3.10 Linear Approximations and Differentials

In the picture, the tangent line to $y=x^{1 / 3}$ at $x=8$ is viewed as an approximation to the original curve.
$y=L(x)$ is the equation of the tangent line.
The error is the difference $L(x)-x^{1 / 3}$ between the approximate and correct values, shown correct to 5 d.p.

Theorem. Suppose that $y=f(x)$ is a differentiable curve at $x=a$. Then the tangent line at $x=a$ has equation

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

We call the above equation the linear approximation or linearization of $y=f(x)$ at the point $(a, f(a))$ and write

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

We sometimes write $L_{a}(x)$ to stress that the approximation is near a.
Example Consider the cube root function above: $y=f(x)=\sqrt[3]{x}=x^{1 / 3}$. We approximate near $x=8$.
We have

$$
f(8)=2, \text { and } f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \Longrightarrow f^{\prime}(8)=\frac{1}{12}
$$

whence the linear approximation is

$$
L_{8}(x)=f(8)+f^{\prime}(8)(x-8)=2+\frac{1}{12}(x-8)
$$

This can be used, for example, to approximate cube roots without using a calculator: e.g.

$$
\sqrt[3]{8.1} \approx 2+\frac{1}{120}=2.0083 \dot{3}
$$

Example The natural exponential function $f(x)=e^{x}$ has linear approximation $L_{0}(x)=1+x$ at $x=0$. It follows that, for example, $e^{0.2} \approx 1.2$. The exact value is 1.2214 to $4 \mathrm{~d} . \mathrm{p}$.

Localism The linear approximation is only useful locally: the approximation $f(x) \approx L_{a}(x)$ will be good when x is close to a, and typically gets worse as x moves away from a. For large differences between x and a, the approximation $L_{a}(x)$ will be essentially useless. The challenge is that the quality of the approximation depends hugely on the function f.

Example Find an approximation to $\sqrt{15}$.
Since $\sqrt{16}=4$ is easy to compute and 16 is close to 15 , we consider the linear approximation to $f(x)=\sqrt{x}$ centered at $x=16$. First differentiate:

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \Longrightarrow f^{\prime}(16)=\frac{1}{2 \cdot 4}=\frac{1}{8}
$$

Therefore

$$
L_{16}(x)=f(16)+f^{\prime}(16)(x-16)=4+\frac{1}{8}(x-16)
$$

It follows that

$$
\sqrt{15} \approx L_{16}(15)=4-\frac{1}{8}=3 \frac{7}{8}=\frac{31}{8}=3.875
$$

We could instead have used the linear approximation centered at $x=9$, also a nice value for the square-root function. In this case we obtain

$$
L_{9}(x)=f(9)+f^{\prime}(9)(x-9)=3+\frac{1}{6}(x-9) \Longrightarrow \sqrt{15} \approx L_{9}(15)=4
$$

Since 15 is much closer to 16 than to 9 , we expect that the approximation 3.875 is the superior estimate. Indeed, if you ask your calculator, you'll find that $\sqrt{15}=3.873$ to 3 d.p., which backs up the picture below.

Errors The error in an approximation $f(x) \approx L_{a}(x)$ is the difference $\mathcal{E}_{a}(x)=L_{a}(x)-f(x)$. In the above example, the errors using the two approximations, to 3 d.p. are

$$
\mathcal{E}_{9}(15)=0.027, \quad \text { and } \quad \mathcal{E}_{16}(15)=0.002
$$

Clearly an error closer to zero means a better approximation.

Differentials

Comparing the two notations for dervative, we are used to writing $f^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x}$. Recall the motivation for Leibniz's notation:

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

where we are treating $\Delta x=x-a$ as a small change in the value of x which induces, via the function f, a corresponding change $\Delta y=f(x)-f(a)$ in the value of f. If we view $\mathrm{d} x$ and $\mathrm{d} y$ as infinitessimally small changes in x, y, we may write

$$
f^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x} \Longrightarrow \mathrm{~d} y=f^{\prime}(x) \mathrm{d} x
$$

What does this mean? If $x=a$ and we increase x by an infinitessimally small amount $\mathrm{d} x$, then y will increase by an infinitessimally small amount $\mathrm{d} y=f^{\prime}(a) \mathrm{d} x$.

Definition. $\mathrm{d} x$ and $\mathrm{d} y$ are termed differentials.
Differentials are useful when the value of a quantity is unimportant, only the approximate change in the quantity in response to a change in input is desired. As long as the change $\mathrm{d} x$ in input x is very small, the differential $\mathrm{d} y$ will be a good approximation to the expected change in the output y.

Example A car company selling x cars per month has the following model for the profit (\$) made

$$
p(x)=\frac{1}{10} x^{3}\left[1-\left(\frac{x}{500}\right)^{2}\right]
$$

Suppose that the company is currently selling 100 cars per month. If, in the next month 103 cars are sold, what will be the approximate change in the profit?

Here $p(x)=\frac{1}{10} x^{3}-\frac{1}{10 \cdot 500^{2}} x^{5}$, whence

$$
p^{\prime}(x)=\frac{3}{10} x^{2}-\frac{1}{2 \cdot 500^{2}} x^{4} \Longrightarrow p^{\prime}(100)=3000-\frac{1}{50} \cdot 100^{2}=2800
$$

If the increase in car sales is $\mathrm{d} x=3$, then the approximate increase in profits is

$$
\mathrm{d} p=p^{\prime}(100) \mathrm{d} x=2800 \cdot 3=\$ 8,400
$$

Computing the precise change in profits is not too difficult, but it is time consuming.

$$
p(103)-p(100)=104,635.60-96,000=\$ 8,635.60
$$

One advantage of the differential method is that we can easily compute approximations to other possible outcomes. For instance, if the company sells 98 cars, then

$$
\mathrm{d} p=p^{\prime}(100) \mathrm{d} x=2800 \cdot(-2)=-\$ 5,600
$$

110 cars will yield approximately $\mathrm{d} p=\$ 28,000$ more profit. Of course these approximations get worse the further from $x=100$ we get $\left.\right|_{-} ^{1}$

[^0]Example: painting a surface Suppose you wish to paint the outside surface of a cylindrical tube and you want to estimate how much paint is needed. The tube has a length of $\ell=10 \mathrm{~cm}$ and a radius of $r=3 \mathrm{~cm}$. Suppose that the paint is to be applied to a thickness of 1 mm . What volume of paint, approximately, is required.

We know that the volume of a cylinder of radius r and length ℓ is $V=\pi r^{2} \ell$. Painting the cylinder to a thickness of 1 mm is equivalent to increasing the radius of the cylinder by 1 mm . The paint required will be the consequent increase in volume. Since $\ell=10$ is constant for this problem, we view V as a function of r and differentiate:

$$
V^{\prime}(r)=2 \pi \ell r \Longrightarrow \mathrm{~d} V=2 \pi \ell r \mathrm{~d} r
$$

The thickness of the paint is the increas in radius $\mathrm{d} r=1 \mathrm{~mm}=0.1 \mathrm{~cm}$, whence the required volume of paint is approximately

$$
\mathrm{d} V=2 \pi \cdot 10 \cdot 3 \cdot 0.1=6 \pi=18.85 \mathrm{~cm}^{3} \text {, to } 2 \mathrm{~d} . \mathrm{p} .
$$

The exact value in this case would be $V(3.1)-V(3)=6.1 \pi \approx 19.16$.

Errors

Differentials can also be used to estimate the error in a quantity. Suppose that $y=f(x)$, where the value of x is known within some error range $x \pm \mathrm{d} x$. The resulting potential error in y is computed using the differential $\mathrm{d} y=f^{\prime}(x) \mathrm{d} x$.

Example The side length of a cube is measured using a ruler and observed to be $x=10 \mathrm{~cm}$. The volume of the cube is therefore $1000 \mathrm{~cm}^{3}$.
However the ruler is only marked every millimeter, so it might be reasonable to say that the potential error in the measurement x is $\mathrm{d} x=\frac{1}{2} \mathrm{~mm}=\frac{1}{20} \mathrm{~cm}$. What is the resulting potential error in the volume?
Since $V(x)=x^{3}$ we see that

$$
\mathrm{d} V=3 x^{2} \mathrm{~d} x=3 \cdot 10^{2} \cdot \frac{1}{20}=15 \mathrm{~cm}^{3}
$$

It might therefore be appropriate to state the volume of the cube as $V=1000 \pm 15 \mathrm{~cm}^{3}$.
Compare this with $V(10.05)=1015.075$ and $V(9.95)=985.075$.
Percentage and Relative Errors Errors are often described relative to the size of the original quantity: $\mathrm{d} x=5$ might be large or small compared to x.

In our previous example, the relative error in the length measurement x was

$$
\frac{\mathrm{d} x}{x}=\frac{1 / 20}{10}=\frac{1}{200}=0.5 \%
$$

while the resulting relative error in the volume V was

$$
\frac{\mathrm{d} V}{V}=\frac{15}{1000}=\frac{3}{200}=1.5 \%
$$

The error in the volume is therefore three times as significant as that in the length.

Homework

1. Find the value $x=b$ for which

$$
\begin{cases}L_{9}(x) & \text { is a better approximation to } \sqrt{x} \text { for } x<b \\ L_{16}(x) & \text { is a better approximation to } \sqrt{x} \text { for } x>b\end{cases}
$$

2. The Body Mass Index of a human is $B=\frac{m}{h^{2}}$, where m, h are the subject's mass and height.$_{2}^{2}$ Thus if $m=77 \mathrm{~kg}$ and $h=1.74 \mathrm{~m}$, then $B=\frac{77}{1.74^{2}}=25.43$.
(a) Suppose that the mass is known exactly but that the height is only known up to some error dh. Show that

$$
\mathrm{d} B=-\frac{2 m}{h^{3}} \mathrm{~d} h
$$

Compute the error in the BMI of our 77 kg subject if $\mathrm{d} h=0.5 \mathrm{~cm}$.
(b) Now suppose that the height is known exactly but that the mass is only known to be accurate to within 1%. Find the resulting error in the measurment of the BMI.
(c) In multivariable calculus you will see that if B is viewed as a function of both h and m, then the total differential is

$$
\mathrm{d} B=\frac{1}{h^{2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} m} m\right) \mathrm{d} m+m\left(\frac{\mathrm{~d}}{\mathrm{~d} h} \frac{1}{h^{2}}\right) \mathrm{d} h=\frac{1}{h^{2}} \mathrm{~d} m-\frac{2 m}{h^{3}} \mathrm{~d} h
$$

Show that

$$
\frac{\mathrm{d} B}{B}=\frac{\mathrm{d} m}{m}-\frac{2 \mathrm{~d} h}{h}
$$

and that, in this situation, the maximum possible error in B is $\approx 1.57 \%$. It would be appropriate to write $B=25.43 \pm 0.40$.

[^1]
[^0]: ${ }^{1} p(110)-p(100)=\$ 30657.96$ exactly.

[^1]: ${ }^{2}$ Measured in kilograms and meters respectively.

