4.3 How Derivatives affect the Shape of a Graph

What do f^{\prime} and $f^{\prime \prime}$ say about f ?

Increasing/Decreasing If $f^{\prime}>0$ on an interval, then f is increasing on that interval.
Similarly $f^{\prime}<0 \Longrightarrow f$ decreasing.
Theorem (First Derivative Test). Suppose that c is a critical value of a continuous function f.

- If f^{\prime} changes from $+v e$ to -ve at c then f has a local maximum at c.
- If f^{\prime} changes from -ve to + ve at c then f has a local minimum at c.
- If f^{\prime} does not change sign then f has neither a local maximum nor minimum at c.

Concavity If $f^{\prime \prime}>0$ on an interval, then f is said to be concave upwards on that interval. Similarly $f^{\prime \prime}<0 \Longrightarrow f$ is concave downwards.
Theorem (Second Derivative Test). Suppose that f is continuous near $x=c$.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then f has a local minimum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a local maximum at c.

Definition. A curve $y=f(x)$ has an inflection point at $x=c$ if the curve is continuous at c and changes from concave upward to concave downward at c (or vice versa).

If f is twice continuously differentiable at an inflection point $x=c$, then we necessarily have $f^{\prime \prime}(c)=0$.

If the second derivative test produces $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$ then f has either a local minimum, a maximum or an inflection point at c : the test is inconclusive. We must either investigate the concavity on either side of $x=c$ or use the first derivative test. The graph above has three inflection points.

Examples

1. Consider $f(x)=x^{4}-8 x^{2}$. Differentiate and set equal to zero to find the critical values:

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-16 x=4 x(x-2)(x+2) \\
& =0 \Longleftrightarrow x=0, \pm 2
\end{aligned}
$$

The critical points are $(0,0),(2,-16),(-2,-16)$. We still need to consider the sign of the derivative between the critical values in order to tell when the function is increasing/decreasing.
Now search for inflection points:

$$
\begin{aligned}
f^{\prime \prime}(x) & =12 x^{2}-16=4\left(3 x^{2}-4\right) \\
& =0 \Longleftrightarrow x= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

We can summarize in a table:

Interval	f^{\prime}	f	Interval	$f^{\prime \prime}$	Concavity
$(-\infty,-2)$	-	decreasing	$\left(-\infty, \frac{-2}{\sqrt{3}}\right)$	+	upward
$(-2,0)$	+	increasing	$\left(\frac{-2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$	-	downward
$(0,2)$	-	decreasing	$\left(\frac{2}{\sqrt{3}}, \infty\right)$	+	upward
$(2, \infty)$	+	increasing			

2. Repeat with $f(x)=x^{5}-15 x^{3}$.

$$
\begin{aligned}
f^{\prime}(x) & =5 x^{4}-45 x^{2}=5 x^{2}(x-3)(x+3) \\
& =0 \Longleftrightarrow x=0, \pm 3
\end{aligned}
$$

Critical points: $(0,0),(3,-162),(-3,162)$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =20 x^{3}-90 x=10 x\left(2 x^{2}-9\right) \\
& =0 \Longleftrightarrow x=0, \pm \frac{3}{\sqrt{2}}
\end{aligned}
$$

In summary:

Interval	f^{\prime}	f	Interval	$f^{\prime \prime}$	Concavity
$(-\infty,-3)$	+	inc	$\left(-\infty, \frac{-3}{\sqrt{2}}\right)$	-	down
$(-3,0)$	-	dec	$\left(\frac{-3}{\sqrt{2}}, 0\right)$	+	up
$(0,3)$	-	dec	$\left(0, \frac{3}{\sqrt{2}}\right)$	-	down
$(3, \infty)$	+	inc	$\left(\frac{3}{\sqrt{2}}, \infty\right)$	+	up

