

We call the above equation the linear approximation or linearization of y = f (x) at the point (a, f (a))
and write

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

We sometimes write La(x) to stress that the approximation is near a.

Example Consider the cube root function above: y = f (x) = 3
√

x = x1/3. We approximate near
x = 8.
We have

f (8) = 2, and f ′(x) =
1
3

x−2/3 =⇒ f ′(8) =
1
12

whence the linear approximation is

L8(x) = f (8) + f ′(8)(x− 8) = 2 +
1

12
(x− 8)

This can be used, for example, to approximate cube roots without using a calculator: e.g.

3
√

8.1 ≈ 2 +
1

120
= 2.00833̇.

Example The natural exponential function f (x) = ex has linear approximation L0(x) = 1 + x at
x = 0. It follows that, for example, e0.2 ≈ 1.2. The exact value is 1.2214 to 4 d.p.

Localism The linear approximation is only useful locally: the approximation f (x) ≈ La(x) will be
good when x is close to a, and typically gets worse as x moves away from a. For large differences be-
tween x and a, the approximation La(x) will be essentially useless. The challenge is that the quality
of the approximation depends hugely on the function f .
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Example Find an approximation to
√

15.

Since
√

16 = 4 is easy to compute and 16 is close to 15, we consider the linear approximation to
f (x) =

√
x centered at x = 16. First differentiate:

f ′(x) =
1
2

x−1/2 =⇒ f ′(16) =
1

2 · 4 =
1
8

Therefore

L16(x) = f (16) + f ′(16)(x− 16) = 4 +
1
8
(x− 16)

It follows that
√

15 ≈ L16(15) = 4− 1
8
= 3

7
8
=

31
8

= 3.875

We could instead have used the linear approximation centered at x = 9, also a nice value for the
square-root function. In this case we obtain

L9(x) = f (9) + f ′(9)(x− 9) = 3 +
1
6
(x− 9) =⇒

√
15 ≈ L9(15) = 4

Since 15 is much closer to 16 than to 9, we expect that the approximation 3.875 is the superior estimate.
Indeed, if you ask your calculator, you’ll find that

√
15 = 3.873 to 3 d.p., which backs up the picture

below.
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Errors The error in an approximation f (x) ≈ La(x) is the difference Ea(x) = La(x)− f (x). In the
above example, the errors using the two approximations, to 3 d.p. are

E9(15) = 0.027, and E16(15) = 0.002

Clearly an error closer to zero means a better approximation.
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Differentials

Comparing the two notations for dervative, we are used to writing f ′(x) = dy
dx . Recall the motivation

for Leibniz’s notation:

dy
dx

∣∣∣∣
x=a

= lim
x→a

f (x)− f (a)
x− a

= lim
∆x→0

∆y
∆x

where we are treating ∆x = x− a as a small change in the value of x which induces, via the function
f , a corresponding change ∆y = f (x)− f (a) in the value of f . If we view dx and dy as infinitessimally
small changes in x, y, we may write

f ′(x) =
dy
dx

=⇒ dy = f ′(x)dx

What does this mean? If x = a and we increase x by an infinitessimally small amount dx, then y will
increase by an infinitessimally small amount dy = f ′(a)dx.

Definition. dx and dy are termed differentials.

Differentials are useful when the value of a quantity is unimportant, only the approximate change
in the quantity in response to a change in input is desired. As long as the change dx in input x is very
small, the differential dy will be a good approximation to the expected change in the output y.

Example A car company selling x cars per month has the following model for the profit ($) made

p(x) =
1

10
x3
[

1−
( x

500

)2
]

Suppose that the company is currently selling 100 cars per month. If, in the next month 103 cars are
sold, what will be the approximate change in the profit?

Here p(x) = 1
10 x3 − 1

10·5002 x5, whence

p′(x) =
3
10

x2 − 1
2 · 5002 x4 =⇒ p′(100) = 3000− 1

50
· 1002 = 2800

If the increase in car sales is dx = 3, then the approximate increase in profits is

dp = p′(100)dx = 2800 · 3 = $ 8, 400

Computing the precise change in profits is not too difficult, but it is time consuming.

p(103)− p(100) = 104, 635.60− 96, 000 = $ 8, 635.60

One advantage of the differential method is that we can easily compute approximations to other
possible outcomes. For instance, if the company sells 98 cars, then

dp = p′(100)dx = 2800 · (−2) = −$ 5, 600

110 cars will yield approximately dp = $ 28, 000 more profit. Of course these approximations get
worse the further from x = 100 we get.1

1 p(110)− p(100) = $ 30657.96 exactly.
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Example: painting a surface Suppose you wish to paint the outside surface of a cylindrical tube
and you want to estimate how much paint is needed. The tube has a length of ` = 10 cm and a radius
of r = 3 cm. Suppose that the paint is to be applied to a thickness of 1 mm. What volume of paint,
approximately, is required.

We know that the volume of a cylinder of radius r and length ` is V = πr2`. Painting the cylinder
to a thickness of 1 mm is equivalent to increasing the radius of the cylinder by 1 mm. The paint
required will be the consequent increase in volume. Since ` = 10 is constant for this problem, we
view V as a function of r and differentiate:

V ′(r) = 2π`r =⇒ dV = 2π`r dr

The thickness of the paint is the increas in radius dr = 1 mm=0.1 cm, whence the required volume of
paint is approximately

dV = 2π · 10 · 3 · 0.1 = 6π = 18.85 cm3, to 2 d.p.

The exact value in this case would be V(3.1)−V(3) = 6.1π ≈ 19.16.

Errors

Differentials can also be used to estimate the error in a quantity. Suppose that y = f (x), where the
value of x is known within some error range x± dx. The resulting potential error in y is computed
using the differential dy = f ′(x)dx.

Example The side length of a cube is measured using a ruler and observed to be x = 10 cm. The
volume of the cube is therefore 1000 cm3.
However the ruler is only marked every millimeter, so it might be reasonable to say that the potential
error in the measurement x is dx = 1

2 mm= 1
20 cm. What is the resulting potential error in the

volume?

Since V(x) = x3 we see that

dV = 3x2 dx = 3 · 102 · 1
20

= 15 cm3

It might therefore be appropriate to state the volume of the cube as V = 1000± 15 cm3.
Compare this with V(10.05) = 1015.075 and V(9.95) = 985.075.

Percentage and Relative Errors Errors are often described relative to the size of the original quan-
tity: dx = 5 might be large or small compared to x.

In our previous example, the relative error in the length measurement x was

dx
x

=
1/20

10
=

1
200

= 0.5%

while the resulting relative error in the volume V was

dV
V

=
15

1000
=

3
200

= 1.5%

The error in the volume is therefore three times as significant as that in the length.
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Homework

1. Find the value x = b for which{
L9(x) is a better approximation to

√
x for x < b

L16(x) is a better approximation to
√

x for x > b

2. The Body Mass Index of a human is B = m
h2 , where m, h are the subject’s mass and height.2 Thus

if m = 77 kg and h = 1.74 m, then B = 77
1.742 = 25.43.

(a) Suppose that the mass is known exactly but that the height is only known up to some error
dh. Show that

dB = −2m
h3 dh

Compute the error in the BMI of our 77 kg subject if dh = 0.5 cm.

(b) Now suppose that the height is known exactly but that the mass is only known to be
accurate to within 1%. Find the resulting error in the measurment of the BMI.

(c) In multivariable calculus you will see that if B is viewed as a function of both h and m, then
the total differential is

dB =
1
h2

(
d

dm
m
)

dm + m
(

d
dh

1
h2

)
dh =

1
h2 dm− 2m

h3 dh

Show that

dB
B

=
dm
m
− 2 dh

h

and that, in this situation, the maximum possible error in B is ≈ 1.57%. It would be
appropriate to write B = 25.43± 0.40.

2Measured in kilograms and meters respectively.
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