
7.4 Integration by Partial Fractions

The method of partial fractions is used to integrate rational functions. That is, we want to compute

∫ P(x)
Q(x)

dx where P, Q are polynomials.

First reduce1 the integrand to the form S(x) + R(x)
Q(x) where °R < °Q.

Example Here we write the integrand as a polynomial plus a rational function 7
x+2 whose denom-

inator has higher degreee than its numerator. Thankfully, this expression can be easily integrated
using logarithms.

x2 + 3
x + 2

=
x(x + 2)− 2x + 3

x + 2
= x +

−2(x + 2) + 4 + 3
x + 2

= x− 2 +
7

x + 2

=⇒
∫ x2 + 3

x + 2
dx =

∫
x− 2 +

7
x + 2

dx =
1
2

x2 − 2x + 7 ln |x + 2|+ c

What if °Q ≥ 2?

If the denominator Q(x) is quadratic or has higher degree, we need another trick:

Theorem. Suppose that °R < °Q. Then the rational function R(x)
Q(x) can be written as a sum of fractions of the

form

A
(ax + b)m

Ax + B
(ax2 + bx + c)n

where A, B, a, b, c are constants and m, n are positive integers.

Expressions such as the above can all be integrated using either logarithms or trigonometric substi-
tutions.

Example With a little experimenting, you should be convinced that

3x2 + 2x + 3
x3 + x

=
3
x
+

2
1 + x2

It follows that∫ 3x2 + 2x + 3
x3 + x

dx = 3 ln |x|+ 2 tan−1 x + c

The burning question is how to find the expressions in the Therorem. The approach depends on
the form of the denominator Q(x).

1By Long Division or some other Torture. . .
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Case 1: Distinct Linear Factors

Suppose that our denominator can be factorized completely into distinct linear factors. That is

Q(x) = (x− a1)(x− a2) · · · (x− an)

where the values a1, . . . , an are all different.2

Theorem. For such a Q, there exist constants A1, . . . , An such that

R(x)
Q(x)

=
n

∑
i=1

Ai

x− ai
=

A1

x− a1
+ · · ·+ An

x− an
(∗)

whence the integral can be easily computed term-by-term:∫ R(x)
Q(x)

dx =
n

∑
i=1

∫ Ai

x− ai
dx =

n

∑
i=1

Ai ln |x− ai|+ c

We find the constants Ai by putting the right hand side of (∗) over the common denominator Q(x)

R(x)
Q(x)

=
R(x)

(x− a1) · · · (x− an)
=

A1

x− a1
+ · · ·+ An

x− an

and comparing numerators.

Examples

1. According to the Theorem, there exist constants A, B such that

x + 8
x2 + x− 2

=
x + 8

(x− 1)(x + 2)
=

A
x− 1

+
B

x + 2

Summing the right hand side, we obtain

x + 8
(x− 1)(x + 2)

=
A(x + 2) + B(x− 1)

(x− 1)(x + 2)

Since the denominators are equal, it follows that the numerators are equal:

x + 8 = A(x + 2) + B(x− 1)

This is a relationship between A, B which holds for all3 x: every value of x gives a valid rela-
tionship between A and B. Evaluating at x = 1 and x = −2 gives two very simple expressions:

x = 1 : 9 = 3A =⇒ A = 3
x = −2 : 6 = −3B =⇒ B = −2

Putting it all together, we have∫ x + 8
x2 + x− 2

dx =
∫ 3

x− 1
− 2

x + 2
dx = 3 ln |x− 1| − 2 ln |x + 2|+ c

= ln
|x− 1|3

|x + 2|2
+ c

2We assume for clarity that the leading term of Q(x) is xn (coefficient 1). If not, absorb it into the numerator!
3You might worry that it doesn’t when x = 1 or x = −2 because of the denominator. The fact fact that polynomials are

continuous combined with x + 8 = A(x + 2) + B(x− 1) everywhere else guarantees that we have equality everywhere.
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2. We know that there exist constants A, B, C such that

x2 + 2
x3 − x

=
x2 + 2

x(x− 1)(x + 1)
=

A
x
+

B
x− 1

+
C

x + 1

Combining the right hand side yields

x2 + 2 = A(x− 1)(x + 1) + Bx(x + 1) + Cx(x− 1)

Now evaluate at x = 0,±1:

x = 0 : 2 = −A =⇒ A = −1

x = 1 : 3 = 2B =⇒ B =
3
2

x = −1 : 3 = 2C =⇒ C =
3
2

It follows that∫ x2 + 2
x3 − x

dx =
∫ −2

x
+

3
2(x− 1)

+
3

2(x + 1)
dx

= −2 ln |x|+ 3
2
(ln |x− 1|+ ln|x + 1|) + c

= ln
|x2 − 1| 32

x2 + c

Case 2: Repeated Linear Factors

Suppose that when we factorize Q(x) we obtain a repeated linear factor. That is, some term of the
form (x− a)m where m ≥ 2. In a partial fractions decomposition, such a factor produces m seperate
contributions:

A1

x− a
+

A2

(x− a)2 + · · ·+ Am

(x− a)m

each of which can be integrated normally. One way to remember this is to count the constants:
(x− a)m has degree m and must therefore correspond to m distinct terms.

Examples

1. x−2
x2(x−1) has a repeated factor of x in the denominator. The single factor of x− 1 behaves exactly
as in Case 1. We therefore have constants A, B, C such that

x− 2
x2(x− 1)

=
A
x
+

B
x2 +

C
x− 1

Combining the right hand side and cancelling the denominators yields4

x− 2 = Ax(x− 1) + B(x− 1) + Cx2 (†)

4Be careful: think about what each term is missing compared to the common denominator.
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There are only two nice places at which to evaluate this expression:

x = 0 : − 2 = −B =⇒ B = 2
x = 1 : − 1 = C

To obtain A we have choices. Either evaluate (†) at another value of x, or compare coefficients.
For example, it is easy to see that the coefficient of x2 on the right side of (†) is A + C. This is
clearly zero, since ther is no x2 term on the left. We might write this as

coeff(x2) : 0 = A + C =⇒ A = −C = 1

Putting it all together, we have

∫ x− 2
x2(x− 1)

dx =
∫ 1

x
+

2
x2 −

1
x− 1

dx = ln
|x|
|x− 1| −

2
x
+ c

2. Suppose we want to integrate
x3 + 3x + 1

(x + 1)2(x− 2)2 . We have two repeated factors, whence there

exist constants A, B, C, D such that

x3 + 3x + 1
(x + 1)2(x− 2)2 =

A
x + 1

+
B

(x + 1)2 +
C

x− 2
+

D
(x− 2)2

Combining the right hand side and cancelling the denominators yields

x3 + 3x + 1 = A(x + 1)(x− 2)2 + B(x− 2)2 + C(x + 1)2(x− 2) + D(x + 1)2

We evaluate at the two nice places then compare some coefficients and evaluate at x = 0:

x = 2 : 15 = 9D =⇒ D =
5
3

x = −1 : − 3 = 9B =⇒ B = −1
3

coeff(x3) : 1 = A + C

x = 0 : 1 = 4A + 4B− 2C + D =⇒ 2A− C =
1
3

The last two equations can be solved to obtain A = 4
9 and C = 5

9 . The final integral is then

∫ x3 + 3x + 1
(x + 1)2(x− 2)2 dx =

∫ 4
9(x + 1)

− 1
3(x + 1)2 +

5
9(x− 2)

+
5

3(x− 2)2 dx

=
4
9

ln |x + 1|+ 1
3(x + 1)

+
5
9

ln |x− 2| − 5
3(x− 2)

+ c

=
1
9

ln |x + 1|4 |x− 2|5 + 1
3(x + 1)

− 5
3(x− 2)

+ c
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Case 3: Quadratic Factors

Suppose that the denominator Q(x) contains an irreducible quadratic term: a term of the form5

ax2 + bx + c where b2 − 4ac < 0

Each such factor generates a partial fraction of the form

Ax + B
ax2 + bx + c

which can be integrated using logarithms and/or tangent substitutions.6

Example The rational function
x2 − x + 2

x3 + 4x
=

x2 − x + 2
x(x2 + 4)

contains the irreduciuble quadratic x2 + 4

in its denominator. We therefore know that there exist constants A, B, C such that

x2 − x + 2
x3 + 4x

=
A
x
+

Bx + C
x2 + 4

Combining the right hand side and equating numerators yields

x2 − x + 2 = A(x2 + 4) + (Bx + C)x

which can be solved (try it!) to obtain

A =
1
2

, B =
1
2

, C = −1

It follows that∫ x2 − x + 2
x3 + 4x

dx =
∫ 1

2x
+

x− 2
2(x2 + 4)

dx =
1
2

ln |x|+
∫ x

2(x2 + 4)
− 1

x2 + 4
dx

=
1
2

ln |x|+ 1
4

ln(x2 + 4)− 1
2

tan−1 x
2
+ c

We had to be a little creative with the quadratic term in order to find an anti-derivative.

Case 4: Repeated Quadratic Factors (very hard!)

If Q(x) contains a repeated factor (ax2 + bx + c)m where ax2 + bx + c is irreducible and m ≥ 2, then
each such expression yields the m terms

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2 + · · ·+ Amx + Bm

(ax2 + bx + c)m

Each term may be integrated similarly to Case 3: part by inspection, part by completing the square.

5Thus ax2 + bx + c cannot be factored (over R) into linear terms.
6Warning: These examples are often very involved. Master Cases 1 and 2 first!
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(Partial) Example To integrate
x3 + 2x2 + 4

(x2 + 2x + 5)2(x− 3)4(x− 2)2 we first seek a partial fraction de-

composition:

x3 + 2x2 + 4
(x2 + 2x + 5)2(x− 3)4(x− 2)2 =

Ax + B
x2 + 2x + 5

+
Cx + D

(x2 + 2x + 5)2

+
E

x− 3
+

F
(x− 3)2 +

G
(x− 3)3 +

H
(x− 3)4

+
I

x− 2
+

J
(x− 2)2

This is long and messy. The first two terms may be integrated by completing the square and substi-
tuting u = x + 1

x2 + 2x + 5 = (x + 1)2 + 4 = u2 + 1

The integral of these terms will then be a combination of expressions such as

tan−1 u
2

, ln(u2 + 1), (u2 + 1)−1

If you’re interested in the solution, ask a computer to help: the mathematician in you should be
comfortable believing that it could be done!

Rationalizing

A clever substitution can sometimes convert an irrational expression into a rational one, to which the
partial fractions method may be applied.
For example, the substitution u3 = x− 7 (dx = 3u2 du) gives

∫ 3
√

x− 7
x + 1

dx =
∫ 3u3

u3 + 8
du =

∫
3− 24

(u + 2)(u2 − 2u + 4)
du

= 3u + ln
u2 − 2u + 4
(u + 2)2 − 2

√
3 tan−1 u− 1√

3
+ c (partial fractions in here)

= 3(x− 7)1/3 + ln
(x− 7)2/3 − 2(x− 7)1/3 + 4

((x− 7)1/3 + 2)2 − 2
√

3 tan−1 (x− 7)1/3 − 1√
3

+ c

A similar approach (substituting u =
√

x− 2) rationalizes the integral∫ 1
(x− 2)(x− 2 +

√
x− 2)

dx =
∫ 2 du

u2(u + 1)

Suggested problems

1. Evaluate the integrals:

(a)
∫ 8

(x− 2)(x + 6)
dx
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(b)
∫ x

(x− 6)(x + 2)2 dx

2. Evaluate the integrals:

(a)
∫ 2

1

8− x2

x(x2 + 5x + 8)
dx

(b)
∫ 1

y4 + 3y2 + 1
dy

3. Evaluate
∫ dx

x2−1 in two ways: using partial fractions and using a trigonometric substitution.7

Reconcile your two answers.

7Look up the integral of csc θ if you need to. . .
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