4 Applications of Differentiation

4.1 Maximum and Minimum Values

Many real-life problems can be rephrased in terms of maximizing or minimizing the value of a function. For example, 'How do we make the most profit?' or 'How can we save energy?' (minimize waste, or maximize efficiency). Calculus has a role to play in addressing these questions. First we need to formalize what we mean.

Definition. $f(c)$ is the absolute maximum value of f if $f(c) \geq f(x)$ for all x.
$f(c)$ is the absolute minimum value of f if $f(c) \leq f(x)$ for all x.
$f(c)$ is a local maximum if $f(c) \geq f(x)$ for all x near c.
$f(c)$ is a local minimum if $f(c) \leq f(x)$ for all x near c.

- If $f(c)$ is the absolute maximum value of f then we would also say that the point $(c, f(c))$ is, say, an absolute maximum point of f.
The distinction between the and an is important: for instance $f(0)=1$ is the absolute maximum value of $f(x)=\sin x$, but we could also write $f(2 \pi)=1$, or $f(4 \pi)=1$.

One absolute max value, many points

- The strict definition of 'near' when talking about local extrema is difficult and requires a discussion beyond the level of this course.
- Absolute maxima are also local maxima, etc.
- Horizontal lines will have absolute maximum and minimim values equal: for example $f(x)=1$ has absolute maximum and minimum values of 1 , at all values of x !

Example The function has domain $[-2,3)$. The types of each point are listed.

Point	Type
A	Local Minimum
B	Local Maximum
C	Local + Absolute Minimum
D	Local + Absolute Maximum
E	Local Minimum
F	n/a: not in graph of f

Domains The domain of a function is critical to the location and values of maxima and minima. For example, consider $f(x)=x^{2}$ where we let the domain be various intervals.

Domain	Maxima	Minima
$(0,1)$	None	None
$(-1,1)$	None	$(0,0)$
$[-1,1]$	$(-1,1),(1,1)$	$(0,0)$
$[-1,2]$	$(-1,1),(2,4)$	$(0,0)$
\mathbb{R}	None	$(0,0)$

Critical Points

Definition. Let f be a fucntion. We say that $x=c$ is a critical value of f if the derivative $f^{\prime}(c)$ is either zero or undefined. We call $(c, f(c)) a$ critical point of f.

Recall the picture on the previous page: local maxima and minima which are not endpoints of a curve appear to be critical points. Indeed this is a theorem:

Theorem (Fermat). Suppose that f is defined on an interval I and that c is not an endpoint of I. If $f(c)$ is a local maximum or minimum value of f, then c is a critical value of f.

The converse however is false.
Example The function $f(x)=\left\{\begin{array}{ll}\sqrt{x} & x \geq 0 \\ x & x<0\end{array}\right.$ is not differentiable at the origin, whence $x=0$ is a critical value of f.
However, $(0,0)$ is neither a local maximum nor minimum of the function.

Supposing that we ignore endpoints of graphs, we can summarize Fermat's Theorem as follows:

- Local max/min \Longrightarrow Critical point
- Critical Point \nRightarrow Local max/min

Things are simplest for functions differentiable everywhere: we need only look for places where the derivative vanishes.

Example Find the local maxima and minima of

$$
f(x)=x^{3}-3 x+2 \quad \text { where } x \in \mathbb{R}
$$

f is differentiable everywhere, with

$$
f^{\prime}(x)=3 x^{2}-3=0 \Longleftrightarrow x= \pm 1
$$

There are therefore two critical points: $(-1,4)$ and $(1,0)$.
Examining $f(x)$ when x is near ± 1 we see that these are local maximum and minimum points respectively.

For non-differentiable functions we need to be more careful.
Example The graph shows $f(x)=\frac{|x|}{1+x^{2}}= \begin{cases}\frac{x}{1+x^{2}} & \text { if } x \geq 0 \\ \frac{-x}{1+x^{2}} & \text { if } x<0\end{cases}$

f is differentiable when $x \neq 0$. Indeed for $x>0$ we have

$$
f^{\prime}(x)=\frac{\left(1+x^{2}\right)-x \cdot 2 x}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
$$

Consider the derivative when $x<0$ we obtain

$$
f^{\prime}(x)= \begin{cases}\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} & \text { if } x>0 \\ \frac{x^{2}-1}{\left(1+x^{2}\right)^{2}} & \text { if } x<0\end{cases}
$$

The critical values are $x=0, \pm 1$, yielding the critical points $(0,0),\left(\pm 1, \frac{1}{2}\right)$. These are a local minimum and local maxima respectively.

Closed Intervals

If the domain of f is a closed interval, we can often say more.
Theorem (Extreme Value). If f is continuous on a closed bounded interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some values c and d between a and b.

Combining this with Fermat's Theorem gives us a method for finding the absolute maximum and minimum values of a function f defined on an interval $[a, b]$:

1. Find the critical values c_{1}, c_{2}, \ldots whenever $a<x<b$.
2. Compute $f\left(c_{1}\right), f\left(c_{2}\right), \ldots$
3. Compute $f(a)$ and $f(b)$.
4. Compare all the values of $f(x)$ in steps 2 and 3: the largest is the absolute maximum and the smallest the absolute minimum.

Example $f(x)=x^{4}-2 x^{2}$ is continuous and differentiable on the closed interval $[-2,2]$. We have

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x(x-1)(x+1)
$$

1. There are three critical values: $x=0,1,-1$.
2. $f(0)=0, f(1)=-1$ and $f(-1)=-1$.
3. At the endpoints we have $f(-2)=8$ and $f(2)=8$.

The maxima and minima of f are therefore:

Points	Type
$(-2,8),(2,8)$	Absolute Maxima
$(-1,-1),(1,-1)$	Absolute Minima
$(0,0)$	Local Maximum

Homework

A Farmer sells $x \mathrm{lb}$ of strawberries at a cost of $c(x)=10-\frac{1}{20} x \$ / \mathrm{lb}$. The Farmer wants to find what quantity of strawberries to sell in order to maximize his profit.

1. Explain why the profit function, the function the Farmer needs to maximize is

$$
p(x)=x c(x)=10 x-\frac{1}{20} x^{2}=\frac{1}{20} x(200-x)
$$

2. What quantity of strawberries should the farmer sell, and what is their profit.?
