4.5 Summary of Curve Sketching

When graphing a function f you want to make clear all of the following, if they make sense for the function.

Domain Interval? Excluded points? If $\operatorname{dom}(f)=\mathbb{R}$, make sure it's clear what happens for very large values of x.
Intercepts Find the x - and y-intercepts, if appropriate.
Symmetry f could have various types of symmetry, or none:

- Periodicity: is there some constant c such that $f(x+c)=f(x)$ for all x ?
- Is f odd? $\left(f(-x)=-f(x)\right.$, graph 180° rotationally symmetric about the origin)
- Or is f even $(f(-x)=f(x)$, graph has reflection symmetry across y-axis)

Asymptotes Vertical and horizontal, if appropriate.
Critical Points When is $f^{\prime}(c)=0$ or undefined?
Intervals of Inc/Dec When is $f^{\prime}(x)$ positive/negative?
Local max/min Apply the 1st or 2nd derivative test.
Concavity and Points of Inflection When is $f^{\prime \prime}(x)$ positive/negative, and when does it change?
Example 1. Graph $y=f(x)=\frac{x^{2}+x}{x^{2}+x-2}=\frac{x(x+1)}{(x-1)(x+2)}$
Domain $\mathbb{R} \backslash\{-2,1\}$: moreover $\lim _{x \rightarrow \pm \infty} y=1$
Intercepts $y=0 \Longrightarrow x=-1,0$ and $x=0 \Longrightarrow y=0$
Symmetry None
Asymptotes Horizontal $y=1$, Vertical $x=1,-2$
Critical Points $f^{\prime}(x)=\frac{-2(2 x+1)}{\left(x^{2}+x-2\right)^{2}}$. Zero at $x=\frac{-1}{2}$.
Increase/Decrease f increases when $x<-\frac{1}{2}, \quad f$ decreases when $x>-\frac{1}{2}$
Local max/min Critical point $\left(\frac{-1}{2}, \frac{1}{9}\right)$ is a local maximum by the first derivative test
Concavity $f^{\prime \prime}(x)=\frac{12\left(x^{2}+x+1\right)}{\left(x^{2}+x-2\right)^{3}}=\frac{12\left(x^{2}+x+1\right)}{(x-1)^{3}(x+2)^{3}}=\frac{12\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)}{(x-1)^{3}(x+2)^{3}}$
Concave up for $x<-2$ or $x>1$, concave down otherwise

Example 2. Graph $y=\sin x+x$
Domain \mathbb{R} : moreover $\lim _{x \rightarrow \pm \infty} y= \pm \infty$
Intercepts $y=0 \Longleftrightarrow x=0$: crosses axes only at the origin
Symmetry Function odd
Asymptotes None
Critical Points $f^{\prime}(x)=\cos x+1$. Zero at $x= \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$
Inc/Decrease f increases when $\cos x \neq-1$ which is everywhere except at the critical points.
f never decreases.
Local max/min 1st derivative test \Longrightarrow none of the critical points are local maxima or minima.
Concavity $f^{\prime \prime}(x)=-\sin x$.
Concave up if $(2 n+1) \pi<x<2 n \pi$, where n is any integer
Concave down if $2 n \pi<x<(2 n+1) \pi$
Inflection points $(n \pi, n \pi)$ for each integer n

Example 3. Graph $y=x^{4}-3 x^{2}+2 x=x\left(x^{3}-3 x+2\right)=x(x-1)^{2}(x+2)$
Domain \mathbb{R} : moreover $\lim _{x \rightarrow \pm \infty} y=\infty$
Intercepts $y=0 \Longrightarrow x=0,1,-2$ and $x=0 \Longrightarrow y=0$
Symmetry None
Asymptotes None
Critical Points $f^{\prime}(x)=4 x^{3}-6 x+2=2(x-1)\left(2 x^{2}+2 x-1\right)$. Quadratic formula gives zeros at $x=0, \frac{-1 \pm \sqrt{3}}{2}$.
Inc/Decrease Since $f^{\prime}(x)=0$ is cubic with three distinct zeros, $f^{\prime}(x)$ must change sign at each of its zeros. Placing these in order $\frac{-1-\sqrt{3}}{2}<\frac{-1+\sqrt{3}}{2}<1$ and noting that f^{\prime} is positive for x large, we see that:
f increases when $\frac{-1-\sqrt{3}}{2}<x<\frac{-1+\sqrt{3}}{2}$ or $1<x$
f decreases when $x<\frac{-1-\sqrt{3}}{2}$ or $\frac{-1+\sqrt{3}}{2}<x<1$
Local max/min Critical points: $(1,0)$ is a local minimum by the 1 st derivative test $\left(\frac{-1+\sqrt{3}}{2}, \frac{-6 \sqrt{3}-9}{4}\right)$ is a local maximum ${ }^{1}$ $\left(\frac{-1-\sqrt{3}}{2}, \frac{6 \sqrt{3}-9}{4}\right)$ is a local minimum
Concavity $f^{\prime \prime}(x)=12 x^{2}-6=12\left(x-\frac{1}{\sqrt{2}}\right)\left(x+\frac{1}{\sqrt{2}}\right)$
Concave up if $x<\frac{-1}{\sqrt{2}}$, or $x>\frac{-1}{\sqrt{2}}$
Concave down if $\frac{-1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$
Inflection points $\left(\frac{-1}{\sqrt{2}}, \frac{-5-4 \sqrt{2}}{4}\right),\left(\frac{1}{\sqrt{2}}, \frac{-5+4 \sqrt{2}}{4}\right)$

[^0]Slant Asymptotes One last idea property to look out for are slant asymptotes. A curve $y=f(x)$ may get arbitrarily close to another curve $y=g(x)$ as $x \rightarrow \pm \infty$: in such a case we say that f is asymptotic to g. When the graph of g is a straight line, we call this a slant asymptote of f.

Examples

1. $f(x)=\frac{x^{2}+x+1}{x}=x+1+\frac{1}{x}$ is asymptotic to $g(x)=x+1$ (since $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0$). Therefore $y=x+1$ is a slant asymptote of f.
2. $h(x)=x^{3}-\frac{1}{x^{2}}$ is asymptotic to $y=x^{3}$.

Homework

Try sketch each of the following functions:

1. $y=x^{4}+8 x^{3}-270 x^{2}+1$
2. $y=\frac{4 x+4}{x^{2}+3}$
3. $y=\frac{x^{2}}{x^{2}-4}$
4. $y=\frac{\ln x}{x^{2}}$

[^0]: ${ }^{1}$ It may not be worth computing the y-co-ordinate in a test if this will take a long time.

