5.4 Indefinite Integrals and the Net Change Theorem

The Fundamental Theorem of Calculus tells us that an anti-derivative of a continuous function f defined on an interval cointaining a may be written $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$. Given this relationship between anti-derivatives and integrals we introduce a new notation for anti-derivatives:

$$
F(x)=\int f(x) \mathrm{d} x \quad \text { means the same thing as } \quad F^{\prime}(x)=f(x)
$$

Definition. If f is a function which has an anti-derivative, then the indefinite integral of f is denoted $\int f(x) \mathrm{d} x$. This expression represents either:

1. All anti-derivatives of f.
2. A particular anti-derivative of f (rarely).

Be careful: the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ is a number, while the indefinite integral $\int f(x) \mathrm{d} x$ is a function or a family of functions: indeed

$$
\int_{a}^{b} f(x) \mathrm{d} x=\left[\int f(x) \mathrm{d} x\right]_{a}^{b}
$$

Table of Indefinite Integrals

We can rewrite the table of anti-derivatives from Section 4.9 as indefinite integrals:

$$
\begin{array}{ll}
\int k f(x) \mathrm{d} x=k \int f(x) \mathrm{d} x, & k \text { constant } \\
\int f(x)+g(x) \mathrm{d} x=\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x \\
\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 & \\
\int \cos x \mathrm{~d} x=\sin x & \int \sin x \mathrm{~d} x=-\cos x \\
\int \sec ^{2} x \mathrm{~d} x=\tan x & \int \csc ^{2} x \mathrm{~d} x=-\cot x \\
\int \sec x \tan x \mathrm{~d} x=\sec x & \int \csc x \cot x \mathrm{~d} x=-\csc x \\
\int x^{-1} \mathrm{~d} x=\ln |x| & \int e^{x} \mathrm{~d} x=e^{x} \\
\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\sin ^{-1} x & \int \frac{1}{1+x^{2}} \mathrm{~d} x=\tan ^{-1} x
\end{array}
$$

Examples

1. $\int 3 x^{2}-1 \mathrm{~d} x=x^{3}-x+c$
2. $\int 4 x-3 e^{x}-\cos x \mathrm{~d} x=2 x^{2}-3 e^{x}-\sin x+c$
3. $\int 4 x-3 \sin x-\cos x \mathrm{~d} x=2 x^{2}+3 \cos x-\sin x+c$
4. $\int \frac{2 x^{4}-3 \sqrt{x}}{x^{3}} \mathrm{~d} x=\int 2 x-3 x^{-5 / 2} \mathrm{~d} x=x^{2}-3 \cdot \frac{-2}{3} x^{-3 / 2}+c=x^{2}+2 x^{-3 / 2}+c$
5. To compute the net area under a curve, we have the option of first evaluating the indefinite integral. For example,

$$
\int x^{3}-6 \sin x \mathrm{~d} x=\frac{1}{4} x^{4}+6 \cos x+c
$$

whence the net area under the curve $y=x^{3}-6 \sin x$ between $x=0$ and $x=\pi$ is

$$
\frac{1}{4} x^{4}+\left.6 \cos x\right|_{0} ^{\pi}=\frac{1}{4} \pi^{4}-6-(0+6)=\frac{1}{4} \pi^{4}-12
$$

Discontinuous Functions

As we saw in the discussion of anti-derivatives, we must be careful of $\int f(x) \mathrm{d} x$ when f is discontinuous.
Example $f(x)=\frac{2 x^{2}-2 x}{x-1}+\frac{1}{x^{2}}$ is continuous except when $x=0$ or 1 .
If $x \neq 0,1$ then $f(x)=2 x+\frac{1}{x^{2}}$, and so the general indefinite integral of f is

$$
\begin{aligned}
& \int f(x) \mathrm{d} x=\int 2 x+\frac{1}{x^{2}} \mathrm{~d} x=x^{2}-\frac{1}{x}+c \\
& \quad= \begin{cases}x^{2}-\frac{1}{x}+c_{1} & x<0 \\
x^{2}-\frac{1}{x}+c_{2} & 0<x<1 \\
x^{2}-\frac{1}{x}+c_{3} & 1<x\end{cases}
\end{aligned}
$$

where the constants c_{1}, c_{2}, c_{3} may be different.

The animation shows several anti-derivatives of f in blue against the original curve f in black

The Net Change Theorem

This is merely a rephrasing of the Fundamental Theorem, part 2. Recall that the derivative F^{\prime} is the rate of change of F. The net change in the value of F over an interval $[a, b]$ is the difference $F(b)-F(a)$.

Theorem (Net Change Theorem). The integral of the rate of change of a function is the net change in that function:

$$
\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)
$$

By contrast, the total chang \rrbracket^{1} is the integral $\int_{a}^{b}\left|F^{\prime}(x)\right| \mathrm{d} x$

[^0]Example Let $F(x)=2-2 e^{-x}-x$, so that $F^{\prime}(x)=2 e^{-x}-1$.
The net change in $F(x)$ over $[0,2]$ is clearly the difference $F(2)-F(0)=-2 e^{-2}$. In terms of the pictures below and the net change theorem, we are computing the difference between the areas A_{1} and A_{2} :

$$
\int_{0}^{2} F^{\prime}(x) \mathrm{d} x=A_{1}-A_{2}=F(2)-F(0)=-2 e^{-2}
$$

To compute the total change of $F(x)$ over the interval, we need to find the sum of the areas A_{1}, A_{2}. This requires solving $F^{\prime}(x)=0$ to obtain $x=\ln 2$. The total change is then

$$
\begin{aligned}
& \int_{0}^{2}\left|F^{\prime}(x)\right| \mathrm{d} x=A_{1}+A_{2}=\int_{0}^{\ln 2} F^{\prime}(x) \mathrm{d} x+\int_{\ln 2}^{2}-F^{\prime}(x) \mathrm{d} x \\
& \quad=F(\ln 2)-F(0)-(F(2)-F(\ln 2))=2 e^{-2}+2-2 \ln 2
\end{aligned}
$$

Distance and Displacement In Physics, the distinction between net and total change is exactly the discrepancy between displacement and distance, or between velocity and speed. ${ }^{2}$

Displacement Net change in position $=$ integral of velocity.
Distance travelled Total change in position $=$ integral of speed.
If you walk directly the the store and back, your displacement would be zero, but your distance travelled would be positive.

For example suppose that a particle has velocity $v(t)=4 \sin t \mathrm{~m} / \mathrm{s}$ at time t seconds.

Displacement $=$ Net Change $=0$

Distance $=$ Total movement >0

[^1]The displacement of the particle over the time interval $0 \leq t \leq 2 \pi$ is then

$$
\begin{aligned}
s(2 \pi)-s(0) & =\int_{0}^{2 \pi} v(t) \mathrm{d} t=\int_{0}^{2 \pi} 4 \sin t \mathrm{~d} t=-\left.4 \cos t\right|_{0} ^{2 \pi} \\
& =-4-(-4)=0 \mathrm{~m}
\end{aligned}
$$

The distance traveled over the same time period is

$$
\begin{aligned}
& \int_{0}^{2 \pi}|v(t)| \mathrm{d} t=\int_{0}^{\pi} 4 \sin t \mathrm{~d} t+\int_{\pi}^{2 \pi}-4 \sin t \mathrm{~d} t \\
& \quad=-\left.4 \cos t\right|_{0} ^{\pi}+\left.4 \cos t\right|_{\pi} ^{2 \pi}=4-(-4)+4-(-4)=16 \mathrm{~m}
\end{aligned}
$$

Suggested problems

1. A particle starts at rest at $t=0$. Its acceleration is given by

$$
a(t)=2-t \mathrm{~m} / \mathrm{s}^{2} .
$$

(a) Find the velocity at time t.
(b) Find the displacement of the particle over the time interval $0 \leq t \leq 6$.
(c) Find the distance traveled by the particle in the same time period.
2. A plane starts at $10,000 \mathrm{ft}$ above sea level and its altitude changes at a rate $f(t) \mathrm{ft} / \mathrm{min}$.
(a) What is represented by the quantity $10,000+\int_{0}^{12} f(t) \mathrm{d} t$?
(b) If $\int_{0}^{20} f(t) \mathrm{d} t=-12,000$, what must have happened to the plane?

[^0]: ${ }^{1}$ Counts all changes in F positively

[^1]: ${ }^{2}$ Speed is the length of the velocity vector and is therefore ≥ 0. In one-dimension this is absolute value: speed $=|v(t)|$.

