7.4 Integration by Partial Fractions

The method of partial fractions is used to integrate rational functions. That is, we want to compute

$$
\int \frac{P(x)}{Q(x)} \mathrm{d} x \text { where } P, Q \text { are polynomials. }
$$

First reduce ${ }^{1}$ the integrand to the form $S(x)+\frac{R(x)}{Q(x)}$ where ${ }^{\circ} R<{ }^{\circ} Q$.

Example Here we write the integrand as a polynomial plus a rational function $\frac{7}{x+2}$ whose denominator has higher degreee than its numerator. Thankfully, this expression can be easily integrated using logarithms.

$$
\begin{aligned}
& \frac{x^{2}+3}{x+2}=\frac{x(x+2)-2 x+3}{x+2}=x+\frac{-2(x+2)+4+3}{x+2}=x-2+\frac{7}{x+2} \\
\Longrightarrow & \int \frac{x^{2}+3}{x+2} \mathrm{~d} x=\int x-2+\frac{7}{x+2} \mathrm{~d} x=\frac{1}{2} x^{2}-2 x+7 \ln |x+2|+c
\end{aligned}
$$

What if ${ }^{\circ} Q \geq 2$?
If the denominator $Q(x)$ is quadratic or has higher degree, we need another trick:
Theorem. Suppose that ${ }^{\circ} R<{ }^{\circ} Q$. Then the rational function $\frac{R(x)}{Q(x)}$ can be written as a sum of fractions of the form

$$
\frac{A}{(a x+b)^{m}} \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{n}}
$$

where A, B, a, b, c are constants and m, n are positive integers.
Expressions such as the above can all be integrated using either logarithms or trigonometric substitutions.

Example With a little experimenting, you should be convinced that

$$
\frac{3 x^{2}+2 x+3}{x^{3}+x}=\frac{3}{x}+\frac{2}{1+x^{2}}
$$

It follows that

$$
\int \frac{3 x^{2}+2 x+3}{x^{3}+x} \mathrm{~d} x=3 \ln |x|+2 \tan ^{-1} x+c
$$

The burning question is how to find the expressions in the Therorem. The approach depends on the form of the denominator $Q(x)$.

[^0]
Case 1: Distinct Linear Factors

Suppose that our denominator can be factorized completely into distinct linear factors. That is

$$
Q(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

where the values a_{1}, \ldots, a_{n} are all different $[2$
Theorem. For such a Q, there exist constants A_{1}, \ldots, A_{n} such that

$$
\begin{equation*}
\frac{R(x)}{Q(x)}=\sum_{i=1}^{n} \frac{A_{i}}{x-a_{i}}=\frac{A_{1}}{x-a_{1}}+\cdots+\frac{A_{n}}{x-a_{n}} \tag{*}
\end{equation*}
$$

whence the integral can be easily computed term-by-term:

$$
\int \frac{R(x)}{Q(x)} \mathrm{d} x=\sum_{i=1}^{n} \int \frac{A_{i}}{x-a_{i}} \mathrm{~d} x=\sum_{i=1}^{n} A_{i} \ln \left|x-a_{i}\right|+c
$$

We find the constants A_{i} by putting the right hand side of $(*)$ over the common denominator $Q(x)$

$$
\frac{R(x)}{Q(x)}=\frac{R(x)}{\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)}=\frac{A_{1}}{x-a_{1}}+\cdots+\frac{A_{n}}{x-a_{n}}
$$

and comparing numerators.

Examples

1. According to the Theorem, there exist constants A, B such that

$$
\frac{x+8}{x^{2}+x-2}=\frac{x+8}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

Summing the right hand side, we obtain

$$
\frac{x+8}{(x-1)(x+2)}=\frac{A(x+2)+B(x-1)}{(x-1)(x+2)}
$$

Since the denominators are equal, it follows that the numerators are equal:

$$
x+8=A(x+2)+B(x-1)
$$

This is a relationship between A, B which holds for all $\|^{3} x$: every value of x gives a valid relationship between A and B. Evaluating at $x=1$ and $x=-2$ gives two very simple expressions:

$$
\begin{array}{ll}
x=1: & 9=3 A \Longrightarrow A=3 \\
x=-2: & \\
x=-3 B \Longrightarrow B=-2
\end{array}
$$

Putting it all together, we have

$$
\begin{aligned}
\int \frac{x+8}{x^{2}+x-2} \mathrm{~d} x & =\int \frac{3}{x-1}-\frac{2}{x+2} \mathrm{~d} x=3 \ln |x-1|-2 \ln |x+2|+c \\
& =\ln \frac{|x-1|^{3}}{|x+2|^{2}}+c
\end{aligned}
$$

[^1]2. We know that there exist constants A, B, C such that
$$
\frac{x^{2}+2}{x^{3}-x}=\frac{x^{2}+2}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}
$$

Combining the right hand side yields

$$
x^{2}+2=A(x-1)(x+1)+B x(x+1)+C x(x-1)
$$

Now evaluate at $x=0, \pm 1$:

$$
\begin{array}{ll}
x=0: & 2=-A \Longrightarrow A=-1 \\
x=1: & 3=2 B \Longrightarrow B=\frac{3}{2} \\
x=-1: & 3=2 C \Longrightarrow C=\frac{3}{2}
\end{array}
$$

It follows that

$$
\begin{aligned}
\int \frac{x^{2}+2}{x^{3}-x} \mathrm{~d} x & =\int \frac{-2}{x}+\frac{3}{2(x-1)}+\frac{3}{2(x+1)} \mathrm{d} x \\
& =-2 \ln |x|+\frac{3}{2}(\ln |x-1|+\ln |x+1|)+c \\
& =\ln \frac{\left|x^{2}-1\right|^{\frac{3}{2}}}{x^{2}}+c
\end{aligned}
$$

Case 2: Repeated Linear Factors

Suppose that when we factorize $Q(x)$ we obtain a repeated linear factor. That is, some term of the form $(x-a)^{m}$ where $m \geq 2$. In a partial fractions decomposition, such a factor produces m seperate contributions:

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{m}}{(x-a)^{m}}
$$

each of which can be integrated normally. One way to remember this is to count the constants: $(x-a)^{m}$ has degree m and must therefore correspond to m distinct terms.

Examples

1. $\frac{x-2}{x^{2}(x-1)}$ has a repeated factor of x in the denominator. The single factor of $x-1$ behaves exactly as in Case 1. We therefore have constants A, B, C such that

$$
\frac{x-2}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}
$$

Combining the right hand side and cancelling the denominators yield $\4

$$
x-2=A x(x-1)+B(x-1)+C x^{2}
$$

[^2]There are only two nice places at which to evaluate this expression:

$$
\begin{array}{ll}
x=0: & -2=-B \Longrightarrow B=2 \\
x=1: & -1=C
\end{array}
$$

To obtain A we have choices. Either evaluate (\dagger) at another value of x, or compare coefficients. For example, it is easy to see that the coefficient of x^{2} on the right side of (\dagger) is $A+C$. This is clearly zero, since ther is no x^{2} term on the left. We might write this as

$$
\operatorname{coeff}\left(x^{2}\right): \quad 0=A+C \Longrightarrow A=-C=1
$$

Putting it all together, we have

$$
\int \frac{x-2}{x^{2}(x-1)} \mathrm{d} x=\int \frac{1}{x}+\frac{2}{x^{2}}-\frac{1}{x-1} \mathrm{~d} x=\ln \frac{|x|}{|x-1|}-\frac{2}{x}+c
$$

2. Suppose we want to integrate $\frac{x^{3}+3 x+1}{(x+1)^{2}(x-2)^{2}}$. We have two repeated factors, whence there exist constants A, B, C, D such that

$$
\frac{x^{3}+3 x+1}{(x+1)^{2}(x-2)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}
$$

Combining the right hand side and cancelling the denominators yields

$$
x^{3}+3 x+1=A(x+1)(x-2)^{2}+B(x-2)^{2}+C(x+1)^{2}(x-2)+D(x+1)^{2}
$$

We evaluate at the two nice places then compare some coefficients and evaluate at $x=0$:

$$
\begin{array}{ll}
x=2: & 15=9 D \Longrightarrow D=\frac{5}{3} \\
x=-1: & -3=9 B \Longrightarrow B=-\frac{1}{3} \\
\operatorname{coeff}\left(x^{3}\right): & 1=A+C \\
x=0: & 1=4 A+4 B-2 C+D \Longrightarrow 2 A-C=\frac{1}{3}
\end{array}
$$

The last two equations can be solved to obtain $A=\frac{4}{9}$ and $C=\frac{5}{9}$. The final integral is then

$$
\begin{aligned}
\int \frac{x^{3}+3 x+1}{(x+1)^{2}(x-2)^{2}} \mathrm{~d} x & =\int \frac{4}{9(x+1)}-\frac{1}{3(x+1)^{2}}+\frac{5}{9(x-2)}+\frac{5}{3(x-2)^{2}} \mathrm{~d} x \\
& =\frac{4}{9} \ln |x+1|+\frac{1}{3(x+1)}+\frac{5}{9} \ln |x-2|-\frac{5}{3(x-2)}+c \\
& =\frac{1}{9} \ln |x+1|^{4}|x-2|^{5}+\frac{1}{3(x+1)}-\frac{5}{3(x-2)}+c
\end{aligned}
$$

Case 3: Quadratic Factors

Suppose that the denominator $Q(x)$ contains an irreducible quadratic term: a term of the form ${ }^{5}$

$$
a x^{2}+b x+c \text { where } b^{2}-4 a c<0
$$

Each such factor generates a partial fraction of the form

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

which can be integrated using logarithms and/or tangent substitutions ${ }^{6}$
Example The rational function $\frac{x^{2}-x+2}{x^{3}+4 x}=\frac{x^{2}-x+2}{x\left(x^{2}+4\right)}$ contains the irreduciuble quadratic $x^{2}+4$ in its denominator. We therefore know that there exist constants A, B, C such that

$$
\frac{x^{2}-x+2}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

Combining the right hand side and equating numerators yields

$$
x^{2}-x+2=A\left(x^{2}+4\right)+(B x+C) x
$$

which can be solved (try it!) to obtain

$$
A=\frac{1}{2}, \quad B=\frac{1}{2}, \quad C=-1
$$

It follows that

$$
\begin{aligned}
\int \frac{x^{2}-x+2}{x^{3}+4 x} \mathrm{~d} x & =\int \frac{1}{2 x}+\frac{x-2}{2\left(x^{2}+4\right)} \mathrm{d} x=\frac{1}{2} \ln |x|+\int \frac{x}{2\left(x^{2}+4\right)}-\frac{1}{x^{2}+4} \mathrm{~d} x \\
& =\frac{1}{2} \ln |x|+\frac{1}{4} \ln \left(x^{2}+4\right)-\frac{1}{2} \tan ^{-1} \frac{x}{2}+c
\end{aligned}
$$

We had to be a little creative with the quadratic term in order to find an anti-derivative.

Case 4: Repeated Quadratic Factors (very hard!)

If $Q(x)$ contains a repeated factor $\left(a x^{2}+b x+c\right)^{m}$ where $a x^{2}+b x+c$ is irreducible and $m \geq 2$, then each such expression yields the m terms

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{m} x+B_{m}}{\left(a x^{2}+b x+c\right)^{m}}
$$

Each term may be integrated similarly to Case 3: part by inspection, part by completing the square.

[^3](Partial) Example To integrate $\frac{x^{3}+2 x^{2}+4}{\left(x^{2}+2 x+5\right)^{2}(x-3)^{4}(x-2)^{2}}$ we first seek a partial fraction decomposition:
\[

$$
\begin{aligned}
\frac{x^{3}+2 x^{2}+4}{\left(x^{2}+2 x+5\right)^{2}(x-3)^{4}(x-2)^{2}}=\frac{A x+B}{x^{2}+2 x+5} & +\frac{C x+D}{\left(x^{2}+2 x+5\right)^{2}} \\
+\frac{E}{x-3} & +\frac{F}{(x-3)^{2}}+\frac{G}{(x-3)^{3}}+\frac{H}{(x-3)^{4}} \\
& +\frac{I}{x-2}+\frac{J}{(x-2)^{2}}
\end{aligned}
$$
\]

This is long and messy. The first two terms may be integrated by completing the square and substituting $u=x+1$

$$
x^{2}+2 x+5=(x+1)^{2}+4=u^{2}+1
$$

The integral of these terms will then be a combination of expressions such as

$$
\tan ^{-1} \frac{u}{2}, \quad \ln \left(u^{2}+1\right), \quad\left(u^{2}+1\right)^{-1}
$$

If you're interested in the solution, ask a computer to help: the mathematician in you should be comfortable believing that it could be done!

Rationalizing

A clever substitution can sometimes convert an irrational expression into a rational one, to which the partial fractions method may be applied.
For example, the substitution $u^{3}=x-7\left(\mathrm{~d} x=3 u^{2} \mathrm{~d} u\right)$ gives

$$
\begin{aligned}
\int \frac{\sqrt[3]{x-7}}{x+1} \mathrm{~d} x & =\int \frac{3 u^{3}}{u^{3}+8} \mathrm{~d} u=\int 3-\frac{24}{(u+2)\left(u^{2}-2 u+4\right)} \mathrm{d} u \\
& =3 u+\ln \frac{u^{2}-2 u+4}{(u+2)^{2}}-2 \sqrt{3} \tan ^{-1} \frac{u-1}{\sqrt{3}}+c \quad \quad \quad \text { (partial fractions in here) } \\
& =3(x-7)^{1 / 3}+\ln \frac{(x-7)^{2 / 3}-2(x-7)^{1 / 3}+4}{\left((x-7)^{1 / 3}+2\right)^{2}}-2 \sqrt{3} \tan ^{-1} \frac{(x-7)^{1 / 3}-1}{\sqrt{3}}+c
\end{aligned}
$$

A similar approach (substituting $u=\sqrt{x-2}$) rationalizes the integral

$$
\int \frac{1}{(x-2)(x-2+\sqrt{x-2})} \mathrm{d} x=\int \frac{2 \mathrm{~d} u}{u^{2}(u+1)}
$$

Suggested problems

1. Evaluate the integrals:
(a) $\int \frac{8}{(x-2)(x+6)} \mathrm{d} x$
(b) $\int \frac{x}{(x-6)(x+2)^{2}} \mathrm{~d} x$
2. Evaluate the integrals:
(a) $\int_{1}^{2} \frac{8-x^{2}}{x\left(x^{2}+5 x+8\right)} \mathrm{d} x$
(b) $\int \frac{1}{y^{4}+3 y^{2}+1} \mathrm{~d} y$
3. Evaluate $\int \frac{d x}{x^{2}-1}$ in two ways: using partial fractions and using a trigonometric substitution. ${ }^{7}$ Reconcile your two answers.
[^4]
[^0]: ${ }^{1}$ By Long Division or some other Torture...

[^1]: ${ }^{2}$ We assume for clarity that the leading term of $Q(x)$ is x^{n} (coefficient 1). If not, absorb it into the numerator!
 ${ }^{3}$ You might worry that it doesn't when $x=1$ or $x=-2$ because of the denominator. The fact fact that polynomials are continuous combined with $x+8=A(x+2)+B(x-1)$ everywhere else guarantees that we have equality everywhere.

[^2]: ${ }^{4}$ Be careful: think about what each term is missing compared to the common denominator.

[^3]: ${ }^{5}$ Thus $a x^{2}+b x+c$ cannot be factored (over \mathbb{R}) into linear terms.
 ${ }^{6}$ Warning: These examples are often very involved. Master Cases 1 and 2 first!

[^4]: ${ }^{7}$ Look up the integral of $\csc \theta$ if you need to...

