4.5 Summary of Curve Sketching

When graphing a function f you want to make clear all of the following, if they make sense for the function.

Domain Interval? Excluded points? If dom $(f) = \mathbb{R}$, make sure it's clear what happens for very large values of *x*.

Intercepts Find the *x*- and *y*-intercepts, if appropriate.

Symmetry f could have various types of symmetry, or none:

- Periodicity: is there some constant *c* such that f(x + c) = f(x) for all *x*?
- Is f odd? (f(-x) = -f(x), graph 180° rotationally symmetric about the origin)
- Or is f even (f(-x) = f(x), graph has reflection symmetry across *y*-axis)

Asymptotes Vertical and horizontal, if appropriate.

Critical Points When is f'(c) = 0 or undefined?

Intervals of Inc/Dec When is f'(x) positive/negative?

Local max/min Apply the 1st or 2nd derivative test.

Concavity and Points of Inflection When is f''(x) positive/negative, and when does it change?

Example 1. Graph $y = f(x) = \frac{x^2+x}{x^2+x-2} = \frac{x(x+1)}{(x-1)(x+2)}$ Domain $\mathbb{R} \setminus \{-2,1\}$: moreover $\lim_{x \to \pm \infty} y = 1$ Intercepts $y = 0 \implies x = -1, 0$ and $x = 0 \implies y = 0$ Symmetry None Asymptotes Horizontal y = 1, Vertical x = 1, -2Critical Points $f'(x) = \frac{-2(2x+1)}{(x^2+x-2)^2}$. Zero at $x = \frac{-1}{2}$. Increase/Decrease f increases when $x < -\frac{1}{2}$, f decreases when $x > -\frac{1}{2}$ Local max/min Critical point $(\frac{-1}{2}, \frac{1}{9})$ is a local maximum by the first derivative test Concavity $f''(x) = \frac{12(x^2+x+1)}{(x^2+x-2)^3} = \frac{12(x^2+x+1)}{(x-1)^3(x+2)^3} = \frac{12((x+\frac{1}{2})^2+\frac{3}{4})}{(x-1)^3(x+2)^3}$ Concave up for x < -2 or x > 1, concave down otherwise

Example 2. Graph $y = \sin x + x$

Domain \mathbb{R} : moreover $\lim_{x \to \pm \infty} y = \pm \infty$

Intercepts $y = 0 \iff x = 0$: crosses axes only at the origin

Symmetry Function odd

Asymptotes None

Critical Points $f'(x) = \cos x + 1$. Zero at $x = \pm \pi, \pm 3\pi, \pm 5\pi, \ldots$

Inc/Decrease f increases when $\cos x \neq -1$ which is everywhere *except* at the critical points. f never decreases.

Local max/min 1st derivative test \implies none of the critical points are local maxima or minima.

Concavity $f''(x) = -\sin x$. Concave up if $(2n + 1)\pi < x < 2n\pi$, where *n* is any integer Concave down if $2n\pi < x < (2n + 1)\pi$ Inflection points $(n\pi, n\pi)$ for each integer *n*

Example 3. Graph $y = x^4 - 3x^2 + 2x = x(x^3 - 3x + 2) = x(x - 1)^2(x + 2)$ *Domain* \mathbb{R} : moreover $\lim_{x \to \pm \infty} y = \infty$ *Intercepts* $y = 0 \implies x = 0, 1, -2 \text{ and } x = 0 \implies y = 0$ Symmetry None Asymptotes None *Critical Points* $f'(x) = 4x^3 - 6x + 2 = 2(x - 1)(2x^2 + 2x - 1)$. Quadratic formula gives zeros at $x = 0, \frac{-1 \pm \sqrt{3}}{2}.$ *Inc/Decrease* Since f'(x) = 0 is *cubic* with three distinct zeros, f'(x) must change sign at each of its zeros. Placing these in order $\frac{-1-\sqrt{3}}{2} < \frac{-1+\sqrt{3}}{2} < 1$ and noting that f' is positive for x large, we see that: *f* increases when $\frac{-1-\sqrt{3}}{2} < x < \frac{-1+\sqrt{3}}{2}$ or 1 < x*f* decreases when $x < \frac{-1-\sqrt{3}}{2}$ or $\frac{-1+\sqrt{3}}{2} < x < 1$ Local max/min Critical points: (1,0) is a local minimum by the 1st derivative test $\left(\frac{-1+\sqrt{3}}{2}, \frac{-6\sqrt{3}-9}{4}\right)$ is a local maximum¹ $\left(\frac{-1-\sqrt{3}}{2}, \frac{6\sqrt{3}-9}{4}\right)$ is a local minimum Concavity $f''(x) = 12x^2 - 6 = 12(x - \frac{1}{\sqrt{2}})(x + \frac{1}{\sqrt{2}})$ Concave up if $x < \frac{-1}{\sqrt{2}}$, or $x > \frac{-1}{\sqrt{2}}$ Concave down if $\frac{-1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$ Inflection points $\left(\frac{-1}{\sqrt{2}}, \frac{-5-4\sqrt{2}}{4}\right)$, $\left(\frac{1}{\sqrt{2}}, \frac{-5+4\sqrt{2}}{4}\right)$ 2 x $\frac{-1-\sqrt{3}}{2}, \frac{6\sqrt{3}-9}{4}$

¹It may not be worth computing the *y*-co-ordinate in a test if this will take a long time.

Slant Asymptotes One last idea property to look out for are *slant asymptotes*. A curve y = f(x) may get arbitrarily close to another curve y = g(x) as $x \to \pm \infty$: in such a case we say that f is *asymptotic to* g. When the graph of g is a straight line, we call this a slant asymptote of f.

Examples

- 1. $f(x) = \frac{x^2+x+1}{x} = x+1+\frac{1}{x}$ is asymptotic to g(x) = x+1 (since $\lim_{x \to \pm \infty} \frac{1}{x} = 0$). Therefore y = x+1 is a slant asymptote of f.
- 2. $h(x) = x^3 \frac{1}{x^2}$ is asymptotic to $y = x^3$.

Homework

Try sketch each of the following functions:

1.
$$y = x^{4} + 8x^{3} - 270x^{2} + 1$$

2. $y = \frac{4x+4}{x^{2}+3}$
3. $y = \frac{x^{2}}{x^{2}-4}$
4. $y = \frac{\ln x}{x^{2}}$