4.3 How Derivatives affect the Shape of a Graph

What do f' and f'' say about f?

Increasing/Decreasing If f' > 0 on an interval, then f is *increasing* on that interval. Similarly $f' < 0 \implies f$ decreasing.

Theorem (First Derivative Test). *Suppose that c is a critical value of a continuous function f*.

- If f' changes from +ve to -ve at c then f has a local maximum at c.
- If f' changes from -ve to +ve at c then f has a local minimum at c.
- If f' does not change sign then f has neither a local maximum nor minimum at c.

Concavity If f'' > 0 on an interval, then *f* is said to be *concave upwards* on that interval. Similarly $f'' < 0 \implies f$ is concave downwards.

Theorem (Second Derivative Test). Suppose that f is continuous near x = c.

- If f'(c) = 0 and f''(c) > 0 then f has a local minimum at c.
- If f'(c) = 0 and f''(c) < 0 then f has a local maximum at c.

Definition. A curve y = f(x) has an inflection point at x = c if the curve is continuous at c and changes from concave upward to concave downward at c (or vice versa).

If *f* is twice continuously differentiable at an inflection point x = c, then we necessarily have f''(c) = 0.

If the second derivative test produces f'(c) = 0 and f''(c) = 0 then f has either a local minimum, a maximum or an inflection point at c: the test is inconclusive. We must either investigate the concavity on either side of x = c or use the first derivative test. The graph above has three inflection points.

Examples

1. Consider $f(x) = x^4 - 8x^2$. Differentiate and set equal to zero to find the critical values:

$$f'(x) = 4x^3 - 16x = 4x(x-2)(x+2) = 0 \iff x = 0, \pm 2$$

The critical points are (0,0), (2,-16), (-2,-16). We still need to consider the *sign* of the derivative between the critical values in order to tell when the function is increasing/decreasing.

Now search for inflection points:

$$f''(x) = 12x^2 - 16 = 4(3x^2 - 4) = 0 \iff x = \pm \frac{2}{\sqrt{3}}$$

We can summarize in a table:

Interval	f'	f	Interval	f''	Concavity
(−∞,−2)	_	decreasing	$\left(-\infty,\frac{-2}{\sqrt{3}}\right)$	+	upward
(-2,0)	+	increasing	$\left(\frac{-2}{\sqrt{3}},\frac{2}{\sqrt{3}}\right)$	_	downward
(0,2)	_	decreasing	$\left(\frac{2}{\sqrt{3}},\infty\right)$	+	upward
(2,∞)	+	increasing			

2. Repeat with $f(x) = x^5 - 15x^3$.

$$f'(x) = 5x^4 - 45x^2 = 5x^2(x-3)(x+3)$$

= 0 \leftarrow x = 0, \pm 3

Critical points: (0,0), (3, -162), (-3, 162).

$$f''(x) = 20x^3 - 90x = 10x(2x^2 - 9)$$

= 0 \le x = 0, \pm \frac{3}{\sqrt{2}}

In summary:

Interval	f'	f	Interval	<i>f</i> ″	Concavity
$(-\infty,-3)$	+	inc	$\left(-\infty,\frac{-3}{\sqrt{2}}\right)$	_	down
(-3,0)	_	dec	$\left(\frac{-3}{\sqrt{2}},0\right)$	+	up
(0,3)	_	dec	$\left(0,\frac{3}{\sqrt{2}}\right)$	_	down
(3,∞)	+	inc	$\left(\frac{3}{\sqrt{2}},\infty\right)$	+	up

