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LetAD+ be the theoryAD +DCR + “Every set of reals is ∞-Borel”+ “Ordinal Determinacy”.
For any Γ ⊆ P (R), letMΓ = ∪{m |m is transitive and ∃E,F ⊆ R×R (E,F ∈ Γ and (R/E, F ) ∼=
(m,∈))}. We’ll prove the following theorems:

Theorem 1. (Woodin) Assume ZF + AD + V = L(P (R)). Then the following are
equivalent:

1. AD+

2. Letting S = {B ⊆ R | B is Suslin co-Suslin}, MS ≺Σ1 V .

Let us call the statement in (2) above “Σ1-reflection” to Suslin co-Suslin.

Theorem 2. (Woodin) Assume ZF + AD+ + V = L(P (R)), then

1. Σ2
1 has the scale property.

2. M∆2
1
≺Σ1 V .

Proof. The theorem follows immediately from Theorem 1 and lemma 7.2 in [?], whose proof
is essentially due to Woodin.

In the course of proving Theorem ??, we shall prove part of the determinacy-to-large-
cardinals direction of the Derived Model Theorem. Let λ be a limit of Woodin cardinals,
and G be V-generic over Col(ω,< λ). We set

R∗G = ∪α<λRV [G|α],

Hom∗G = {p[T ] ∩ R∗G | ∃α < λ(T ∈ V [G|α], V [G|α] � T is λ-absolutely complemented)},

AG = {A ⊂ R∗G | A ∈ V (R∗G) and L(A,R∗G) � AD+},whereV(R∗G) = HOD
V[G]
V∪R∗G∪{R

∗
G}
.

Theorem 3. (Woodin) Assume ZF + AD+ + V = L(P (R)). Suppose also that if ADR
holds, then Θ is singular. Then there is a set X in some generic extension of V such that
setting M = L[X], then

1. for some λ, M � ZFC + λ is a limit of Woodins;

2. for some M-generic G over Col(ω,< λ):

• V = L(AG,R∗G), and



• Hom∗G = {B ⊆ R∗G | B is Suslin co-Suslin in V}.

Remark 4. • The model L(AG,R∗G) as in 2 of the previous theorem is called the “new”
derived model to distinguish it from the “old” derived model which is L(Hom∗G,R∗G).

• [?] shows that if V � AD+ + “there is a largest Suslin cardinal”, then we have the
same conclusions as those of Theorem ??. What we handle here is the case that
ADR+“Θ is singular” holds in V.

• Characterization of derived models is one of the main themes in this paper. We want
to answer the question: Is every model of AD+ a derived model? Theorem ?? and
the previous remark answer this question positively for the “no largest Suslin cardinal
+ Θ singular” and the “largest Suslin cardinal” cases. Woodin has shown that if
V � ADR + Θ is regular, then V is elementarily embeddable into a derived model of
HOD. A proof of this fact can be found in [?]. It’s not known whether V is actually a
derived model in this case.

The proof of Theorem 3 is implicit in that of the direction (1)⇒ (2) of theorem 1. Before
giving the proof of theorem 1, we’ll state a couple of corollaries of the above theorems, and
a key definition.

Corollary 5. Let M � ZFC + λ is a limit of Woodins, and let D be a derived model of M
below λ; then D satisfies: Σ1-reflection (to Suslin co-Suslin), Σ2

1 has the scale property, and
every non-empty Σ1 set A ⊆ P (R) has a ∆2

1 member.

Proof. Woodin has shown that D � AD+ (see [?] for a proof). Applying theorems 1 and 2
gives us the conclusions.

Corollary 6. Assume AD+. Then Ult(V,µ) is well-founded where µ is the Martin measure
on Turing degrees.

Proof. If not, then by Theorem 1, there is α, β < Θ such that Lα(Pβ(R)) � ”Ult(V, µ) is
ill-founded.” Since DCR holds and there is a surjection from R onto Lα(Pβ(R)), Lα(Pβ(R)) �
DC and this is a contradiction.

Definition 7. (ZF + AD + DCR) Suppose X is a set. The Solovay sequence defined
relative to X is the sequence 〈ΘX

α : α ≤ ΥX〉 where
(1) ΘX

0 is the supremum of the ordinals ξ such that there is a surjection φ : R→ ξ such
that φ is OD from X.

(2) ΘX
α = sup{ΘX

β | β < α} if α > 0 is limit.
(3) If ΘX

α < Θ then ΘX
α+1 is the supremum of the ordinals ξ such that there is a surjection

φ : R→ ξ such that φ is OD(X,A) where A is a set of reals of Wadge rank ΘX
α .

Remark 8. Suppose AD+ holds. Let ΘX
α < Θ be a member of the Solovay sequence and

A be a set of reals with Wadge rank ΘX
α . Let κ = sup{δ1

n(A) | n < ω}. Clearly κ < ΘX
α+1.

It’s an AD+ theorem that any B with Wadge rank ΘX
α has an ∞-Borel code CB ⊆ κ. Let

ξ < ΘX
α+1. We can define an ODX surjection π : P (κ) → ξ as follows. Given C ⊆ κ, if

C codes a tuple 〈CB, x, y〉 where x, y ∈ R, CB is an ∞− Borel code for a set B of Wadge
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rank ΘX
α , and if there is a pre-wellordering of the reals of order type ξ that is ODX(B, x),

then we let π(C) = πB(y) where πB : R→ ξ is the surjection associated with the least such
pre-wellordering; otherwise, π(C) = 0. So in fact, under AD+, ΘX

α+1 is the supremum of
ordinals ξ such that there is an ODX surjection from P (κ) onto ξ.

Remark 9. It’s worth pointing out that the Solovay sequence defined in Definition ?? is
“globally defined” i.e. defined in V. On the other hand, one can define the notion of “locally
defined” Solovay sequences, i.e. Solovay sequences defined in some L(A,R), for A ⊆ R. If
Θα+1 < ΘL(A,R) then Θα+1 is a member of the “locally defined” Solovay sequence in L(A,R).
Θα+1 cannot be a limit of Suslin cardinals in L(A,R) as otherwise, any ODV (A) relation
would have an ODV (A) uniformization. Thus Θα+1 = (Θγ+1)L(A,R), for some γ. Another
key point is the following. Suppose A ⊆ Θα+1 is ODV (B) for some B ⊆ R such that
w(B) < Θα+1. Let C = 〈Cβ | β < Θα+1〉, where C is an ODV (D) sequence such that each Cβ
is a pre-wellordering of R of length β, where w(D) = Θα. Then Θα+1 is regular in L(R)[A, C].
This is important because it makes the Woodins’ techniques for constructing measures under
AD described in [?] relevant. We state here a theorem which will be used heavily.

Theorem 10. (Woodin, see Theorem 5.6 of [?]) Assume ZF + DC + AD. Suppose X and
Y are sets and let

ΘX,Y = sup{α | there is an ODX,Y surjection π : R→ α}.

Then
HODX � ZFC + ΘX,Y is a Woodin cardinal.

Proof of Theorem 1:

We deal with the easy direction (2) ⇒ (1) first. Suppose there is a set of reals in V that
has no ∞-Borel codes. One can show that A has an ∞-Borel code if and only if A has an
∞-Borel code which is coded by a set of reals projective in A. So our supposition is Σ2

1. By
(2), there is a Suslin co-Suslin set B that has no∞-Borel codes; but this is absurd since any
tree T such that p[T] = B is an ∞-Borel code of B.

For Ordinal Determinacy, again suppose there is a set B in V such that Ordinal De-
terminacy fails for B. The ordinal game associated to B and pre-wellordering 6 of R has
a winning strategy if and only if it has a winning strategy projective in 6, by the Coding
Lemma. So our supposition is Σ2

1. By (2), there is a Suslin co-Suslin set B such that Ordinal
Determinacy fails for B. This contradicts a theorem of Moschovakis and Woodin which states
that Ordinal Determinacy holds for any Suslin co-Suslin set.

Finally, to see DCR holds. Suppose not. Again, by our hypothesis, there is a Suslin
co-Suslin relation E ⊆ R× R witnessing the failure of DCR. However, we can uniformize E
using the scale associated with a tree T such that p[T]=E. This gives us an infinite E-chain,
which is a contradiction. This completes the proof of (2)⇒ (1).

Remark 11. Our proof used that Σ2
1 reflects to Suslin co-Suslin, rather than the full Σ1-

reflection in (2). Derived models satisfy Σ2
1-reflection, hence they satisfy AD+; see [?] and

[?].
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The rest of the paper is dedicated to the proof of (1) ⇒ (2). First, assume there is a
largest Suslin cardinal. This is the easier case.

Lemma 12. If Θ is regular and V = L(P (R)) � φ[x] where x ∈ R and φ is Σ1, then there
is a transitive M such that M is a surjective image of R and (M,∈) � φ[x].

Proof. By reflection, Lα(P (R)) � φ[x] for some ordinal α. We’ll form a Skolem hull H
of Lα(P (R)). First, fix a surjection h : α×P (R) → Lα(P (R)). Let H0 = R. Suppose
we already have Hn and a surjection πn : R → Hn. To build Hn+1, for any a ∈ Hn

and any formula ϕ such that  Lα(P (R)) � ∃yϕ[y, a], pick the least β such that there is an
A ⊆ R such that Lα(P (R)) � ϕ[h(β,A), a]. Then let γ be the least such that there is
an A ⊆ R such that w(A) = γ and Lα(P (R)) � ϕ[h(β,A), a]. Denote the (β, γ) above
(βa, γa). Now, let Hn+1 = Hn ∪ {h(βa, A) | a ∈ Hn, w(A) = γa}. By regularity of Θ and
the fact that πn : R→ Hn is surjective, sup{γa | a ∈ Hn} < Θ. Hence, there is a surjection
πn+1 : R→ Hn+1. Finally, let H = ∪nHn. Hence H ≺ Lα(P (R)) by construction. Since Θ is
regular, R ⊆ H, and H � V = L(P (R)), it is easy to see that H collapses to some Lδ(Pγ(R))
for some δ, γ < Θ. Since Lδ(Pγ(R)) � φ[x], Lδ(Pγ(R)) is the desired M.

Lemma 13. Suppose there is a largest Suslin cardinal, then Θ is regular.

Proof. Let κ be the largest Suslin cardinal and T be a tree on ω2 × κ such that p[T] is a
universal Γ-set (where Γ is the boldface pointclass of κ-Suslin sets of reals).

For each A ⊆ R, we have L(T,A,R) � DC because V � DCR. Let TA be the image of T
under the Martin measure ultrapower map where the ultrapower is computed with respect
to functions in L(T,A,R). Because L(T,A,R) � DC, Ult(L(T,A,R), µT ) is wellfounded.
By relativizing the proof that P (R) ⊆ L(T ∗,R) to the universe L(T,A,R) (see [?]), we get
that A ∈ L(TA,R). Notice that TA only depends on w(A) but not A itself. So we in fact
have an enumeration 〈Tα | α < Θ〉 where for each α < Θ, Tα = TA for any A with Wadge
rank α. Now let γ = sup{supTα | α < Θ} and C ⊆ Θ× γ is such that (α, β) ∈ C ⇔ β ∈ Tα.
Then TA ∈ L[C] for any A ⊆ R. So P (R) ⊆ L(C,R). So V = L(C,R). The following claim
supplies an important step toward proving Θ is regular.

Claim 14. Θ is regular if and only if Collection holds, where Collection is the following
statement: “ (∀x ∈ R)(∃A ⊆ R) (x,A) ∈ U → (∃B ⊆ R)(∀x ∈ R)(∃y ∈ R) (x,Bx,y) ∈
U, where Bx,y = {z | 〈x, y, z〉 ∈ B}. ”

Proof. (⇐) Suppose Θ is singular. Let f : R → Θ be cofinal. So (∀x ∈ R)(∃A ⊆
R) (A is a pre-wellordering of R of length f(x)). By Collection, (∃B ⊆ R)(∀x ∈ R)(∃y ∈
R) (Bx,y is a pre-wellordering of length f(x)). Define g : R → Θ as follows: for any x ∈ R,
if x = (x0, x1, x2) and Bx0,x1 is a pre-wellordering of R of order type f(x0), then let g(x) =
rank of x2 in the pre-wellordering Bx0,x1 ; otherwise, let g(x) = 0. Clearly, g is onto. This is
a contradiction.

(⇒) Suppose Θ is regular. Let U be as in the hypothesis of Collection. For x ∈ R,
let f(x) be the least ξ such that there is A ⊆ R with Wadge rank ξ and (x,A) ∈ U .
Since Θ is regular, f is bounded in Θ. Fix an α < Θ such that α ≥ sup(rng(f)). Let
B = {(x, y, Bx,y) | x, y ∈ R, y Wadge reduces Bx,y to A}. Clearly, B satisfies the conclusion
of Collection.
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By claim ??, it suffices to prove that L(C,R) � Collection. So let U be as in the hypoth-
esis of Collection. Let B = {(x, y, Bx,y) | Bx,y is the least ODC(y) set such that (x,Bx,y) ∈
U}. This B clearly works because every set of reals in V = L(C,R) is ODC(y) for some real
y.

The proof of Lemma ?? also implies that DC holds, hence the Martin measure ultrapower
is well-founded. This fact is used to show that there is an M in a generic extension of V such
that V is a derived model of M. See [?] for a proof of this. The conclusion 2 of Theorem ??
then follows from Lemma ?? above and Lemma 7 of [?].

Now, we’re on to the “no largest Suslin cardinal” case. So we have ADR. First, assume
Θ is regular. By Lemma ??, MP (R) ≺Σ1 V . Since all sets of reals are Suslin co-Suslin, we’re
done.

From now on, we may assume that Θ is singular. We have that every set of reals is Suslin
co-Suslin. Our strategy is to Prikry-force a universe M such that V is a derived model of M.
This guarantees that Σ2

1-reflection holds in V, but with a little more argument, we’ll be able
to show Σ1-reflection holds in V. Most of what we are doing here, then, is proving Theorem
?? in the case ADR + Θ is singular.

Case 1: cof(Θ) = ω.
Let 〈Θα | α < Υ〉 be the Solovay sequence of V. Notice that cof(Υ) = ω. Hence, there

is a sequence 〈αi | i < ω〉 cofinal in Υ. We can and do take the sequence 〈αi | i < ω〉 to be
definable from a set of reals and from no ordinal parameters. The hypothesis implies that
every set of reals is Suslin, so given an α < Υ, let κ be the largest Suslin cardinal below
Θα+1. Set HODP (κ) = {A | ∀C ∈ TC(A ∪ {A}) C is OD from some B ∈ P (κ)}, then the
following hold:

(1.1) Θα+1 is the supremum of the ordinals ξ for which there is a surjection φ : P (κ)→ ξ
such that φ is OD.

(1.2) Θα+1 = ΘHODP (κ) .

(1.3) HODP (κ) = HODX , where X = {B ⊆ R | w(B) < Θα+1}.

(1.1) follows from Remark 8. Both (1.2) and (1.3) are immediate consequences of (1.1).
By (1.3), every bounded subset of Θα+1 belongs to HODP (κ). Now, for each i < ω, let κi be
the largest Suslin cardinal below Θαi+1 and µi be the supercompact (nonprincipal, fine, and
normal) measure on Pω1(P (κi)). Notice here that by ADR, Solovay’s super-compactness mea-
sure on Pω1(R) exists and is unique. Since P (κi) is the surjective image of R, µi exists and is
unique. Because it is unique, µi is OD. Also, let Xi be the set of all σ ∈ Pω1(P (κi)) such that

(2.1) HODσ∪{σ} � AD+

(2.2) HODσ∪{σ} 2 ADR

(2.3) the transitive collapse of σ is P (κσi )∩ HODσ∪{σ} where κσi is the largest Suslin

5



cardinal in HODσ∪{σ} .

Lemma 15. µi(Xi) = 1

Proof. Let ∏
σ

HODσ∪{σ}/µi = M,

where the ultraproduct is formed in the universe HODP (κi). The reason we do this is that
we do not have DC in V, and thus the ultraproduct formed in V might be illfounded. On
the other hand, HODP (κi) � DC, so M is well-founded, and we take it to be transitive. Let
σ∞ be the element of M represented by the identity function. By  Los, for all formulas φ,

M � φ[σ∞]⇔ µi({σ ∈ Pω1(P (κi)) | HODσ∪{σ} � φ[σ]}) = 1.

We should remark here that even though we don’t have AC,  Los theorem still goes through
because of normality (closure under diagonal intersections) of µi. The following claim will
complete the proof of the lemma.

Claim 16. The following hold:

1. The transitive collapse of σ∞ is P (κi).

2. R ∩M = R.

3. P (R) ∩M = {B | w(B) < Θαi+1} = P (R) ∩HODP (κi).

Proof. (1) and (2) are easy consequences of normality, so we leave them to the reader. To
prove (3), suppose first that w(B) < Θαi+1. So B ∈ HODP (κi). Let f(σ) = B ∩ σ for
σ ∈ Pω1(P (κi)). Then f ∈ HODP (κi) and [f ]µi = B. On the other hand, M ⊆ HODP (κi) as
the ultraproduct is formed in HODP (κi).

Let
T0 = {〈σ0, ..., σn〉 | σi ∈ Pω1(P (κi)) for all i}.

Let T be the set of all s = 〈σ0, ..., σn〉 ∈ T0 such that for all i ≤ n

(3.1) P (R)HOD{s} = P (R)HOD,

(3.2) σi ∈ Xi,

(3.3) σk ⊂ σi and σk ∈ HODσi∪{σi} for all k ≤ i,

(3.4) σk is countable in HODσi∪{σi} for all k < i,

(3.5) θσi is Woodin in HOD{s|(i+1)} and P (θσi)∩HOD{s|(i+1)} = P (θσi)∩HOD{s}, where
θσi = ΘHODσi∪{σi} . Note here that θσi is a successor in the Solovay sequence of HODσi∪{σi}
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Remark 17. For any s = 〈σ0, ..., σn〉 ∈ T0, HOD{s} = HODs. From now on, we’ll write
HODs for HOD{s}

Lemma 18. Let t = 〈σ0, ..., σn〉 be such that (3.1)-(3.4) hold. Let σ = σn, and set H =
HODt. Then

H = HOD
HODσ∪{σ}
H .

Proof. Here HODH consists of all sets HOD from members of H. Notice here that H ⊆
HODσ∪{σ}; hence the right hand side of the equation makes sense and H ⊆ HOD

HODσ∪{σ}
H .

The ⊇ direction follows from the fact that σ is OD from t.

Lemma 19. Let s ∈ T and dom(s) = i; then ∀∗µiσ (s+ 〈σ〉 ∈ T ).

Proof. Fix s ∈ T with dom(s) = i. It is easy to see that ∀∗µiσ, s+ 〈σ〉 satisfies (3.1)-(3.4), so
we address (3.5). We want to show ∀∗µiσ,HODs+〈σ〉 � θσ is Woodin. Let H = HODs+〈σ〉.
Let us work now in HODσ∪{σ}, where AD+ holds and ADR fails. This implies that Θ = ΘY

for some Y. Also, Θ is regular and DC holds. We have then from Theorem 5.6 of [?] that

HODH � Θ is Woodin.

By the previous theorem, H = HODH , hence we’re done.
Let s = 〈σ0, ..., σi−1〉. Without loss of generality, it is enough to see that (∀∗µiσ) P (θσi−1)∩

HODs = P (θσi−1) ∩ HODs+〈σ〉. It is clearly enough to show (∀∗µiσ) P (θσi−1) ∩ HODs ⊇
P (θσi−1)∩HODs+〈σ〉. Suppose not. We have (∀∗µiσ)(∃Aσ ⊆ θσi−1) (Aσ ∈ HODs+〈σ〉\HODs).
Here we take Aσ to be the least such set. Since θσi−1 is a fixed countable ordinal, we have
(∃A ⊆ θσi−1)(∀∗µiσ) (A = Aσ). But this A is in fact HODs since the supercompactness
measures are OD. Contradiction.

Lemma 20. Let s ∈ T with dom(s) = i. Let σ = s(dom(s) − 1). Then there is a partial
order P such that

1. HODs � P is a θσ-c.c. complete boolean algebra of cardinality θσ, and

2. for any A ⊆ κσ such that A ∈ HODσ∪{σ}, there is a filter GA on P such that

• GA is HODs-generic over P, and

• HOD{s,A} = HODs[GA].

Proof. Let H = HODs. Working in HODσ∪{σ}, where H = HODH by Lemma ??, let P be
the Vopenka algebra for adding subsets of κσ to HODH . So P is isomorphic to (O,⊆), where
O is the collection of all ODH subsets of P (κσ). Then (1) and (2) are standard properties
of the Vopenka algebra, where the filter GA in (2) is the filter generated by A.

Now we’re ready to define our Prikry forcing P. Conditions in P are pairs (s,F) such that
s ∈ T and F : T → V , F (∅) ∈ µ0, and for all 〈σ0, ..., σn〉 ∈ T , F (〈σ0, ..., σn〉) ∈ µn+1. The
ordering is defined by

(s0, F0) � (s1, F1)⇔ s1 ⊆ s0, (∀s ∈ T )(F0(t) ⊆ F1(t)), (∀i ∈ dom(s0)−dom(s1))(s0(i) ∈ F1(s0|i)).
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Lemma 21. Suppose Z ⊂ V P is countable, φ is a formula, and (s0, F0) ∈ P. Then there is
a condition (s0, G) ∈ P deciding φ[τ ] for all τ ∈ Z.

Proof. Since the usual proof requires DC, which we don’t have, we’ll give here a DC-free
proof. Fix τ ∈ Z. We’ll show that there is an (s0, G) deciding φ[τ ] such that G is OD from
s0, F, and τ . Let us say that u ∈ T is positive if and only if (∃G) ((u,G)  φ[τ ]), negative
if and only if (∃G) ((u,G)  −φ[τ ]), and ambiguous if and only if it is neither positive nor
negative. Notice that u cannot be both positive and negative.

For notational convenience, for u ∈ T with dom(u) = n+1, we write ∀∗uσP (σ) to mean
{σ | P (σ)} ∈ µn+1. Now define G = Gτ by: for v ∈ T , G(v) = {σ | v + 〈σ〉 is positive} ∩
F0(v) if (∀∗vσ) (v + 〈σ〉 is positive); G(v) = {σ | v + 〈σ〉 is negative} ∩ F0(v) if (∀∗vσ) (v +
〈σ〉 is negative); G(v) = {σ | v + 〈σ〉 is ambiguous} ∩ F0(v) if (∀∗vσ) (v + 〈σ〉 is ambiguous).
Clearly G is OD from s0, τ, F0 and (s0, G) � (s0, F0). If remains to see that (s0, G) decides
φ[τ ].

Claim 22. Let u ∈ T with dom(u) = n+1. Then

1. u is positive ⇒ ∀∗uσ (u+ 〈σ〉 is positive);

2. u is negative ⇒ ∀∗uσ (u+ 〈σ〉 is negative)

3. u is ambiguous ⇒ ∀∗uσ (u+ 〈σ〉 is ambiguous)

Proof. If u is positive, then there is an H such that (u,H)  φ[τ ]. But then whenever
σ ∈ H(u), (u+ 〈σ〉, H)  φ[τ ]. Since H(u) ∈ µn+1, we’re done. The proof is the same for u
being negative.

Suppose u is ambiguous and the conclusion of (3) is false. Without loss of generality,
we may assume ∀∗uσ (u + 〈σ〉 is positive). Let G = Gτ be as above. Then (u,G)  φ[τ ]
since if (v,H) � (u,G), then v is positive by and easy induction using part (1), and thus
(v,H) 1 −φ[τ ]. Hence u is in fact positive. Contradiction.

Claim 23. No u ∈ T is ambiguous.

Proof. Suppose u is ambiguous. Let G = Gτ be as in the previous claim. Let (v,H) � (u,G)
and (v,H) decide φ[τ ]. Then v is not ambiguous. On the other hand, by induction using
Claim 18 part (3), v is ambiguous. Contradiction.

By the previous claim, we may assume without loss of generality that s0 is positive. But
then (s0, Gτ )  φ[τ ], for otherwise, we have (v,H) � (s0, Gτ ) forcing −φ[τ ]. This implies
that v is negative. However, an induction using Claim 18 part (1) shows that v is positive.

Finally, let H(v) = ∩τ∈ZGτ (v). We get that (s0, H) decides φ[τ ] for all τ ∈ Z.

Let G ⊂ P is V-generic and sG = ∪{s | (s, F ) ∈ G}. Now we use Lemma ?? to prove the
following:

Lemma 24. For all i < ω, P (θi) ∩ HODV
sG|(i+1) = P (θi) ∩ HOD(V [G],V )

{sG} , where θi =

Θ
HODV

sG(i)∪{sG(i)}.
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Proof. The ⊆ direction is evident because we use V as a predicate in the definition of
HOD

(V [G],V )
{sG} . Suppose the converse direction fails for some i. Then there is a formula

ϕ(x0, x1, x2), an ordinal ξ, an n > i, an F such that (sG|n, F ) ∈ G, and

(sG|n, F )  {β < θi | (V [G], V ) � ϕ[β, ξ, sG]} /∈ HODV
{sG|(i+1)}.

By Lemma ??, given any (sG|n, F ) as above, there is (sG|n, F ∗) � (sG|n, F ) such that for all
β < θi, either (sG|n, F ∗)  (V [G], V ) � ϕ[β, ξ, sG], or (sG|n, F ∗)  (V [G], V ) � −ϕ[β, ξ, sG].
Hence we can find such a (sG|n, F ∗) in G. So {β < θi | (sG|n, F ∗)  (V [G], V ) � ϕ[β, ξ, sG]} =
{β < θi | ∃F ∗ (sG|n, F ∗)  (V [G], V ) � ϕ[β, ξ, sG]} ∈ HODV

{sG|n}. But sG|n ∈ T and n > i,

so by (3.5) {β < θi | (sG|n, F ∗)  (V [G], V ) � ϕ[β, ξ, sG]} ∈ HODV
{sG|(i+1)}. This is a

contradiction.

Fix a G ⊂ P such that G is V-generic. Let

N = HOD
(V [G],V )
{sG} .

It’s easy to see that ωV1 is a limit of Woodin cardinals in N, N � ZFC. Here is the key
lemma.

Lemma 25. V is a derived model of N.

Proof. To simplify the notation, let Ni = HODV
sG|(i+1) and θi = Θ

HODV
sG(i)∪{sG(i)} for each

i < n. Then θi is Woodin in Ni and P (θi) ∩Ni = P (θi) ∩Nj = P (θi) ∩N for all j ≥ i. As
mentioned above, ωV1 = sup{θi | i < ω}.

Now, let K be a Col(ω,< ωV1 )-generic over N such that R∗K = RV . To see that there is
such a K, it suffices to show that any x ∈ RV is generic over N for some poset P ∈ N |supi(θi).
Fix such an x and pick i such that x ∈ sG(i). By Lemma ??, x is P-generic over Ni, where P
is the Vopenka algebra of HODsG(i)∪{sG(i)} for adding a subset of κsG(i) to HODsG|(i+1) = Ni.
But P (θi)

Ni = P (θi)
N , so x is P-generic over N.

To finish the proof, we need to see that P (R)V = Hom∗K . It suffices to show that
P (R)V ⊆ Hom∗K . Because then if P (R)V ( Hom∗K , we get a sharp for V in a generic exten-
sion of V. This is impossible.

So let B ∈ P (R)V . B is Suslin co-Suslin. By Martin’s theorem, B and R\B are homoge-
neously Suslin as witnessed by homogeneous trees on ω × κ for some κ < Θ. So we can find
a countable sequence of ordinals f such that sup(range(f)) < Θ from which we can define a
pair of trees (T,U) over V such that p[T] = B = R\p[U]. The sequence f comes from the
measures of the homogeneity systems from which T and U are defined. Pick k large enough
so that ran(f) ⊆ sG(k). Also sG(k) ∩ Ord ∈ N . sG(k) is made countable in N(RV ) and
some real coding ran(f) is added. Hence, for some i < ω and g ∈ V generic over Ni for the
collapse of an ordinal < θi, we have f ∈ Ni[g]. So, for any j ≥ i, Nj[g] can decode f to get
the pair (T,U). Moreover, p[T ]Nj [g] = B ∩ RNj [g] = RNj [g] − p[U ]Nj [g]. Hence, B ∈ Hom∗K as
desired.

Now let φ be a Σ1 formula such that V � φ[R]. We want to show that there are α, β < Θ
such that Lα(Pβ(R)) � φ[R].
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Lemma 26. There is an A ∈ (Hom<ωV1
)N such that L(A,RN) � φ[RN ].

Proof. Let γ be the least such that Lγ(P (R)) � φ[R] and 〈αi | i < ω〉 is definable Lγ(P (R))
from a set of reals and no ordinal parameters. Since V is the derived model of N at ωV1 , the (Q
version of) stationary tower forcing gives an elementary embedding j : N → (M,E) such that

(10.1) crt(j) = ωN1 and j(ωN1 ) = ωV1 ;

(10.2) R(M,E) = RV ;

(10.3) P (R)V = (HomN
<ωV1

)∗ ⊆ j((Hom<ωV1
)N)

(10.4) j(A) = A∗ for each A ∈ (Hom<ωV1
)N , where A∗ = p[T ] ∩ RV for T a homoge-

neous tree in N such that p[T ] ∩ RN = A;

(10.5) γ is in the well-founded part of (M,E).

If (P (R))V 6= j((Hom<ωV1
)N), then there is an A ∈ j((Hom<ωV1

)N)\(P (R))V . Since

φ is Σ1 and by (10.2), (M,E) � L(A,R(M,E)) � φ[R(M,E)]. By elementarity, there is an A ∈
(Hom<ωV1

)N such that L(A,RN) � φ[RN ]. Hence, we may assume (P (R))V = j((Hom<ωV1
)N).

Since 〈αi | i < ω〉 is definable in Lγ(P (R)), from some B ∈ P (R)V = (HomN
<ωV1

)∗, let β < ωV1
such that there is a D ∈ N [K|β] such that B = D∗. Replacing N by N [K|β] if neccessary
where K is as in the previous lemma, we can assume 〈αi | i < ω〉 is in the range of j, say
j(〈α∗i | i < ω〉) = 〈αi | i < ω〉. Since N is a model of choice, we can choose (using 〈α∗i | i < ω〉)
a sequence 〈Ai | i < ω〉 ∈ N cofinal in (Hom<ωV1

)N . Let A ∈ (Hom<ωV1
)N code the Ai’s,

say A = {〈i, x(0), x(1)...〉 | x = 〈x(0), x(1)...〉 ∈ Ai}. Then A is in HomN
<ωV1

but not Wadge

reducible to any Ai. Contradiction.

Lemma ?? and the elementarity of the map j defined there finish the proof of the theorem
in the case cof(Θ) = ω.

Case 2: cof(Θ) > ω
By a result of Solovay, DC holds in this case (see [?]). Let µ be a measure on {α | cof(α) =

ω} induced by the measure on cof(Θ) < Θ which in turn is induced by the Martin measure
on Turing degrees.

For each α < Υ such that cof(α) = ω, let Iα = {A ⊂ Θα | sup(A) < Θα}. Therefore,

(11.1) HODIα � AD
+ + ADR

(11.2) ΘHODIα = ΘV
α

(11.3) for each X ∈ HODIα , ΘHODIα is a limit of Woodin cardinals in HOD{X}.

We’ll use a slightly different Prikry forcing to add an inner model N like before. The only
difference in this case is that we want ωV1 to be a limit of limits of Woodin cardinals in N.
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For each α < Υ such that cof(α) = ω, let µα be the supercompact measure on Pω1(Iα)
induced by the Solovay measure on Pω1(R).

Lemma 27. For each α < Υ such that cof(α) = ω, there are µα-measure 1 many σ such that

(12.1) HODσ ∪{σ} � ADR

(12.2) The transitive collapse of σ is the set {A ⊂ Θ | sup(A) < Θ} as computed in
HODσ∪{σ}

Proof. Notice that because of DC, the ultraproduct
∏

σHODσ∪{σ}/µα is wellfounded. So
identifying it with its transitive collapse, we get Iα ⊂

∏
σHODσ∪{σ}/µα ⊂ HODIα . Also

Θα = ΘHODIα = Θ
∏
σ HODσ∪{σ}/µα . This proves the claim.

Now like before, let T0 be the set of all finite sequences 〈σi | i ≤ n〉 such that for all
i ≤ n, there is an α < Υ such that

(13.1) cof(α) = ω

(13.2) Θα = sup{γ | γ ∈ σi}

(13.3) σi ∈ Pω1(Iα)

(13.4) HODσi∪{σi} � ADR

(13.5) The transitive collapse of σi is {A ⊂ Θ | sup(A) < Θ} as computed in HODσi∪{σi}

For each 〈σi | i ≤ n〉 ∈ T0, let ασi = sup{γ | γ ∈ σi}. Now let T be the set of all
s = 〈σi | i ≤ n〉 ∈ T0 such that for all i ≤ n,

(14.1) P (R)HOD{s} = P (R)HOD

(14.2) ασi < ασi+1

(14.3) σk ⊂ σi, σk ∈ HODσi∪{σi+1} for all k ≤ i, and σk is countable in HODσi∪{σi}
for all k < i,

(14.4) P (θσi) ∩HOD{s|(i+1)} = P (θσi) ∩HOD{s}, where θσi = ΘHODσi∪{σi} .

From the definition of T and a similar proof to that of Lemma ??, if s ∈ T then for
µ-almost all α < Υ, for µα-almost all σ ∈ Pω1(Iα), s + 〈σ〉 ∈ T . Now we’re ready to define
the Prikry forcing P. Conditions in P are pairs (s,F) such that s ∈ T and F : T → V such
that for all t ∈ T , t+ 〈σ〉 ∈ T for all σ ∈ F (t) and for µ-almost all α < Υ, for µα-almost all
σ ∈ Pω1(Iα), σ ∈ F (t). The ordering on P is defined by:

(s1, F1) � (s0, F0)⇔ s0 ⊂ s1,∀i ∈ dom(s1)−dom(s0), s1(i) ∈ F0(s1|i), and F1 ⊂ F0 pointwise.
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Lemma 28. Suppose Z ⊂ V P is countable, φ is a formula, and (s0, F0) ∈ P. Then there is
a condition (s0, F1) ∈ P that decides φ[τ ] for every τ ∈ Z.

Proof. Same as that of Lemma ??.

Let G ⊂ P be V-generic and let sG = {s | ∃F (s, F ) ∈ G} = 〈σi | i < ω〉.

Lemma 29. (a) For all i < ω, P (θσi) ∩HODV
sG|(i+1) = P (θσi) ∩HOD(V [G],V )

{sG} , where θσi =

Θ
HODV

σi∪{σi}.
(b) For all i < ω, for all A bounded subset of θσi and A ∈ HODσi∪{σi}, there is a

partial order P such that |P| < θσi and P is θσi-c.c. as computed in HODV
sG|(i+1), and

HODV
{sG|(i+1),A} = HODsG|(i+1)[GA] for some HODV

sG|(i+1)-generic filter GA ⊂ P in V.

(c) θσi is a limit of Woodin cardinals in HOD
(V [G],V )
{sG}

Proof. (a),(b) have the same proofs as those of Lemma ?? and ??. It remains to prove (c).
By (a), it suffices to prove

HODV
sG|(i+1) � θ

σi is Woodin.

We know HODV
σi∪{σi} � ADR, and in HODV

σi∪{σi}, HODsG|(i+1) = HODHODsG|(i+1)
, so by

Theorem 5.6 of [?], θσi is a limit of Woodin cardinals in HODV
sG|(i+1). Hence we’re done.

Now, fix some G ⊂ P such that G is V-generic, and let

N = HOD
(V [G],V )
{sG} .

As before, for any x ∈ RV , N [x] � ZFC, and V is the derived model of N[x]. By part (c) of
the previous lemma, ωV1 is a limit of limits of Woodin cardinals in N[x]. Before stating the
next lemma, we need the following:

Definition 30. Suppose δ is a limit of Woodin cardinals, then Hom<δ is weakly sealed if
the following hold.

(1) Suppose κ < δ is a Woodin cardinal and G ⊂ Q<κ is V-generic. Let j : V → M ⊂
V [G] be the associated generic embedding. Then j(Hom<δ) = (Hom<δ)

V [G].
(2) Suppose that G ⊂ P is V-generic and P ∈ Vδ. Then (1) holds in V[G].

Lemma 31. One of the following must hold.
(a) There is an x ∈ RV and A ∈ (Hom<ωV1

)N [x] such that L(A,RN [x]) � φ[RN [x]].

(b) HomN
<ωV1

is weakly sealed in N.

Proof. Let γ be large enough that Lγ(P (RV )) � φ[RV ]. For any x ∈ RV , there is a generic

elementary embedding jx : N [x]→ (Mx, Ex) induced by a QN [x]

<ωV1
-generic such that

(15.1) crt(jx) = ω
N [x]
1 and jx(ω

N [x]
1 ) = ωV1 ,

(15.2) R(Mx,Ex) = RV ,

(15.3) (P (R)V ⊆ jx(Hom
N [x]

<ωV1
),
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(15.4) ∀A ∈ HomN [x]

<ωV1
, jx(A) = A∗,

(15.5) for all successor Woodin cardinals κ < ωV1 in N [x], there is an N [x]-generic

H ⊂ QN [x]
<κ inducing a generic elementary embedding jH : N [x] → Ult(N [x], EH), and

an elementary embedding kH : Ult(N [x], EH)→ (Mx, Ex) such that jx = kH ◦ jH .

(15.6) γ is in the well-founded part of (Mx, Ex).

If overspill occurs, i.e. if there is some x ∈ RV such that P (R)V 6= jx(Hom
N [x]

<ωV1
) then (a)

holds by the same argument as in Lemma ??. So suppose P (R)V = jx(Hom
N [x]

<ωV1
) for all x ∈

RV . Then jH(Hom
N [x]

<ωV1
) = Hom

N [x][H]

<ωV1
for all H in (15.5) because kH(Hom

N [x][H]

<ωV1
) ⊇ P (R)V

and jH(Hom
N [x]

<ωV1
) ⊇ Hom

N [x][H]

<ωV1
. By varying jx and (Mx, Ex) to ensure the filters H contain

any specified condition, we get (b).

If (a) holds in the previous lemma, we’re done with the proof of case 2. So suppose (b)
holds.

Lemma 32. HomN
<ωV1

= L(HomN
<ωV1

) ∩ P (RN)

Proof. We first show:

(16.1) If P ∈ V N
ωV1

and G ⊂ P is N-generic then in N[G], there is an elementary em-

bedding jG : L(HomN
<ωV1

)→ (L(Hom<ωV1
))N [G] such that jG(HomN

<ωV1
) = (Hom<ωV1

)N [G].

To show (16.1), fix P ∈ V N
ωV1

and an N-generic G ⊂ P. Fix an increasing sequence

〈δi | i < ω〉 of Woodin cardinals in N bounded below ωV1 and let κ = sup{δi | i < ω} > |P|N .
Let δω < ωV1 be a Woodin cardinal in N larger than κ.

Let σ be the symmetric reals for a Col(ω,< κ)-generic over N. Let Gω ⊂ Q<δω be N-
generic such that for all i, Gi = Gω ∩Q<δi is N-generic and σ = ∪{RN [Gi] | i < ω}.

Let, for each i ≤ ω, ji : N →Mi ⊂ N [Gi] be the generic elementary embedding given by
Gi. Let ji1,i2 : Mi1 →Mi2 be the induced embeddings for pairs i1 < i2 and M∗ be the corre-
sponding direct limit with associated embedding j∗ : N → M∗. M∗ can be embedded into
Mω hence is well-founded. Also, since HomN

<ωV1
is weakly-sealed, ji(Hom

N
<ωV1

) = Hom
N [Gi]

<ωV1
,

hence j∗(HomN
<ωV1

) = Hom
N(σ)

ωV1
. Using this, we’ll show (16.1).

Using the notation of (16.1), let N[G](τ) be a symmetric extension of N[G] for Col(ω,< κ)
such that N(σ) = N [G](τ). Now, j∗ induces an elementary embedding jσ : L(HomN

<ωV1
) →

L(Hom<ωV1
)N(σ) such that jσ(HomN

<ωV1
) = Hom

N(σ)

<ωV1
. Similarly, there is an elementary em-

bedding jτ : (L(Hom<ωV1
)N [G] → (L(Hom<ωV1

))N [G](τ) such that jτ (Hom
N [G]

<ωV1
) = Hom

N [G](τ)

<ωV1
.

ButN [G](τ) = N(σ) so this induces an elementary embedding jG : L(HomN
<ωV1

)→ (L(Hom<ωV1
))N [G]

such that jG(HomN
<ωV1

) = Hom
N [G]

<ωV1
. This proves (16.1)

Now to see that (16.1) implies the lemma, we need to use Woodin’s tree production
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lemma. Suppose for contradiction that HomN
<ωV1
6= L(HomN

<ωV1
) ∩ P (RN). Let α be least

such that HomN
<ωV1

6= Lα(HomN
<ωV1

) ∩ P (RN). Then there is an A ∈ Lα(HomN
<ωV1

) ∩
P (RN)\HomN

<ωV1
such that N can define A by a formula φ with parameters a pair of trees

(T, S) representing a HomN
<ωV1

set. It is then easy to check the hypotheses of the tree pro-

duction lemma hold true for N and φ, i.e.

(a) (Generic Absoluteness) Let δ < ωV1 be Woodin in N, G be < δ-generic over N, and
H be < δ+-generic over N[G]. For all x ∈ R∩N [G], N [G] � φ[x, T, S] ⇔ N [G][H] � φ[x, T, S].

(b) (Stationary Tower Correctness) Let δ < ωV1 be Woodin in N, G be Q<δ-generic
over N, and j : N → M ⊆ N [G] be the induced embedding. Then for all x ∈ R ∩ N [G],
N [G] � φ[x, T, S]⇔M � φ[x, j(T ), j(S)]

The tree production lemma then implies that A ∈ HomN
<ωV1

. This is a contradiction.

This implies that L(HomN
<ωV1

) is a counterexample to the theorem in the sense that

L(HomN
<ωV1

) � AD+ + φ[RN ] but no A ∈ (P (R))
L(HomN

<ωV1

)
satisfies that L(A,RN) � φ[RN ].

By induction on Θ of AD+ models and the fact that Θ
L(HomN

<ωV1

)
< ΘV , we have a contra-

diction. So (b) of Lemma ?? can’t hold; hence, (a) is the only possibility. (Theorem 1)
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