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Abstract

The main result of this paper is the proof of Theorem 0.1, which shows that it’s possible for

derived models to satisfy “ADR + ω1 is ℘(R)-supercompact”. Other constructions of models of

this theory are also discussed; in particular, Theorem 3.1 constructs a normal fine measure on

℘ω1(℘(R)) and hence a model of “ADR +Θ is regular + ω1 is ℘(R)-supercompact” from a model

of “ADR + Θ is measurable”.

AD+ models of the form V = L(℘(R)) have been studied extensively by Woodin and others. Woodin

has shown that all models of AD+ of the form V = L(℘(R)) arise as derived models (see [7] for

a proof). It’s natural then to consider AD+ models of the form V = L(℘(R))[X] where X codes

some canonical information not coded by sets of reals in the model.

This paper gives various constructions of AD+ models of the form V = L(℘(R))[µ] where µ is a

normal fine measure on ℘ω1(℘(R)). The main result of the paper is a derived model construction

of such a model. The notions used in the statement of Theorem 0.1 are spelled out in Sections 1

and 2 and its proof is given in Section 2.

Theorem 0.1. Suppose there is a proper class of Woodin cardinals. Suppose δ0 is a measurable

cardinal which is a limit of Woodin and strong cardinals and 2δ0 = δ+
0 . Suppose 〈δi | 1 ≤ i < ω〉

is an increasing sequence of good Woodin cardinals above δ0 which are also strong cardinals. Let

G ⊆ Col(ω,< δ0) be V -generic. Then in V [G], there is a class model M containing RV [G] such

that M � “ADR+ there is a normal fine measure on ℘ω1(℘(R)).”

In Section 3, we discuss models of the theory “ADR + Θ is regular + ω1 is ℘(R)-supercompact”.

Acknowledgement: The author would like to thank Grigor Sargsyan and John Steel for vari-

ous helpful conversations regarding the content of the paper, and Paul Larson for useful comments

on an earlier version of the paper.

1. PRELIMINARIES

We start with the definition of Woodin’s theory of AD+. Recall the axiom of determinacy (AD)

states that every game of length ω on integers is determined. In this paper, we identify R with

ωω. We use Θ to denote the sup of ordinals α such that there is a surjection π : R → α. Under
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AC, Θ is just the successor cardinal of the continuum. In the context of AD, Θ is shown to be the

supremum of w(A)1 for A ⊆ R. For α < Θ, we let ℘α(R) = {A ⊆ R | w(A) < α}.

Definition 1.1. AD+ is the theory ZF + AD + DCR and

1. for every set of reals A, there are a set of ordinals S and a formula ϕ such that x ∈ A ⇔
L[S, x] � ϕ[S, x]. (S, ϕ) is called an ∞-Borel code for A;

2. for every λ < Θ, for every continuous π : λω → ωω, for every A ⊆ R, the set π−1[A] is

determined.

AD+ is equivalent to “AD + the set of Suslin cardinals is closed”. If M is a model of AD+ + V =

L(℘(R)) then in M , AD+ is equivalent to the statement: every Σ1 statement φ(A) about a Suslin

co-Suslin set A is true in a model N (of a sufficient fragment of ZF), where R∪ {A} ⊆ N and N is

coded by a Suslin co-Suslin set (see [7] for a proof).

Let A ⊆ R, we let θA be the supremum of all α such that there is an OD(A) surjection from R
onto α.

Definition 1.2 (AD+). The Solovay sequence is the sequence 〈θα | α ≤ Ω〉 where

1. θ0 is the supremum of ordinals β such that there is an OD surjection from R onto β;

2. if α > 0 is limit, then θα = sup{θβ | β < α};

3. if α = β + 1 and θβ < Θ (i.e. β < Ω), fixing a set A ⊆ R of Wadge rank θβ, θα is the sup of

ordinals γ such that there is an OD(A) surjection from R onto γ, i.e. θα = θA.

Note that the definition of θα for α = β + 1 in Definition 1.2 does not depend on the choice of

A.

The theory ADR is also a strengthening of AD; it states that every game of length ω where players

play real numbers is determined. In this paper, by ADR, we always mean the theory AD+ + ADR.

Using the derived model construction, Woodin has constructed (assuming large cardinals) models

of ADR +V = L(℘(R)). In a model of ADR, the Solovay sequence always has limit length and every

set of reals is Suslin.

Definition 1.3 (ZF + DC). Suppose X is an uncountable set. We say that ω1 is X-supercompact

if there is a normal fine measure µ on ℘ω1(X) =def {σ ⊆ X | σ is countable}, where µ is

• fine if whenever x ∈ X, the set Cx =def {σ ∈ ℘ω1(X) | x ∈ σ} ∈ µ, and

• normal if whenever F : ℘ω1(X) → ℘ω1(X) is such that {σ | F (σ) ⊆ σ ∧ F (σ) 6= ∅} ∈ µ then

there is some x ∈ X such that {σ | x ∈ F (σ)} ∈ µ.

1w(A) is the Wadge rank of A.
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Definition 1.3 goes back to [5]. We will use the notation ∀∗µσP (σ) for the statement “for

µ-measure one many σ P (σ)”. It’s easy to see that whenever ω ⊆ X and µ is a normal fine

measure on ℘ω1(X), then µ is in fact countably complete. The following lemma gives an alternative

characterization of normality in terms of “diagonal intersection”.

Lemma 1.4 (ZF + DC). Suppose µ is a fine measure on ℘ω1(X). The following are equivalent.

1. µ is normal.

2. Suppose we have 〈Ax | x ∈ X ∧Ax ∈ µ〉. Then 4x∈XAx =def {σ | σ ∈
⋂
x∈σ Ax} ∈ µ.

Proof. Suppose µ is normal and we have a sequence 〈Ax | x ∈ X ∧ Ax ∈ µ〉. We want to show

4x∈XAx ∈ µ. Suppose not. Then

∀∗µσ ∃x ∈ σ σ /∈ Ax.

Let then F (σ) = {x ∈ σ | σ /∈ Ax}. Our assumption implies that ∀∗µσ F (σ) 6= ∅. This means,

by normality of µ, ∃x ∀∗µσ x ∈ F (σ) or equivalently there is some x ∈ X such that Ax /∈ µ.

Contradiction.

Now we show (2)⇒ (1). Let F be given and suppose there is no x ∈ X such that ∀∗µσ x ∈ F (σ).

Then for each x ∈ X,

Ax =def {σ | x ∈ F (σ)} /∈ µ.

In other words, ∀x ∈ X ¬Ax ∈ µ and hence by (2), 4x∈X¬Ax ∈ µ. This means ∀∗µσ ∀x ∈ σ σ /∈ Ax,

i.e.

∀∗µσ F (σ) = 0.

This contradiction completes the proof of (2) ⇒ (1).

2. A PROOF OF THE MAIN THEOREM

We recall the notion of universal Baireness. We say that a tree T on ω × OR2 is κ-absolutely

complemented if there is a tree U on ω ×OR such that whenever g is <-κ generic over V 3,

V [g] � p[T ] = R\p[U ].

A set A ⊆ R is κ-universally Baire if there is a κ-absolutely complemented tree T such that

A = p[T ].

2Technically, T is a tree on ω × γ for some ordinal γ but in this paper, it’s not important what γ is.
3This means g is a generic filter over V for some forcing of size < κ.

3



We also say that A ⊆ R is universally Baire if A is κ-universally Baire for all κ.

Now we briefly recall the notion of homogeneously Suslin sets; a detailed discussion on this topic

can be found in [6]. A countably complete measure µ on the set Z<ω for some Z concentrates on

Zn for exactly one n < ω (that is, there is a unique n such that µ(Zn) = 1); we call this n dim(µ).

A homogeneity system with support Z is a function µ̄ from <ωω into the set of countably complete

measures on Z<ω, denoted meas(Z), such that writing µs for µ̄(s), for all s, t ∈ ω<ω,

1. dim(µt) = dom(t);

2. s ⊆ t⇒ µt projects to µs; that is, letting m = dim(µs), for all A ⊆ Zm,

A ∈ µs ⇔ {u | u � m ∈ A} ∈ µt.

We say µ̄ is a κ-complete homogeneity system if every measure in µ̄ is κ-additive.

Suppose µ, ν ∈ meas(Z) and µ projects to ν. Then there is a natural embedding πν,µ :

Ult(V, ν) → Ult(V, µ) defined as: πν,µ([f ]ν) = [f∗]µ, where f∗(u) = f(u � dim(ν)). A tower of

measures 〈µn | n < ω〉 then is a sequence of measures in meas(Z) such that n < m⇒ µm projects

to µn. The tower of measures 〈µn | n < ω〉 is countably complete if the direct limit of the system

{Ult(V, µn), πµn,µm | n < m < ω} is wellfounded; or equivalently, whenever µn(An) = 1 for all n

then there is an f such that for all n, f � n ∈ An.

Let µ̄ be a homogeneity system with support Z as above. We define Sµ̄ to be the set of x ∈ R
such that µ̄x =def 〈µx�n | n < ω〉 is countably complete. A set of reals A is κ-homogenously Suslin

if A = Sµ̄ for some κ-complete homogeneity system with support Z for some set Z. We let Homκ

denote the set of all κ-homogeneously Suslin sets. A is homogeneous Suslin if A is κ-homogeneous

for all κ. We let Hom∞ denote the set of homogenously Suslin sets. It’s a basic fact that if there

is a proper class of measurable cardinals then Hom∞ = Homκ for some measurable κ and Hom∞

is determined.

Let λ be a limit of Woodin cardinals and let G ⊆ Col(ω,< λ). Let R∗G =
⋃
α<δ RV [G|α] be the

symmetric reals and

Hom∗G = {A ⊆ R∗ | A ∈ V (R∗G) ∧ ∃α < δ0∃T ∈ V [G|α] (V [G|α] �

“T is δ0-absolutely complemented” ∧ p[T ] ∩ R∗G = A)}.

Woodin has shown that the derived model L(R∗G, Hom∗G) � AD+. Additionally, if λ is a limit

of <-λ-strong cardinals, then L(R∗G, Hom∗G) � ADR and Hom∗G = ℘(R)L(R∗G,Hom
∗
G). For more on

Hom∗ and derived models, see [6].

Recall that Q<δ is the “countable” stationary forcing, whose conditions are stationary sets

b ⊆ ℘ω1(X) for some X ∈ Vδ (cf. [3]). The following definition comes from [3].

Definition 2.1. Let Γub be the collection of universally Baire sets and let δ be a Woodin cardinal.

We say that δ is good if whenever g is a < δ-generic over V and G is a stationary tower QV [g]
<δ
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generic over V [g], then letting j : V [g] → M ⊆ V [g][G] be the associated embedding, j(Γ
V [g]
ub ) =

Γ
V [g][G]
ub .

In the presence of a proper class of Woodin cardinals, Γub = Hom∞ (see [6] or [3] for a proof).

For the reader’s convenience, we state the tree production lemma (cf. Lemma 4.2 of [6]), which

features in a key argument of the proof of Theorem 0.1.

Theorem 2.2 (Tree production lemma, Woodin). Let ϕ(v0, v1) be a formula; let a be a parameter;

and let δ be a Woodin cardinal. Suppose the following hold.

1. (Generic absoluteness) If G is <-δ generic over V , and H is <-δ+ generic over V [G] then

for all x ∈ V [G] ∩ R,

V [G] � ϕ[x, a]⇔ V [G][H] � ϕ[x, a].

2. (Stationary tower correctness) If G is Q<δ-generic and j : V → M ⊆ V [G] is the associated

generic embedding, then for all x ∈ R ∩ V [G]4,

V [G] � ϕ[x, a]⇔M � ϕ[x, j(a)].

Then the set {x | ϕ(x, a)} is δ-universally Baire.

We are ready to give a proof of Theorem 0.1, which is inspired by Woodin’s construction of a

model of “AD+ + ω1 is R-supercompact” from ω2 Woodin cardinals. But first let us remark that

the hypothesis of the theorem is consistent relative to, for example, the existence of a proper class

of Woodin cardinals and a huge cardinal plus a supercompact cardinal above (the proof is basically

an easy modification of the proof of Theorem 3.4.17 in [3]).

Proof of Theorem 0.1. Again, let Γub denote the collection of universally Baire sets. The hypothesis

of the theorem implies Γub = Hom∞. Let G ⊆ Col(ω,< δ0) be V -generic. In V [G], let R∗ = R∗G =

RV [G] (the second equality follows from the fact that δ0 is inaccessible) and Hom∗ = Hom∗G. By

results of Woodin, Hom∗ = ℘(R)L(Hom∗,R∗) and L(Hom∗,R∗) � “ADR + DC”.

Lemma 2.3. In V [G], Hom∗ = Γub.

Proof. Since δ0 is a limit of strong cardinals, it’s easy to see that Hom∗ ⊆ Γub. To see the reverse

inclusion, let A ∈ Γub = Hom∞. Let µ̄ be a (countable) homogeneity system witnessing this . We

may assume the measures in µ̄ have additivity κ for some κ >> δ0 and Hom∞ = Homκ. Any

µ ∈ µ̄ is the canonical extension of some ν ∈ V (A ∈ µ ⇔ ∃B ∈ ν B ⊆ A) (see [6, Proposition

4.4]). Since µ̄ is countable, there is an α < δ0 such that µ̄ ∩ V [G|α] ∈ V [G|α]. We may also pick

κ sufficiently large so that in V [G|α], µ̄ witnesses that A ∩ V [G|α] is in Hom
V [G|α]
∞ and hence in

Γ
V [G|α]
ub . This gives A ∈ Hom∗.
4x is also in M because M<δ ⊆M in V [G]. Furthermore, j(ω1) = δ.
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Now note that |Hom∗| = ω1 in V [G]. This is because Hom∗ is determined (in V [G]) by Vδ0
and the sequence 〈G|α | α < δ0〉.

Let j : V → M witness δ0 is measurable, i.e. j is the ultrapower map by a normal measure U

on δ0. We define a filter F on ℘ω1(Hom∗) as follows.

A ∈ F ⇔ V [G] � “∅ Col(ω,<j(δ0)) j
+[Hom∗] ∈ j+(A)”5.

It’s clear that F ∈ V [G]; in fact, F is definable over V [G] from parameters {Hom∗, U,G}. Note

also that since L(Hom∗,R∗) � DC,

℘ω1(Hom∗)V [G] = ℘ω1(Hom∗)L(Hom∗,R∗) ∈ F .

Lemma 2.4. L(Hom∗)[F ] � “F is a normal fine measure on ℘ω1(Hom∗)”.

Proof. First we show that F is a normal fine filter. We verify fineness. Let A ∈ Hom∗, we show

XA =def {σ ∈ ℘ω1(Hom∗) | A ∈ σ} ∈ F . Using the notation introduced before the lemma, since

A ∈ Hom∗, j+(A) ∈ j+[Hom∗] and hence

j+[Hom∗] ∈ j+(XA).

This shows XA ∈ F . To show normality, let F ∈ V [G] be such that

AF =def {σ ∈ ℘ω1(Hom∗) | F (σ) 6= ∅ ∧ F (σ) ⊆ σ} ∈ F .

By the definition of F , j+[Hom∗] ∈ j+(AF ). This means there is some A ∈ Hom∗ such that

j+(A) ∈ j+(F )(j+[Hom∗]).

This implies that

{σ ∈ AF | A ∈ F (σ)} ∈ F .

This is what we want.

We now show F ∩ L(Hom∗)[F ] is a measure. Suppose A ⊆ ℘ω1(Hom∗) in L(Hom∗)[F ] is a

counterexample. Every set in L(Hom∗)[F ] is ordinal definable in V [G] from elements of Hom∗ and

{Hom∗, U,G}. Let ϕ(v0, v1, v2, v3) be a formula, B ∈ Hom∗, s ∈ OR<ω be such that

σ ∈ A⇔ V [G] � ϕ[σ,B, s, {U,G,Hom∗}].

By minimizing the the parameter s that goes into the definition of a counterexample, we may

choose a counterexample A such that there is a formula ϕ(v0, v1, v2), a B ∈ Hom∗ such that

σ ∈ A⇔ V [G] � ϕ[σ,B, {U,G,Hom∗}].
5j+ : V [G] → M [G][H] for H ⊆ Col(ω,< j(δ0)) being V [G]-generic is the canonical extension of j. j+ is defined

as: j+(τG) = j(τ)G∗H for any Col(ω,< δ0)-name τ in V . We also note that j+[Hom∗] ∈ M [G][H] since in V [G],
Hom∗ has cardinality ω1 and Hom∗, in turns, can be represented by a set of names of cardinality δ0 in V .
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Let α < δ0 be such that there is a δ0-absolutely complemented tree T ∈ V [G|α] such that p[T ] ∩
V [G] = B and ∅ forces over V [G|α] all relevant facts above. In V [G|α], let U∗ be the canonical

extension of U ; note that j naturally lifts to a map from V [G|α] to M [G|α], which we also call j. For

γ < δ0, a limit of Woodin and strong cardinals, let Ṙγ be the canonical (symmetric) Col(ω,< γ)-

name for R∗γ , and ˙Hom∗γ be the canonical (symmetric) name for Hom∗γ , where R∗γ and Hom∗γ are

defined similarly to R∗, Hom∗ above but at γ instead of at δ0 (so R∗ = R∗δ0 and Hom∗ = Hom∗δ0).

Let ˙Hom∗γ,δ0 be the canonical name for Hom∗γ,δ0 , where

Hom∗γ,δ0 = {A ∈ Hom∗ | ∃α < γ∃T ∈ V [G|α] (A = p[T ] ∧ p[T ] ∩ V (R∗γ) ∈ Hom∗γ)}.

Since U∗ is a measure in V [G � α], either

∀∗U∗γ ∅ Col(ω,<γ)Col(ω,<δ0) ϕ[ ˙Hom∗γ,δ0 , p[T ], {Ǔ, Ġ, ˙Hom∗δ0}]

or

∀∗U∗γ ∅ Col(ω,<γ)Col(ω,<δ0) ¬ϕ[ ˙Hom∗γ,δ0 , p[T ], {Ǔ, Ġ, ˙Hom∗δ0}].

This implies in M [G � α], either

∅ Col(ω,<δ0)Col(ω,<j(δ0)) ϕ[j+[ ˙Hom∗], p[j(T )], {j(Ǔ), Ḣ, ˙Hom∗j(δ0)}]
6 (†)

or

∅ Col(ω,<δ0)Col(ω,<j(δ0)) ¬ϕ[j+[ ˙Hom∗], p[j(T )], {j(Ǔ), Ḣ, ˙Hom∗j(δ0)}] (††).

In the above, note that if H ⊆ Col(ω,< j(δ0)) is V [G]-generic and j+ : V [G] → M [G][H] is the

canonical extension of j, then j+[Hom∗] = (Hom∗δ0,j(δ0))
M [G][H].

(†) and (††) easily give that A is measured by F , hence a contradiction. This completes the

proof of the lemma.

Since |℘ω1(Hom∗)| = ω1 in V [G], we can use the club-shooting construction P described in

Section 17.2 of [1] to shoot a club through each A ∈ F7. The forcing P is ω-distributive. Let

G′ ⊆ P be V [G]-generic.

Lemma 2.5. In V [G][G′], the following hold.

(a) (ORω)V[G] = (ORω)V[G][G′], hence in particular, R∗ = RV [G][G′].

(b) Hom∗ = Γ
V [G]
ub = Γ

V [G][G′]
ub .

(c) In V [G][G′], L(Hom∗)[F ] � “F is a normal fine measure on ℘ω1(Hom∗)” and F ⊆ CHom∗,
where CHom∗ is the club filter on ℘ω1(Hom∗) in V [G][G′].

6Ġ is the canonical name for a generic G ⊆ Col(ω,< δ0) and Ḣ is the canonical name for a generic H ⊆ Col(ω,<
j(δ0)).

7Very roughly, this is a countable support iteration 〈Pα, Q̇β | α ≤ ωV [G]
2 , β < ω

V [G]
2 〉, where Q̇β is the Pβ-name for

CU(ω1, S), where S is a stationary subset of ω1. Conditions of CU(ω1, S) are countable closed bounded subsets of S

ordered by end-extension. Recall also that ω
V [G]
2 = (2δ0)V [G] = (2ω1)V [G]. By fixing a bijection π : ω1 → ℘ω1(Hom∗)

in advance, we can identify stationary sets in ℘ω1(Hom∗) with stationary sets in ω1. Since F is a normal fine filter
as shown in the proof of Lemma 2.4, if A ∈ F then A is stationary.
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Proof. (a) follows from the ω-distributivity of P; the details of this are given in [1, Section 17.2].

We verify (b). The first equality of (b) is just the statement of Lemma 2.3. For the second

equality, let A ∈ Γ
V [G][G′]
ub = Hom

V [G][G′]
∞ and let µ̄ be a homogeneity system witnessing this. Again,

by [6, Proposition 4.4], each measure µ ∈ µ̄ is the canonical extension of a measure ν ∈ V [G] (this

is because the forcing P is small). We write µ = ν∗ to mean µ is the canonical extension of ν. By

the ω-distributivity of P and the fact that µ̄ is countable, the set {ν | ν∗ ∈ µ̄} ∈ V [G] and witnesses

that A ∈ HomV [G]
∞ .

(c) follows from the fact whenever A ∈ F (in V [G]), then in V [G][G′], A contains a club.

To ease the notation, we rename V [G][G′] to V [G]. It remains to prove the following

Lemma 2.6. ℘(R)L(Hom∗)[F ] = Hom∗.

Proof. Let δ be the limit of the δi’s. LetK ⊆ Col(ω,< δ) be V [G]-generic. Let R∗∗ =
⋃
α<δ RV [G][K|α]

and Hom∗∗ be defined in V [G](R∗∗) the same way Hom∗ is defined in V (R∗). By Lemma 6.6 of

[6], there is an H ⊆ QV [G]
<δ generic over V [G] such that for all 1 ≤ n < ω, H ∩ Qδn =def Hn is

V [G]−generic. Let

j : V [G]→M ⊆ V [G][H]

be the generic embedding associated to H (the embedding j before is behind us now); Lemma 6.6

of [6] also allows us to choose H so that R∗∗ = R ∩M8. Let jn : V [G] → Mn be the generic

embedding given by Hn, hence M is the direct limit of the Mn’s. Note that the jn’s factor into j

via map kn (i.e. j = kn ◦ jn). Also for n ≤ k, let jn,k : Mn →Mk be the natural embedding so that

kn is the limit of the jn,k’s. By our assumption on the δi’s,

jn(Γ
V [G]
ub ) = jn(Hom∗) = Γ

V [G][Hn]
ub .

Hence

j(Γ
V [G]
ub ) = j(Hom∗) = Hom∗∗.9

Let F∗ be the “tail filter” defined in V [G][H] as follows: for A ⊆ ℘ω1(Hom∗∗)

A ∈ F∗ ⇔ ∃n∀m ≥ n km[σm] ∈ A.

Claim 1: Let CHom∗ be the club filter on ℘ω1(Hom∗) in V [G], then

L(Hom∗∗)[j(CHom∗)] = L(Hom∗∗)[F∗] � “j(CHom∗) = F∗ is a normal fine measure on

℘ω1(Hom∗∗).”

8Also, we can pick in advance an α >> δ and have α in the wellfounded part of M . We suppress this α and
pretend that α = OR.

9The ⊆-direction of the second equality needs that δ is a limit of good Woodins.
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Proof. For each i < ω, let σi = (Hom∗)Mi = Γ
V [G][H|δi]
ub . We claim that if A ∈ j(CHom∗) then

A ∈ F∗. To see this, let n < ω such that Mn contains the preimage of A, say kn(An) = A. Then

An is a club in Mn. We claim that ∀m ≥ n km[σm] ∈ A. We prove this for the case m = n.

The other cases are similar. Since kn = kn+1 ◦ jn,n+1, it suffices to show jn,n+1[σn] ∈ jn,n+1(An).

We have that in Mn, σn =
⋃
α<ω1

τα where τα ∈ An for each α < ω1; this is because An is club.

In Mn+1, {jn,n+1(τα) | α < ωMn
1 } is a countable, directed subset of jn,n+1(An) whose union is

j′′n,n+1σn. Since jn,n+1(An) is a club in Mn+1, jn,n+1[σn] ∈ jn,n+1(An). Hence we’re done with the

claim.

The argument also gives: L(Hom∗)[CHom∗ ] = L(Hom∗)[F ] is embeddable into L(Hom∗∗)[F∗].
The above argument and the fact that j(Hom∗) = Hom∗∗ prove that

L(Hom∗∗)[j(CHom∗)] = L(Hom∗∗)[F∗] � “j(CHom∗) = F∗ is a normal fine measure on

℘ω1(Hom
∗∗

)”.

This completes the proof of Claim 1.

Let G be the “tail filter” defined in V [G][K] from the sequence 〈σi | i < ω〉. More precisely, for

A ⊆ ℘ω1(Hom∗∗):

A ∈ G ⇔ ∃n∀m ≥ n σ∗m ∈ A,

where σ∗m = {A∗ | A ∈ σm} and A∗ = p[T ] ∩ V [G][K] where T ∈ V [G][K|δm] witnesses that A is

δ-universally Baire.

Claim 2: L(Hom∗∗)[G] � “G is a normal fine measure on ℘ω1(Hom∗∗)”.

Proof. To see this, note that for each A ⊆ ℘ω1(Hom∗∗) in V [G][H] ∩ V [G][K],

A ∈ F∗ ⇔ A ∈ G (†).

This is because for each m, km[σm] = σ∗m.

Now we prove the claim. First recall that (℘ω1(Hom∗))V (R∗) = (℘ω1(Hom∗))V [G]. Now note

that since L(Hom∗)[CHom∗ ] = L(Hom∗)[F ] is definable in V (R∗) as the model constructed from

Hom∗ and the club filter on ℘ω1(Hom∗) 10, for any A ⊆ ℘ω1(Hom∗∗) in L(Hom∗∗)[F∗] =

L(Hom∗∗)[j(CHom∗)] (definable over V [G](R∗∗) as the model constructed from Hom∗∗ and the

club filter on ℘ω1(Hom∗∗)), A ∈ V [G][H] ∩ V [G][K]. This fact and (†) imply

L((Hom∗∗)[G] = L(Hom∗∗)[F∗] � “F∗ = G is a normal fine measure on ℘ω1(Hom∗∗)”.

This finishes the proof of Claim 2.

Claim 3: L(Hom∗∗)[F∗] � AD+.

10This is true because letting C′ be the club filter on ℘ω1(Hom∗)V (R∗) in V (R∗), then C′ ⊆ CHom∗ . Since
L(Hom∗)[CHom∗ ] � “CHom∗ is a measure”, it’s easy to see that L(Hom∗)[C′] = L(Hom∗)[CHom∗ ] and L(Hom∗)[C′]∩
C′ = L(Hom∗)[CHom∗ ] ∩ CHom∗ .
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Proof. To show L(Hom∗∗)[F∗] � AD+, we use the tree production lemma, Theorem 2.2. Suppose

not. Let x ∈ R∗∗, T ∈ V [G][K|α] for some α < δ be a δ-complemented tree, γ be least such

that there is a counter-example of AD+ B ∈ L(Hom∗∗)[F∗] definable over Lγ(Hom∗∗)[F∗] from

(ϕ, x, p[T ] ∩ R∗∗) i.e.

y ∈ B ⇔ Lγ(Hom∗∗)[F∗] � ϕ[y, p[T ] ∩ R∗∗, x].

Let θ(u, v) be the natural formula defining B (where C is the club filter and the parameter v can

be construed as a pair (v0, v1)):

θ(u, v) = “L(Γub)[C] � C is a normal fine measure on ℘ω1(Γub) and L(Γub)[C] � ∃B(AD+

fails for B) and if γ0 is the least γ such that Lγ(Γub)[C] � ∃B(AD+ fails for B)

then Lγ0(Γub)[C] � ϕ[u, p[v0] ∩ R, v1]”.

We verify that the tree production lemma holds for θ(−, (T, x)). This gives B ∈ Hom∗∗. Without

loss of generality, let g ∈ HCV [G][K] be such that (G,K|α, x, T ) ∈ V [g] and (Hom∗)V [G][g] = Γ
V [G][g]
ub

and

L((Hom∗)V [G][g])[C] � C is a normal fine measure on ℘ω1((Hom∗)V [G][g])

where C is the club filter in V [G][g]. We can make this assumption about g because δ is a limit

of measurable cardinals which are limits of Woodin and strong cardinals (again, we note that the

argument that L(Hom∗)[CV [G][G′]] � “CV [G][G′] is a normal fine measure” only uses that δ0 is a

measurable limit of Woodin and strong cardinals, where CV [G][G′] is the club filter on ℘ω1(Hom∗)

in V [G][G′]). δ is still a limit of good Woodin cardinals in V [G][g]. Let ξ < δ be a good Woodin

cardinal in V [G][g].

We first verify stationary correctness. Let K ′ ⊆ QV [G][g]
<ξ be V [G][g]-generic, and

k : V [G][g]→ N ⊆ V [G][g][K ′]

be the associated embedding. By the property of ξ, k(Γ
V [G][g]
ub ) = ΓNub = Γ

V [G][g][K′]
ub . Furthermore,

CN ⊆ CV [G][g][K′] (here C denotes the club filter in the relevant universe) and by elementarity,

L(ΓNub)[CN ] � CN is a normal fine measure on ℘ω1(ΓNub).

This implies L(Γub)[C]N = L(Γub)[C]V [G][g][K′]. Furthermore, p[T ]∩V [G][g][K ′] = p[k(T )]∩N . This

easily implies stationary correctness.

To verify generic absoluteness at ξ. We rename V [G][g] to V to save space. Let g be < ξ-generic

over V (the old g is behind us now) and h be < ξ+-generic over V [g]. Let y ∈ RV [g]. We want to

show

V [g] � θ[y, (T, x)]⇔ V [g][h] � θ[y, (T, x)].

There are G0, G1 ⊆ Col(ω,< δ) such that G0 is generic over V [g] and G1 is generic over V [g][h]

with the property that RV [G0|δi] = RV [G1|δi] for all δi > ξ. Also, (Hom∗)V [G0|δi] = (Hom∗)V [G1|δi] =

Γ
V [G0|δi]
ub = Γ

V [G1|δi]
ub . Let us denote this σi. Such G0 and G1 exist since h is generic over V [g] and
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ξ < δ. So we get that (Hom∗)V [g][G0] = (Hom∗)V [g][h][G1]. The proofs of Claims 1 and 2 imply

L(Hom∗)[C]V [g] is embeddable into L(Hom∗)[G]V [g][G0], and L(Hom∗)[C]V [g][h] is embeddable into

L(Hom∗)[G]V [g][h][G1], and L(Hom∗)[G]V [g][G0] = L(Hom∗)[G]V [g][h][G1], where G is the “tail filter”11

defined from the sequence 〈σi | i < ω〉 (this also uses the homogeneity of Col(ω,< δ) and that’s

why we proved Claim 2). This implies generic absoluteness.

Claim 3 implies

℘(R)L(Hom∗∗)[F∗] = Hom∗∗

since otherwise, let A ∈ ℘(R)L(Hom∗∗)[F∗]\Hom∗∗. Then L(A,R∗∗) � AD+. By the choice of δ and

a theorem of Woodin (Theorem 8.3 of [6]), Hom∗∗ = {A ⊆ R∗∗ | A ∈ V [G](R∗∗) ∧ L(A,R∗∗) �

AD+}12. This is a contradiction. By elementarity of j and the fact that L(Hom∗)[F ] embeds

into L(Hom∗∗)[F∗] (see the argument in Claim 1), ℘(R)L(Hom∗)[F ] = Hom∗ and hence Lemma 2.6

follows.

Lemma 2.6 completes the proof of the theorem since by the derived model theorem (cf. [6]),

L(Hom∗,R∗) � ADR and Hom∗ = ℘(R)L(Hom∗,R∗), hence M = L(Hom∗)[F ] � “ADR + F is a

normal fine measure on ℘ω1(℘(R))”.

The hypothesis of Theorem 0.1 is very strong. This is because we want to show the derived

model satisfies “ADR + ω1 is ℘(R)-supercompact.”13 In terms of consistency strength, the theory

“ADR + ω1 is ℘(R)-supercompact” is much weaker as demonstrated by Theorem 2.7.

Theorem 2.7. Assume ADR + Θ = θα+ω where α is a limit ordinal and cf(θα) is uncountable.

Let Γ = {A ⊆ R | w(A) < θα}. Let µ be the measure on ℘ω1(Γ) induced by the Solovay measure

on ℘ω1(R). Let M = HODΓ. Then ℘(R)M = Γ and M � ADR + µ is a normal fine measure on

℘ω1(℘(R)).

Proof. First, it’s easy to see that ℘(R)M = Γ; hence M � ADR + Θ = θα. By [10], µ is unique

and hence OD and hence µ ∩M ∈ M . Now the key point is ℘ω1(Γ)M = ℘ω1(Γ). This is because

cf(θα) is uncountable, Γ is closed under ω-sequences. This means µ concentrates on ℘ω1(℘(R))M

and hence M � “µ is a normal fine measure on ℘ω1(℘(R))”.

We remark that the hypothesis of the theorem is consistent, e.g. relative to “ADR + Θ is

regular”. The exact consistency strength of the theory “ADR + ω1 is ℘(R)-supercompact” is still

unknown. Theorem 2.7 implies that an upper bound is “ADR + Θ = θω1+ω”, which is slightly

stronger than “ADR + DC”. On the other hand, suppose M � “ADR + ω1 is ℘(R)-supercompact”

then M � “cf(Θ) > ω” hence L(℘(R))M � “ADR + DC”. To see that M � “cf(Θ) > ω”, suppose

11This piece of the proof was pointed out by John Steel. The author would like to thank him for this.
12In fact, this equality holds for δ being limit of Woodin and < −δ-strong cardinals.
13One can show the model M in Theorem 0.1 satisfies Θ is regular. This uses significantly the supercompactness

of δ0. Again the proof of Theorem 0.1 only uses that δ0 is a measurable limit of Woodin and strong cardinals.
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not. Working in M , suppose µ is a normal fine measure on ℘ω1(℘(R)) and let f : ω → Θ be cofinal.

For each n < ω, let

An = {σ | supA∈σw(A) ≥ f(n)}.

By fineness of µ, it’s easy to see that each An ∈ µ. By countable completeness of µ,
⋂
n<ω An 6= ∅.

Let σ ∈
⋂
n<ω An. Then σ is Wadge-cofinal in ℘(R). Say σ = {Bn | n < ω}; let B = {(x, n) | x ∈

Bn}. B clearly has Wadge rank above that of each Bn. This contradicts the fact that σ is Wadge

confinal.

T. Wilson and the author have shown in [9] that “ZF + DC + ω1 is ℘(R)-supercompact” implies

that there are models of “ZF + ADR + Θ = θα” for all countable limit ordinal α; this means that

the best known lower bound consistency strength of theory “ZF + DC + ω1 is ℘(R)-supercompact”

is very close to “ADR + DC”. We conjecture that

Conjecture 2.8. The following theories are equiconsistent.

1. ZF + DC + ω1 is ℘(R)-supercompact.

2. ADR + DC + ω1 is ℘(R)-supercompact.

If we add “Θ is regular” to the clauses in the conjecture, then the corresponding conjecture in

fact has a positive answer (cf. Theorem 3.2).

3. Θ IS REGULAR

Woodin had conjectured that the theory “ADR + Θ is regular” has consistency strength on the

order of a supercompact cardinal. He’s shown that assuming there is a supercompact cardinal

below the cardinal δ0 in the hypothesis of Theorem 0.1, then the derived model L(Hom∗,R∗) at δ0

satisfies “ADR + Θ is regular.” In fact, since the model L(Hom∗)[F ] in Theorem 0.1 is very close

to L(Hom∗,R∗), Woodin’s proof can be used to show L(Hom∗)[F ] � “ADR + Θ is regular + ω1

is ℘(R)-supercompact.” Part of the reason for Woodin’s conjecture is that it’s not clear how to

show derived models satisfy “ADR + Θ is regular” without assuming the existence of supercompact

cardinals.

However, G. Sargsyan in [4] has reduced the consistency strength of “ADR + Θ is regular” to

below that of “ZFC + there exists a Woodin limit of Woodin cardinals.” G. Sargsyan and Y. Zhu

have subsequently computed the exact strength of “ADR + Θ is regular.” We’d like to do the same

for the theory “ADR + Θ is regular + ω1 is ℘(R)-supercompact.” The following theorem is a first

step toward that goal. It belongs to the folklore but whose proof seems to be unpublished.

Theorem 3.1. Suppose ADR + DC holds and there is a R-complete measure on Θ14. Then there

is a normal fine measure on ℘ω1(℘(R)).

14A measure ν on Θ is R-complete if whenever 〈Ax | x ∈ R〉 is a sequence of ν-measure one sets then ∩x∈RAx ∈ µ.
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Proof. The hypothesis implies there is a R-complete and normal measure on Θ by a standard

argument (see Theorem 10.20 of [2] and note that DC is enough for the proof of the theorem). Let

ν be such a measure. For each α < Θ, let µα be the normal fine measure on ℘ω1(℘α(R)) derived

from the Solovay measure µ0 on ℘ω1(R) (i.e. we first fix a surjection π : R → ℘α(R); then we let

π∗ : ℘ω1(R) → ℘ω1(℘α(R)) be the surjection induced from π and let A ∈ µα ⇔ (π∗)−1[A] ∈ µ0).

It’s worth noting that by [10], µα are unique for all α < Θ. We derive from ν a measure µ on

℘ω1(℘(R)) as follows. Let A ⊆ ℘ω1(℘(R)), then

A ∈ µ⇔ ∀∗να A � ℘α(R) =def {σ ∈ A | σ ∈ ℘ω1(℘α(R))} ∈ µα.

It’s clear that µ is a measure. It’s also clear that µ is fine since the measures µα’s are fine. It

remains to show normality of µ.

We use the alternative characterization of normality in Lemma 1.4. Suppose µ is not normal.

By Lemma 1.4, there is a sequence 〈Ax | x ∈ ℘(R) ∧Ax ∈ µ〉 but 4x∈℘(R)Ax /∈ µ. This means

∀∗να∀∗µασ∃x ∈ σ σ /∈ Ax.

By normality of µα, we then have

∀∗να∃x∀∗µασ x ∈ σ ∧ σ /∈ Ax. (3.1)

We now define a regressive function F : Θ → Θ as follows. Let F (α) be the least β < α such

that there is an x ∈ ℘(R) such that w(x) = β and ∀∗µασ σ /∈ Ax; otherwise, let F (α) = 0. By 3.1,

∀∗να 0 < F (α) < α. By normality of ν, there is a β such that ∀∗να F (α) = β.

For each x such that w(x) = β, let

Bx = {α < Θ | ∀∗µασ σ /∈ Ax}.

Note that ∪xBx ∈ ν. Since there are only R-many such x, by R-completeness of ν, there is an x

such that Bx ∈ ν. Fix such an x. We then have

∀∗να∀∗µασ σ /∈ Ax. (3.2)

The above equation implies Ax /∈ µ. Contradiction.

We call the theory in the hypothesis of Theorem 3.1 “ADR + Θ is measurable”. Theorem 3.1

proves one direction of the following theorem, whose proof is beyond the scope of this paper (cf.

[8]).

Theorem 3.2. The following theories are equiconsistent:

1. ADR + Θ is measurable.

2. ZF + DC + Θ is regular + ω1 is ℘(R)-supercompact.

As a consequence, the above theories are equiconsistent with

3. ADR + DC + Θ is regular + ω1 is ℘(R)-supercompact.
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