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Abstract

The main result of this paper, built on work of [15] and [14], is the proof that the theory

“ADR + DC + there is an R-complete measure on Θ” is equiconsistent with “ZF + DC + ADR +

there is a supercompact measure on ℘ω1
(℘(R)) + Θ is regular.”

1. INTRODUCTION

We begin with the following definitions.

Definition 1.1 (ZF+DC). Suppose X is an uncountable set and µ is a measure on ℘ω1(X) =def

{σ ⊆ X | σ is countable}. We say that

1. µ is fine if whenever x ∈ X, then the set Ax =def {σ | x ∈ σ} ∈ µ.

2. µ is countably complete if whenever 〈An | n < ω〉 is a sequence of µ-measure one sets then⋂
nAn ∈ µ.

3. µ is normal if whenever F : ℘ω1(X)→ ℘ω1(X) is such that the set {σ | F (σ) ⊆ σ ∧ F (σ) 6=
∅} ∈ µ then there is an x ∈ X such that the set {σ | x ∈ F (σ)} ∈ µ.

If there is a nonprincipal measure µ on ℘ω1(X) that satisfies (1)-(3), then we say that ω1 is X-

supercompact. If there is a nonprincipal measure µ on ℘ω1(X) that satisfies (1) and (2) then we

say ω1 is X-strongly compact.

This is a generalization of the notion of supercompactness in the ZFC context. If X is a set of

ordinals then the two notions coincide. The following is not hard to prove (see [13]).

Lemma 1.2 (ZF + DC). Suppose µ is a fine measure on ℘ω1(X). The following are equivalent.

1. µ is normal.
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2. Suppose we have 〈Ax | x ∈ X ∧Ax ∈ µ〉. Then 4x∈XAx =def {σ | σ ∈
⋂
x∈σ Ax} ∈ µ.

From now on, the phrase “µ is a supercompact measure on ℘ω1(X)” always means “µ is a

nonprincipal, normal fine, countably complete measure on ℘ω1(X)”. We will also say “ω1 is X-

supercompact” to mean “there is a supercompact measure on ℘ω1(X)”. When µ is nonprincipal,

countably complete, and fine (but not necessarily normal), we say that µ is a strongly compact

measure. We say that ω1 is supercompact if ω1 is X-supercompact for all uncountable X and ω1

is strongly compact if ω1 is X-strongly compact for all uncountable X.

This paper explores aspects of compactness properties of ω1 under ZF + DC. In particular, we

focus on the consistency strength of the theories:

(P) ≡ “ZF + DC + ω1 is supercompact”,

(Q) ≡ “ZF + DC + ADR + ω1 is supercompact”

and their variations. From here on, by ADR, we always mean AD+ + ADR. See Section 2 for basic

terminology and facts about AD+.

We note that “ZF + ω1 is supercompact” implies DC by an easy argument. We choose to be

redundant here since we’ll be using DC in many arguments to come. Also, (Q) is equivalent to

“AD+ + ω1 is supercompact” by results in [15] and [17].

Woodin (unpublished) has shown that Con(P) and Con(Q) follows from Con(ZFC + there is

a proper class of Woodin limits of Woodin cardinals). We conjecture that a (closed to optimal)

lower-bound consistency strength for the theory (P) is that of (Q) and is “ZFC + there is a Woodin

limit of Woodin cardinals.”

In the context of ZF + DC, the papers [14] and [12] study supercompact measures on ℘ω1(R)

and show that the following theories are equiconsistent:

1. ZFC + there are ω2 Woodin cardinals.

2. AD+ + there is a supercompact measure on ℘ω1(R).

3. ZF + DC + Θ > ω2 + there is a supercompact measure on ℘ω1(R).1

It is also well-known that the existence of a supercompact measure on ℘ω1(R) is equiconsistent

with that of a measurable cardinal (see [12]). Recall that the existence of supercompact measures

on ℘ω1(R) was first shown by Solovay [8] from ADR. Consistency-wise, it is known that ADR is

much stronger than (1) (and hence (2) and (3)).

Surprisingly, [15] shows that having a supercompact measure on ℘ω1(℘(R)) is much stronger

consistency-wise as it implies that there are models of ADR + DC. Solovay [8] shows that ADR + DC

is strictly stronger than ADR consistency-wise.

1The equiconsistency of (1) and (2) is due to H.W. Woodin. The equiconsistency of (2) and (3) is due independently
to H.W. Woodin and the author.
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Theorem 1.3 (Trang-Wilson). Assume ZF + DC. Suppose there is a supercompact measure on

℘ω1(℘(R)). Then there is a transitive M containing R ∪OR⊆M such that M � ADR + DC.

[15] also shows the conclusion of Theorem 1.3 is equiconsistent with “ZF + DC + ω1 is ℘(R)-

strongly compact”. The main conjecture regarding compactness properties of ω1 under ZF + DC

is.

Conjecture 1.4. The following theories are equiconsistent.

1. (P)

2. “ZF + DC + ω1 is strongly compact”

Conjecture 1.4’s analogue in the ZFC context is perhaps more well-known. However, recent

progress in inner model theory suggests that Conjecture 1.4 is more tractable.

Definition 1.5 (ZF+DC). Let Θ = sup({α | ∃π : R → α ∧ π is onto}) and µ be a measure on Θ.

We say that µ is uniform if sets of the form (α,Θ), [α,Θ) are in µ for all α < Θ. We say that µ

is R-complete if µ is uniform, and whenever we have 〈Ax | x ∈ R ∧Ax ∈ µ〉 then
⋂
x∈RAx 6= ∅.

Let

• (T1) ≡ “ZF + DC + there is a supercompact measure on ℘ω1(℘(R)) + Θ is regular.”

• (T2) ≡ “ADR + DC + there is a nonprincipal R-complete measure on Θ”.

• (T3) ≡ “ZF + DC + ADR + there is a supercompact measure on ℘ω1(℘(R)) + Θ is regular.”

We will also say “Θ is measurable” in place of “there is a nonprincipal R-complete measure on

Θ.” The main theorem of this paper is the following.

Theorem 1.6. Con(T2) ⇔ Con(T3).

The proof that (T2) implies (T3) (and hence (T1)) is given in [13] (note that by a standard

argument, Θ is measurable implies Θ is regular).2 Hence we focus on the proof of Con(T3) implies

Con(T2) in this paper.

Recent developments in the core model induction techniques suggest that the use of AD+ in the

proof of Theorem 1.6 can be omitted. We conjecture the following.

Conjecture 1.7. Con(T1)⇔ Con(T2)(⇔ Con(T3)). Furthermore, Con(P) implies Con(T3).

The outline of the paper is as follows. In Section 2, we summarize some basic facts about

descriptive set theory and the theory of AD+ that we use in this paper. Section 3 introduces the

notion of hod mice that we will construct in this paper. Section 4 discusses a variation of the

2Let µ witness Θ is measurable. Suppose Θ is singular. Then it is easy to see that there is a cofinal map f : R→ Θ.
For each x ∈ R, let Ax = 〈α < Θ | α ≥ f(x)〉. Clearly Ax ∈ µ for all x ∈ R. Let α ∈

⋂
xAx 6= ∅. Then α ≥ f(x) for

all x ∈ R. This contradicts the fact that f is cofinal.

3



Vopenka algebra that is useful in constructing models of determinacy from hod mice (see Theorem

4.1). Section 5 gives the construction of a proper hod pair, which in turns will generate a model of

“ADR + Θ is measurable” and hence completes the proof of Theorem 1.6.

Acknowledgement. Part of this paper is from the author’s PhD thesis; the author would like

to thank G. Sargsyan and J.R. Steel for many helpful conversations regarding this topic while the

author was a student at UC Berkeley.

2. BASIC FACTS ABOUT AD+

We start with the definition of Woodin’s theory of AD+. In this paper, we identify R with ωω.

Recall Θ is the sup of ordinals α such that there is a surjection π : R → α. Under AC, Θ is just

the successor cardinal of the continuum. In the context of AD, Θ is shown to be the supremum

of w(A) for A ⊆ R.3 The definition of Θ relativizes to any determined pointclass4 (with sufficient

closure properties). For a pointclass Γ, we denote Θ for the sup of α such that there is a surjection

from R onto α coded by a set of reals in Γ.

Recall that ADX is determinacy for games in which player I and II take turns to play elements

of X for ω-many rounds. If X = ω, then ADX = AD.

Definition 2.1. AD+ is the theory ZF + AD+DCR and

1. for every set of reals A, there are a set of ordinals S and a formula ϕ such that x ∈ A ⇔
L[S, x] � ϕ[S, x]. (S, ϕ) is called an ∞-Borel code for A;

2. for every λ < Θ, for every continuous π : λω → ωω, for every A ⊆ R, the set π−1[A] is

determined.

AD+ is equivalent to “AD + the set of Suslin cardinals is closed”. Another, perhaps more useful,

characterization of AD+ is “AD+Σ1 statements reflect into Suslin co-Suslin sets” (see [11] for the

precise statement). Recall, our convention is ADR is the principle AD+ + ADR.

Let A ⊆ R, we let θA be the supremum of all α such that there is an OD(A) surjection from

R onto α. If Γ is a determined (boldface) pointclass, and A ∈ Γ, we write Γ � A for the set of

B ∈ Γ which is Wadge reducible to A. If α < Θ, we write Γ � α for the set of A ∈ Γ with Wadge

rank strictly less than α. Occasionally, we will write Γ for a ω-parameterized (lightface) pointclass

and write Γ˜ for its corresponding boldface pointclass. We write ∆˜Ω˜ for the ambiguous part of the

boldface pointclass Ω˜, that is ∆˜Ω˜ is the collection of A such that both A and R\A are in Ω˜.

Definition 2.2 (AD+). The Solovay sequence is the sequence 〈θα | α ≤ Ω〉 where

1. θ0 is the supremum of ordinals β such that there is an OD surjection from R onto β;

2. θΩ = Θ;

3w(A) is the Wadge rank of A.
4See [17] for more backgrounds on descriptive set theory in contexts where determinacy only holds locally.
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3. if α > 0 is limit, then θα = sup{θβ | β < α};

4. if α = β + 1 and θβ < Θ (i.e. β < Ω), fixing a set A ⊆ R of Wadge rank θβ, θα is the sup of

ordinals γ such that there is an OD(A) surjection from R onto γ, i.e. θα = θA.

Note that the definition of θα for α = β + 1 in Definition 2.2 does not depend on the choice of

A. The Solovay sequence is a club set in Θ. Roughly speaking the longer the Solovay sequence is,

the stronger the associated AD+-theory is. For instance the theory ADR + DC is strictly stronger

than ADR since by [8], DC implies cof(Θ) > ω while the minimal model of ADR satisfies Θ = θω

(ADR implies that the Solovay sequence has limit length). ADR + Θ is regular is stronger still as it

implies the existence of many models of ADR + DC.

Definition 2.3. “ADR + Θ is measurable” is the theory “ADR+ there is a nonprincipal R-complete

measure on Θ”.

It’s easy to see that “ADR + Θ is measurable” implies “ADR + Θ is regular”; in fact, there are

unboundedly many θα < Θ such that L(℘(R) � θα,R) � “ADR + Θ is regular”.

We end this section with a theorem of Woodin, which produces models with Woodin cardinals

in AD+.

Theorem 2.4 (Woodin, see [4]). Assume AD+. Let 〈θα | α ≤ Ω〉 be the Solovay sequence. Suppose

α = 0 or α = β + 1 for some β < Ω. Then HOD � θα is Woodin.

3. A BRIEF INTRODUCTION TO HOD MICE

In this paper, a hod premouse P (below ADR +Θ is measurable) is one defined as in [5]. The reader

is advised to consult [5] for basic results and notations concerning hod premice and hod mice. Let

us mention some basic first-order properties of a hod premouse P. There are an ordinal λP and

sequences 〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα is

Woodin;

2. P(0) = Lpω(P|δ0)P ; for α < λP , P(α + 1) = (Lp
ΣPα
ω (P|δα))P ; for limit α ≤ λP , P(α) =

(Lp
⊕β<αΣPβ
ω (P|δα))P ;

3. P � ΣPα is a (ω, o(P), o(P))5-strategy for P(α) with hull condensation;

4. if α < β < λP then ΣPβ extends ΣPα .

We will write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . Note that P(0) is a pure extender model. Suppose

P and Q are two hod premice. Then P Ehod Q if there is α ≤ λQ such that P = Q(α). We say

then that P is a hod initial segment of Q. (P,Σ) is a hod pair if P is a hod premouse and Σ is a

5This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.
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strategy for P (acting on countable stacks of countable normal trees) such that ΣP ⊆ Σ and this

fact is preserved under Σ-iterations. Typically, we will construct hod pairs (P,Σ) such that Σ has

hull condensation, branch condensation, and is Γ-fullness preserving for some pointclass Γ. As a

matter of notation, if (P,Σ) is a hod pair and Q�hod P, then ΣQ is Σ restricted to stacks on Q.

Suppose (Q,Σ) is a hod pair such that Σ has hull condensation. P is a (Q,Σ)-hod premouse if

there are ordinal λP and sequences 〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα is

Woodin;

2. P(0) = LpΣ
ω (P|δ0)P (so P(0) is a Σ-premouse built over Q); for α < λP , P(α + 1) =

(Lp
Σ⊕ΣPα
ω (P|δα))P ; for limit α ≤ λP , P(α) = (Lp

Σ⊕β<αΣPβ
ω (P|δα))P ;

3. P � Σ ∩ P is a (ω, o(P), o(P))strategy for Q with hull condensation;

4. P � ΣPα is a (ω, o(P), o(P))strategy for P(α) with hull condensation;

5. if α < β < λP then ΣPβ extends ΣPα .

Inside P, the strategies ΣPα act on stacks above Q and every ΣP
α iterate is a Σ-premouse. Again,

we write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . (P,Λ) is a (Q,Σ)-hod pair if P is a (Q,Σ)-hod premouse

and Λ is a strategy for P such that ΣP ⊆ Λ and this fact is preserved under Λ-iterations. The

reader should consult [5] for the definition of B(Q,Σ), and I(Q,Σ). Roughly speaking, B(Q,Σ) is

the collection of all hod pairs which are strict hod initial segments of a Σ-iterate of Q and I(Q,Σ)

is the collection of all Σ-iterates of Σ. In the case λQ is limit, Γ(Q,Σ) is the collection of A ⊆ R
such that A is Wadge reducible to some Ψ for which there is some R such that (R,Ψ) ∈ B(Q,Σ).

See [5] for the definition of Γ(Q,Σ) in the case λQ is a successor ordinal.

[5] constructs under AD+ and the hypothesis that there are no models of “ADR + Θ is regular”

hod pairs that are fullness preserving, positional, commuting, and have branch condensation. Such

hod pairs are particularly important for our computation as they are points in the direct limit

system giving rise to HOD of AD+ models. For hod pairs (MΣ,Σ), if Σ is a strategy with branch

condensation and ~T is a stack onMΣ with last model N (we will denote this model N T ), ΣN ,~T is

independent of ~T (this property is called positional). Therefore, later on we will omit the subscript

~T from ΣN ,~T whenever Σ is a strategy with branch condensation andMΣ is a hod mouse. We also

let α(~T ) denote the supremum of the generators used in ~T .

Suppose AD+ holds. We fix a simple (∆1
1) coding of Hω1 by elements of R. For an (ω1, ω1)

iteration strategy Λ, we let Code(Λ) be the set of reals coding Λ via the specified coding.6 Suppose

(P,Σ) is a hod pair such that Σ has branch condensation and is Γ-fullness preserving for some

pointclass Γ and suppose Code(Σ) is Suslin co-Suslin, then [5, Corollary 2.44] shows that Σ is

positional and commuting. We can then compute the direct limitM∞(P,Σ) of all Σ-iterates of P.

6To save space, we will generally not make distinction between Λ and Code(Λ) in this paper.
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In practice (in determinacy models where the HOD analysis can be carried out or in core model

induction contexts) we construct hod pairs (P,Σ) such that Σ has branch condensation and is

Γ-fullness preserving for some pointclass Γ (if Γ = ℘(R) then we simply say “fullness preserving”).

We don’t quite have at the moment (P,Σ) is constructed an AD+-model M such that (Q,Σ) ∈M7

but we do know that every (R,Λ) ∈ B(Q,Σ) belongs to such a model. We then can show (using

our hypothesis) that the hod pair (P,Σ) we construct belongs to an AD+-model.

In this paper, P is a hod premouse if

(i) either P is a hod premouse below “ADR + Θ is measurable”, that is, no hod initial segment

Q of P satisfies “δQ is a measurable limit of Woodin cardinals” (P is called improper in this

case),

(ii) or P = (P−, E) where P− is improper hod premouse (or anomalous hod premouse, cf. [5,

Section 3.4]), P � “δP is regular” and E codes (as an amenable predicate) a normal measure

over P with critical point δP (P is called proper in this case).

Suppose P is a proper hod premouse and suppose Σ is some iteration strategy of P. Suppose

~T is a stack according to Σ. It’s easy to see that ~T can be decomposed into a sequence of stacks

(Tα,Nα : α < γ) for some γ, where

1. N0 = P = (N−0 , E0), Nα+1 is the last model of Tα, and for limit α, Nα is the direct limit

(under the iteration maps) of the Nβ’s for β < α;

2. for α < γ − 1 successor, say Nα = (N−α , Eα). Then Tα+1 is either a stack below δNα (if

Tα = 〈N−α−1, Eα−1〉) or else Tα+1 = 〈N−α , Eα〉.

3. for α = 0 or limit, Tα is either a stack on Nα below Nα or else Tα = 〈N−α , Eα〉;

Such a sequence is called the normal form of ~T .

4. A VOPENKA FORCING

In this section, we prove a theorem concerning a variation of the Vopenka algebra. This theorem

will play an important role in the next section. Suppose Γ is such that L(Γ,R) � AD+ + ADR and

Γ = ℘(R) ∩ L(Γ,R). Let H be HODL(Γ,R). Woodin has shown that H = L[A] for some A ⊆ Θ

(see [16]). We write Θ for Θ. Let H+ be a ZFC model such that A ∈ H+ and V HΘ = V H
+

Θ . The

following theorem comes from many conversations between H.W. Woodin and the author.

Theorem 4.1. There is a forcing P ∈ H such that

1. P is homogeneous;

2. there is a G ⊆ P generic over H+ such that H+(Γ) is the symmetric part of H+[G].8

7Though in the proof of Theorem 1.6 we do know this.
8H+(Γ) is the minimal transitive ZF model containing H+ and Γ. The symmetric part of H[G] is the set of τG

where τ is a P-symmetric name. Another way of defining the symmetric part of H[G] is
⋃
α<Θ HOD

{H[G],H}
{G∩VH

α }
.
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3. ℘(R) ∩H+(Γ) = Γ.

In particular, H+(Γ) � ADR.

Proof. First, we define a forcing Q ∈ L(Γ,R). A condition q ∈ Q if q : nq → ℘(αq) for some nq < ω

and αq < Θ. The ordering ≤Q is as follows:

q ≤Q r ⇔ nr ≤ nq ∧ αr ≤ αq ∧ ∀i < nr q(i) ∩ αr = r(i).

Now we define

P∗ = {A | ∃αA < Θ∃nA < ω A ⊆ ℘(αA)nA ∧A ∈ ODL(Γ,R)}.

The ordering ≤P∗ is defined as follows:

A ≤P∗ B ⇔ nB ≤ nA ∧ αB ≤ αA ∧A ∩ ℘(αB)nB ⊆ B.

In the above, by “A∩℘(αB)nB”, we mean the set {x � nB | ∃y ∈ A x = 〈y(0)∩αB, . . . , y(nA− 1)∩
αB〉}.

It’s easy to see that there is a partial order (P,≤P) ∈ H isomorphic to (P∗,≤P∗) and in H,

(P,≤P) has size Θ. Let π : (P,≤P) → (P∗,≤P∗) be the isomorphism (and π is ODL(Γ,R)). We will

write p∗ for π(p), where p ∈ P. We will occasionally confuse these two partial orders. (P,≤P) is

the direct limit of the directed system of complete boolean algebras Pα,n in H, where P∗α,n is the

Vopenka algebra on ℘(α)n and the maps from Pα,n into Pβ,m for α ≤ β and n ≤ m are the natural

maps. It’s clear that P is homogeneous. Similarly, Q is homogeneous and is a natural direct limit

of the partial orders {Qα = Q � α | α < Θ}, where Q � α consists of conditions p in Q such that

αp ≤ α.

Now let g ⊆ Q be L(Γ,R)-generic. Let h ⊆ P be defined as follows:

p ∈ h⇔ (g � np∗) ∩ ℘(αp∗)
np∗ ∈ p∗.

We can think of g as a function from Θ×ω to ℘Θ(Θ) such that for all (α, n) ∈ dom(g), g(α, n) ⊆ α.

Also, if p ∈ P, by (np, αp), we mean (np∗ , αp∗).

Lemma 4.2. Write the filter h above hg. Then hg is generic over H and L(Γ,R) is the symmetric

part of H[hg]. In fact, for any condition p ∈ P, there is a generic filter h over H such that p ∈ h
and L(Γ,R) is the symmetric part of H[h].

Proof. Suppose hg is not generic over H. Then there is an open dense set D ⊆ P in H such that

hg ∩ D = ∅. Fix a condition p ∈ g which forces this. For each i < ω, let pi be the join in Pαp,i
of Dp,i, where Dp,i ⊆ Pαp,i is the set of all b which can be refined in P to an element of D by not

increasing i but (possibly) increasing αp, i.e. there is a β ≥ αp and a d ∈ Pβ,i such that d ∈ D and

d � αp = b.

Since D is open dense, the set {pi | i < ω} is predense in the limit Pαp of the Pαp,i’s (this just

says that
⋃
iDp,i is predense in

⋃
i Pαp,i). Since g � αp =def 〈g(n) � αp | n < ω〉 is generic for

Q � αp, there must be some i ≥ np and β ≥ αp such that there is some b ∈ Pβ,i ∩ D such that

(g � αp) � i ∈ b∗ � ℘(αp)
i. But this means we can easily refine p to a condition q such that
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q  ḣġ ∩D 6= ∅,

by taking q to be a “thread” in b∗ extending (g � αp) � i. This is a contradiction.

In fact, we just proved that given an open dense set D ⊆ P in H, for any condition p ∈ Q,

there is a q ≤Q p such that q Q ḣ ∩ D 6= ∅. Given g and hg as above, we also can define g

from hg in a simple way. Let b ⊆ α for some α < Θ such that b ∈ L(Γ,R). Let pb,α,n ∈ P be

such that npb,α,n = n + 1 (for some n) and αpb,α,n = α and b ∈ (pb,α,n)∗(n). We can pick a map

〈b, α, n〉 7→ pb,α,n that is OD in L(Γ,R). Then

b = g(α, n)⇔ pb,α,n ∈ hg.

We then can define symmetric P-terms for hg(α, n) and ran(hg) by

σα,n = {〈p, b̌〉 | b ⊆ α ∧ p ≤P pb,α,n},

and

Ṙ = {〈p, σα,n〉 | p ∈ P ∧ α < Θ ∧ n < ω}.

By the proof above, we have the following.

Lemma 4.3. 1. For any g ⊆ Q generic over L(Γ,R), σ
hg
α,n = hg(α, n) for all α, n and Ṙhg =

ran(h) = (℘Θ(Θ))L(Γ,R).

2. For any condition p ∈ P, there is an H-generic h such that p ∈ h and Ṙh = ℘Θ(Θ)L(Γ,R).

Since L(Γ,R) � AD++ADR, L(Γ,R) can be recovered overH from ℘Θ(Θ)L(Γ,R) (via the standard

Vopenka forcing).9 This and Lemma 4.3 prove Lemma 4.2.

Now work in L(H+, g) for a P-generic g over H such that Ṙg = ℘Θ(Θ)L(Γ,R). It makes sense

then to talk about the forcing Q in the model L(H+, g). Also, note that P ∈ H+. The following

lemma is the key lemma.

Lemma 4.4. There is a P-generic g∗ over H+ such that

1. Ṙg
∗

= Ṙg = ℘Θ(Θ)L(Γ,R).

2. H+(Ṙg
∗
) ∩ ℘Θ(Θ) = ℘Θ(Θ)L(Γ,R) and H+(Ṙg

∗
) ∩ ℘(R) = Γ.

Proof. Let h∗ ⊆ Q be L(H+, g)-generic. As mentioned above, Q ∈ L(H+, g) since Ṙg = ℘Θ(Θ)L(Γ,R).

Now, let g∗ = gh∗ . Using the proof of Lemma 4.2 and the fact that V H
+

Θ = V HΘ , we get that g∗ is

generic over H+ and Ṙg
∗

= Ṙg.

Now we want to verify clause (2) of the lemma. For the first equality, it’s clear that the ⊇-

direction holds. For the converse, if A is a bounded subset of Θ in H+(Ṙg
∗
) (so A has a symmetric

name in H+), then using the automorphisms of P that are in H, it’s easy to see that there is some

α < Θ such that A ∈ H+[g∗ � α]. To see this, note that if p0, p1 ∈ P decide differently the statement

9Any A ∈ Γ has an ∞-Borel code S ∈ ℘Θ(Θ). S is generic over H via a (Vopenka) forcing of size < Θ (this uses
that L(Γ,R) � ADR). Then there is a formula ϕ such that given any real x, H[S][x] � ϕ[S, x] if and only if x ∈ A.
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“β̌ ∈ Ȧ”, then by homogeneity, there is an automorphism in H that maps p0 to a p′0 compatible

with p1. This is a contradiction. Now since P � α is Θ-c.c. (by ADR)10 and V H
+

Θ = V HΘ , A ∈ H(Ṙg),

and hence A ∈ ℘Θ(Θ)L(Γ,R).

Note that the first equality of (2) shows that R ∩ H+(Ṙg
∗
) = RV . Now we’re onto the second

equality of (2). The ⊇-direction holds since H(℘Θ(Θ)L(Γ,R)) = L(Γ,R) ⊆ H+(Ṙg
∗
). Let A ⊆ RV

be in H+(Ṙg
∗
). First we assume A is definable in H+(Ṙg

∗
) from an element a ∈ H+, via a formula

ψ. Let ẋ be a (symmetric) P � ω-name for a real. The statement ψ(ẋ, ǎ) is decided by P � ω by

homogeneity of P � ω (i.e. H+ � “∅ P�ω ψ[ẋ, ǎ] ∨ ∅ P�ω ¬ψ[ẋ, ǎ]”). Again, by the fact that P � ω
is Θ-c.c., we get that A ∈ H[g∗ � ω], hence A ∈ Γ.

Now suppose A is definable in H+(Ṙg
∗
) from an a ∈ H+ and a b ∈ ℘Θ(Θ)L(Γ,R). Using the

standard Vopenka algebra and ADR, we can get a < Θ-generic Gb over H and H+ such that

HOD
L(Γ,R)
b = H[Gb] ⊆ H+[Gb]. Let us use Hb to denote H[Gb] and H+

b to denote H+[Gb]. Now

in Hb, we can define the poset Pb the same way that P defined but we replace OD by OD(b) in

L(Γ,R). Let gb be Pb-generic over Hb such that the symmetric part of Hb[gb] is Hb(℘Θ(Θ)L(Γ,R)).

Now we get a generic g∗b over H+
b from gb as before. A is then definable over H+

b (℘Θ(Θ)L(Γ,R)) from

parameters in H+
b . Now, we just have to repeat the argument above. This completes the proof of

Lemma 4.4.

Lemmata 4.2, 4.3, and 4.4 together prove Theorem 4.1.

We end this section with the following lemma, which will be useful in the next section.

Lemma 4.5. Suppose M = L(Γ,R) � ADR. Letting H = HODM and say, H = L[A] for some

A ⊆ ΘM . Let H+ be a ZFC transitive model such that V H
+

ΘM
= V H

ΘM
and A ∈ H+. Let P be the

Vopenka forcing defined in Theorem 4.1. Suppose H+ � ΘM is regular. Then L[H+](Γ) � ΘM is

regular.

Proof. Let G ⊆ P be H+-generic such that the conclusions of Lemma 4.4 hold for G. Suppose

α < ΘM and f : α→ ΘM is a cofinal function in L[H+](Γ). Say f is definable via ϕ over L[H+](Γ)

from ordinals and σGα0,n0
, . . . , σGαk,nk . It is easy to see that every x ∈ L[H+](Γ) has this form.

Let p ∈ G be such that np ≥ max{n0, . . . , nk}, αp ≥ max{α0, . . . , αk} and p forces ϕ defines a

cofinal map from α̌ into ΘM from σGα0,n0
, . . . , σGαk,nk . Note that if q ≤ p forces “ϕ(ξ̌) = β̌”, 11 then

q ∩ ℘(αp)
np forces “ϕ(ξ̌) = β̌”. One simply uses the automorphisms of P that permute coordinates

to see this.

But by ADR, there are less than ΘM many possible q ∩ ℘(αp)
np in M . Since H+ � ΘM is

regular, this easily gives a contradiction.

10By ADR, letting γ = θβ for some θβ > α, then P � α ∈ L(Γ � γ,R) and every antichain of P � α is in L(Γ � γ,R).
Θ-cc-ness of P � α easily follows.

11This just means the value of the function defined by ϕ at ξ is β. We write this to make the notation less
cumbersome.
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5. A PROOF OF THEOREM 1.6

In this section, we assume the hypothesis of Theorem 1.6. We start with some setup and notations.

As in [15], we assume V = L(℘(R), µ), where “ADR + DC + Θ is regular” holds and µ is a super-

compact measure on ℘ω1(℘(R)). Suppose N is such that there is a surjection π∗ from ℘(R) onto

N . Then π∗ induced a surjection π : ℘ω1(℘(R)) → ℘ω1(N), namely π(σ) = π∗[σ]. Let µN be the

supercompact measure on ℘ω1(N) induced by µ, i.e.

A ∈ µN ⇔ π−1[A] ∈ µ.

In general, µN depends on π but we suppress it from the notation; for our purposes, any super-

compact measure on ℘ω1(N) suffices. We write ∀∗µNσ for “for µN -a.e. σ”.

For each σ ∈ ℘ω1(N), let

Mσ = HOD
(V,µN )
σ∪{σ} ,

and

Hσ = HOD
(Mσ ,µN )
{σ} .

We summarize a few facts that are proved in [15].

(i) The ultraproducts M =
∏
σ Mσ/µN and H =

∏
σ Hσ/µN are well-founded and Los theorem

holds for these ultraproducts (cf. [15, Lemma 3.1] or [14, Lemma 2.4]).

(ii) N ⊆M . If ℘(R) ⊆ N , then ℘(R) ⊂M and hence ℘Θ(Θ) ⊂M .

(iii) Suppose N is a transitive structure of a fragment of ZF, then ∀∗µNσ σ ≺ N .

(iv) ωV1 is measurable in both Mσ and Hσ for µN -a.e. σ.

(v) For any A ∈ M such that A is a bounded subset of Ω =def [σ 7→ ωV1 ]µN in M , A is generic

over H via a forcing of size < Ω. Also Ω > Θ.

We assume, for contradiction that

(†) : there is no model M containing all reals and ordinals such that

M � “ADR + Θ is measurable”.

Under this smallness assumption, the HOD analysis in V can be carried out as in [5] to conclude

that HOD|Θ is a union of hod premice and in fact is a direct limit of the directed system F of hod

pairs (P,Σ) such that Σ is fullness preserving and has branch condensation. We then construct a

hod premouse H+ extending HOD|Θ and a normal measure ν on Θ over H+ and amenable to H+.

So we have a proper hod premouse (H+, ν). Using the Vopenka forcing in the previous section, we

then show that V = L[H+][ν](℘(R)) � ADR + Θ is measurable. This contradicts (†). So (†) must

be false; equivalently, there must be models of “ADR + Θ is measurable” after all.

We define a model H+ extending H =def HOD|Θ as follows. Let N be a transitive structure

of a large fragment of ZF + DC such that ℘(R) ∪ H ⊂ N and such that there is a surjection

11



π : ℘(R)→ N . We have that ∀∗µNσ σ ≺ N . For each such σ, let Nσ be the transitive collapse of σ

and πσ be the uncollapse map. Let (Γσ,Hσ,Θσ) = π−1
σ (℘(R),H,Θ). Generally, if x ∈ σ, then let

xσ = π−1
σ (x).

We let Hσ = HODMσ , where Mσ is the transitive collapse of σ. We then let

H+ = ΠσLpΣ−σ (Hσ)/µN,

H+− = ΠσLpΣ−σ
ω (Hσ)/µN,

where Σ−σ = �α<λσΣHσ(α). We also let H+
σ = LpΣ−σ

ω (Hσ). The lemma below justifies the notation

of H+ etc. that does not refer to the structure N .

Lemma 5.1. The definition of H+ is independent of the choice of N .

Proof. Suppose N0, N1 have the properties of N described above. Let H+
i be defined like H+ but

relative to Ni (i = 0, 1). Without loss of generality, we assume N0 ⊆ N1 and µ1 =def µN1 projects

to µ0 =def µN0 .

Our assumption implies that H�H+
0 �H+

1 and H = [σ 7→ Hσ]µ0 = [σ 7→ Hσ]µ1 .

Let M � H+
1 be such that ρω ≤ Θ and let pM be the standard parameter of M. Since M

is Θ-sound, the Σω-theory ThMω (Θ ∪ {pM}) codes M and is essentially a subset of Θ (so we will

confuse M with ThMω (Θ ∪ {pM})). Let M = [σ 7→ Mσ]µ1 ; again, we identify Mσ with its theory

as above. Notice that ∀∗µ1
σ Mσ ∈ Hσ∩N0 . This easily implies M�H+

0 .

We have shown H+
0 = H+

1 .

Lemma 5.2. No level M of H+ is such that ρω(M) < Θ.

Proof. We start with the following.

Claim 5.3. For µN -a.e. σ, for any β < λσ =def λ
Hσ , ΣHσ(β) is fullness preserving and has branch

condensation.

Proof. Fix a σ and a β < λσ. By the HOD analysis in Γσ (which uses (†)), there is a hod pair

(P,Σ) such that

• Σ is Γσ-fullness preserving and has branch condensation;

• Hσ(β) is an iterate of Σ.

Using πσ, we get that πσ(Σ) is an (ω1, ω1) strategy for P that is fullness preserving and has branch

condensation. Since Σ = πσ(Σ) � Γσ, ΣHσ(β) is the tail of πσ(Σ) and hence satisfies the conclusion

of the claim.12

12Note that by positionality of πσ(Σ), which follows from fullness preservation and branch condensation (cf. [5,
Theorem 2.42], ΣHσ(β) does not depend on any specific iteration from P to Hσ(β).

12



We are now ready to finish the proof of the lemma. Fix a σ in the claim. Let H∗σ be the least

level of H+
σ that projects across Θσ. By choosing an N ′ ⊃ N that contains also H∗ = [σ 7→ H∗σ]µN

and using Lemma 5.1, we may assume ∀∗µNσ H∗σ ∈ Nσ. Note that ∀∗µNσ σ
−1
σ (H∗) = H∗σ.

Let Σσ be the natural strategy of H∗σ defined from πσ (see [6, Section 11]). The important

properties of Σσ are:

1. Σσ extends Σ−σ and Σσ is OD{πσ�H∗σ};

2. whenever (~T ,Q) ∈ I(H∗σ,Σσ), for all α < λQ, ΣT ,Q(α) is the pullback of a hod pair (R,Λ)

such that Λ has branch condensation and is fullness preserving and hence by [5, Lemma 3.29],

ΣT ,Q(α) has branch condensation;

3. Σσ agrees with Σ−σ on stacks below Θσ and for each α < λσ, the direct limit map πΣσ
H+
σ ,∞
� (θσ)α

is the direct limit map πΣ−σ
Hσ(α),∞ � (θσ)α;

4. suppose (~T ,Q) ∈ I(H∗σ,Σσ) and let i = π
~T be the corresponding iteration map, then there

is a map k : Q → H∗ such that k ◦ i = πσ � H∗σ. k is defined as: k(i(f)(a)) = πσ(f)(πΛ
Q,∞(a))

for f ∈ H∗σ and a ∈ (δQ)<ω.

(3) above uses the fact that Θ is regular.

Let δ = δ
H∗σ
α be a Woodin cardinal of H∗σ such that ρω(H∗σ) ≤ δ. Let A ⊆ δ witness this. So A

is a bounded subset of θσ that is not in H∗σ. We aim to obtain a contradiction from this.

Now we can construe (H∗σ,Σσ) as a (Hσ(α),ΣHσ(α))-hod pair. We can define a direct limit

system of (Hσ(α),ΣHσ(α)) hod pairs as follows:

F∗ = {(Q′,Λ′) | (Q′,Λ′) ≡DJ (Q,Λ)} 13.

Note that F does not depend on (Q,Λ) and in fact is ODΣHσ(α)
in Γ. This easily implies that A

is ODΣHσ(α)
. By MC(ΣHσ(α))

14 and the fact that Hσ(α+ 1) is ΣHσ(α)-full, A ∈ Hσ(α+ 1) ∈ H∗σ.

This contradicts the definition of A.

We define a measure ν on Θ over H+ as follows. Let A ∈ H+. Then

A ∈ ν ⇔ ∀∗µNσ sup(σ ∩Θ) ∈ A. (5.1)

The definition makes sense since cof(Θ) > ω. It’s clear that ν is a measure. Note also that the

above definition makes sense for all A ∈ V but we only care about those A’s in H+ as we can prove

the measure behaves nicely on this collection of sets.

First we note that H+ is a ZFC− model. Now we show the following.

Lemma 5.4. ν is amenable to H+. In other words, for any M�H+, ν �M∈ H+.

13This means these (H∗σ,Σσ) hod pairs are Dodd-Jensen equivalent.
14This stands for Mouse Capturing with respect to ΣHσ(α), which in turns is the statement that if x, y ∈ R, and x

is ODΣHσ(α)
(y) then x is in a ΣHσ(α)-mouse over y.
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Proof. Let M � H+ be sound and ρω(M) ≤ Θ (note that H+ is the union of such M’s). Let

νM = ν �M. We show νM ∈ H+.

Again, we fix N as above and assume that M ∈ N . We use the set-up and notations above.

Let M = [σ 7→ Mσ]µN . Note that ∀∗µNσ Mσ = π−1
σ (M).

We want to show ∀∗µNσ νσ ∈ H
+
σ . Fix such a σ, let Rσ = HOD(H+

σ ,Σ
−
σ ). Note that ℘(Θσ)∩Rσ =

℘(Θσ) ∩ H+
σ by the similar argument to that used in Lemma 5.2. Let ~A = 〈Aα | α < Θσ〉 be a

definable-over-Mσ enumeration of ℘(Θσ) ∩Mσ. We want to show 〈α | Aα ∈ νσ〉 ∈ Rσ which in

turns implies 〈α | Aα ∈ νσ〉 ∈ H+
σ .

Let γσ = sup(πσ[Θσ]) (note that πσ[Θσ] = σ∩Θ coincides with the iteration embedding via Σ−σ

and since cof(Θ) > ω, γσ < Θ). Note that

∀α < Θσ Aα ∈ νσ ⇔ γσ ∈ πσ(A) ∩ (γσ + 1) (5.2)

and

〈πσ(Aα) ∩ (γσ + 1) | α < Θσ〉 ∈ Rσ. (5.3)

5.3 is true because 〈πσ(Aα) | α < Θσ〉 ∈ H+. Hence 〈πσ(Aα) ∩ (γσ + 1) | α < Θσ〉 ∈ H+|Θ. Since

H+ ⊆ Rσ, we have 5.3.

By Equations 5.2 and 5.3, we have 〈α | Aα ∈ νσ〉 ∈ Rσ. This completes the proof of the

lemma.

Remark 5.5. (i) In the proof of Lemma 5.4, we can’t demand that H+ ∈ N because it may be

the case that o(H+) = Θ+ and hence there are no surjections from ℘(R) onto H+.

(ii) It follows from the fact that Θ is regular and ADR holds that H+ � “Θ is regular limit of

Woodin cardinals”.

Now we want to show that ν is normal and ℘(Θ) ∩ L[H+, ν] = ℘(Θ) ∩ H+. Let M � H+ be

sound and ρω(M) ≤ Θ.

Lemma 5.6. νM =def ν �M is normal.

Proof. Suppose not. Let N be as above and as before, we assume that M, νM ∈ N . We reuse

the notation and objects defined above for N . Let M = [σ 7→ Mσ]µN and note that ∀∗µNσ Mσ =

π−1
σ (M).

We define a measure νσ on Θσ over Mσ as follows.

A ∈ νσ ⇔ γσ =def sup(πσ[Θσ]) ∈ πσ(A). (5.4)

It’s easy to see that

νσ = π−1
σ (νM) ∧Πσνσ/µN = νM. (5.5)

By the assumption on νM, we have that ∀∗µNσ νσ is not normal. This means

{πσ(f)(γσ) | f ∈Mσ} ∩ γσ 6= σ ∩ γσ. (5.6)
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In other words, by normality of µN ,

∃f ∈M ∀∗µNσ f(γσ) /∈ σ ∩ γσ ∧ f(γσ) < γσ.

Fix such an f ∈M and let

A′ = {σ | f(γσ) /∈ σ ∩ γσ ∧ f(γσ) < γσ}. (5.7)

We have A′ ∈ µN . This implies that B ∈ νM where

B = {γ | f(γ) < γ}. (5.8)

Let M �M∗ � H+ be such that νM ∈ M∗. This is possible since νM ∈ H+ and H+ is a

limit of such M∗’s. Now we can also assume M∗ ∈ N by expanding N if necessary. Let then

∀∗µNσ M
∗
σ = π−1

σ (M∗).

Claim 5.7. There is an η < Θ such that ∀∗µNσ f(γσ) = η.

Proof. ∀∗µNσ, let Σσ be the πσ-guided strategy forMσ (below Θσ as defined in the proof of Lemma

5.2) and iσ :Mσ → Nσ be the direct map, where Nσ is the direct limit of all Σσ-iterates of Mσ.

Note that since Mσ � “Θσ is regular”, iσ � Θσ = πσ � Θσ; also iσ is cofinal in o(Nσ). These

properties follow from (1)-(4) in the proof of Lemma 5.2. (1)-(4) in the proof of Lemma 5.2 also

imply that there is a map kσ : Nσ →M such that kσ ◦ iσ = πσ �Mσ and crt(kσ) = iσ(Θσ) = γσ.

Let ν∗σ = iσ[νσ] and (fσ, Bσ) = (π−1
σ (f), π−1

σ (B)). We have then that ∀∗µNσ Bσ ∈ νσ, which

implies that iσ(Bσ) ∈ ν∗σ. We note that ν∗σ is normal; this is because ν∗σ is induced from kσ and

crt(kσ) = γσ.

To prove the lemma, it suffices to show that

∀∗µNσ M
∗
σ � ∃ησ < Θσ iνσ(fσ)(Θσ) = ησ. (5.9)

Fix a σ in the first paragraph. Note that we can extend iσ to a map i+σ :M∗σ → N ∗σ such that i+σ �

Θσ = iσ � Θσ = πσ � Θσ and extend kσ to a map k+
σ : N ∗σ →M∗ such that crt(k+

σ ) = crt(kσ) = γσ

and k+
σ � Nσ = iσ.

As mentioned above, the measure ν∗σ ∈ N ∗σ is normal so

N ∗σ � ∃η < γσ iν∗σ(iσ(f))(γσ) = η (5.10)

By 5.10 and elementarity, 5.9 holds for σ.

The conclusion of the lemma follows from the previous claim.

Theorem 5.8. Let H++ = H+−[ν].15 Then ℘(Θ) ∩H++ = ℘(Θ) ∩H+.

15We identify ν with the total extender over H+ that has index Θ++ of H+−.
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Proof. Suppose not. Then there is an M∗ E H++ such that ρ(M∗) ≤ Θ and M∗ defines a set not

in H+. We may assumeM∗ is minimal and ρ1(M∗) ≤ Θ (note that o(M∗) ≥ (Θ++)H
+−

). LetM
be the transitive collapse of HullM

∗
1 (Θ ∪ pM∗1 ). Then M is transitive and M Σ1-defines a set not

in H+; so M has the form Lα[H∗][νM] for some H∗, νM. It’s easy to see that νM = ν �M.

Let N � ZF− + DC be transitive such that ℘(R) � N and M,Γ, νM ∈ N . Let µN be the

supercompact measure on ℘ω1(N) induced by µΓ. ∀∗µNσ, let πσ : Mσ → N be the uncollapse map.

Let πσ(Mσ,Hσ,Θσ, νσ) = (M,H,Θ, νM).

Lemma 5.9. For µN -almost-all σ, there is an iteration strategy Σ+
σ for Mσ with the following

properties:

1. Σ+
σ is a πσ-realizable strategy that extends Σσ. This means Σσ ⊆ Σ+

σ and whenever ~T is a

stack according to Σ+
σ , letting i : Mσ → P be the iteration embedding, then there is a map

k : P →M such that πσ = k ◦ i.

2. Whenever (Q,Λ) ∈ I(Mσ,Σ
+
σ ), ∀α < λQ, ΛQ(α) is Γ(Mσ,Σ

+
σ )-fullness preserving and has

branch condensation. Hence Σ+
σ is Γ(Mσ,Σ

+
σ )-fullness preserving.

Proof. We prove (1) (see Diagram 1). The proof of (2) is just the proof of [5, Theorem 3.26] so we

omit it; we just mention the key point in proving (2) is that ΛQ(α) for α < λQ is a pullback of a

strategy that is fullness preserving and has branch condensation.

Fix a σ. Suppose i : (Mσ, νσ) → (P, νP) is the ultrapower map using νσ. We describe how

to obtain a πσ-realizable strategy ΣP(α) for α < λP . We then let Σ−P = ⊕α<λPΣP(α) and ~T be a

stack on P according to Σ−P with end model Q. Let j : (P, νP)→ (Q, νQ) be the iteration map and

k : Q → R be the ultrapower map by νQ. We describe how to obtain πσ-realizable strategy ΣQ(α)

for all α < λQ and a πσ-realizable strategy ΣR(α) for all α < λR. The construction of the strategy

for this special case has all the ideas needed to construct the full strategy as for the general stack

(in normal form), we simply repeat the arguments given below inductively.

Let τ ≺ N be such that σ, ~T ∈ τ and are countable there. µN -allmost-all τ have this property.

Let πσ,τ = π−1
τ ◦ πσ. Working in Nτ , γ0 = iΣ

−
σ
Hσ ,∞(λMσ). Let i∗ : P →Mτ be such that

i∗(i(f)(λMσ)) = πσ,τ (f)(γ0).

By the definition of νσ, it’s not hard to show i∗ is elementary and πσ,τ = i∗ ◦ i (so πσ = πτ ◦ i∗ ◦ i).
Note also that i∗(νP) = ντ . Now, let (N ,Λ) be a point in the direct limit system giving

rise to Hτ be such that ran(i∗ � λP) ⊆ ran(iΛN ,∞). There is some s : P|λP → N such that

iΛN ,∞ ◦ s = i∗ � λP . Then Σ−P is simply the s-pullback of Λ. Note that Λ can be extended to a

fullness preserving strategy with branch condensation. It’s not hard to show that the definition of

Σ−P doesn’t depend on the choice of (N ,Λ) and the choice of τ . We show why Σ−P doesn’t depend

on the choice of (N ,Λ). Suppose (N ,Λ), (N ′,Λ′), s : P|λP → N , and s′ : P|λP → N ′ are as in the

definition of Σ−P , then we can compare (N ,Λ), (N ′,Λ′) and get a common iterate (S,Ψ), where Ψ

is the common tail of Λ and Λ′. Let iN ,S : N → S and iN ′,S : N ′ → S be iteration maps. Note

that iN ,S ◦ s = iN ′,S ◦ s′ =def t and so
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Figure 1: The construction of Σ+
σ

Λs = (Λ′)s
′

= Ψt.

A similar argument shows that Σ−P does not depend on the choice of τ . Let P∞ be the direct limit

of Σ−P iterates of P|δP and πP : P∞ → Hτ be the natural map such that πP ◦ i
Σ−P
P|δP ,∞ = i∗ � (P|δP).

Now every element of Q has the form j(f)(a) for some f ∈ P and a ∈ α(~T )<ω. We let

j∗ : Q →Mτ be such that j∗(j(f)(a)) = i∗(f)(πP(i
Σ−Q
Q,∞(a))). Hence i∗ = j∗ ◦ j and πσ = j∗ ◦ j ◦ i.

Finally, every element of R has the form k(f)(λQ) for some f ∈ Q. Let h :Mτ → Ult(Mτ , ντ )

be the ultrapower map and h∗ : Ult(Mτ , ντ ) → M be such that πτ = h∗ ◦ h. Then let k∗ : Q →
Ult(Mτ , ντ ) be such that k∗(k(f)(λQ)) = h(j∗(f))(λMτ ). It’s easy to see that h ◦ j∗ = k∗ ◦ k. We

can now derive the strategy Σ−R using h∗ ◦ k∗ � λR the same way we used i∗ � λP to derive the

strategy Σ−P . Again, it’s easy to show that Σ−R is a πσ-realizable strategy. The definition of Σ−R
does not depend on the choice of τ .

In general, suppose ~T = (Tα,Nβ : α < γ, β ≤ γ) is a countable stack on Mσ in normal

form according to Σ+
σ and Tγ is on Nγ . We want to define Σ+

σ on Tγ . As part of the definition

of Σ+
σ , we have iteration map iMσ ,Nα : (Mσ, νσ) → (Nα, να), a map i : (Nα, να) → (Mτ , ντ )

for a sufficiently large τ that contains all relevant objects, i-pullback strategy Σα for Nα|δNα . If

Tγ = 〈Nα, να〉, then we can define maps k∗ : Ult(Nα, να) → Ult(Mτ , ντ ), h : Mτ → Ult(Mτ , ντ ),

and h∗ : Ult(Mτ , ντ ) → M as above and derive a strategy Σα+1 for Nα+1|δNα+1, where Nα+1 =

Ult(Nα, να). We then let Σα+1 ⊂ Σ+
σ . Suppose Tγ is below δNα . Then we use Σα ⊂ Σ+

σ to choose

a branch b for Tγ and a map j∗ : N T ab →Mτ such that j∗ ◦ iTb = iα.

This completes the construction of Σ+
σ and hence the proof of Lemma 5.9. Note it also follows

that Σ+
σ extends Σσ.

By a ZFC-comparison argument ([5, Section 2.7]) and the fact that Σ+
σ is Γ(Mσ,Σ

+)-fullness

preserving, an iterate of Σ+
σ has branch condensation. Without loss of generality, we may assume

Σ+
σ has branch condensation.
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Since ρ1(Mσ) ≤ Θσ, we let A ⊆ Θσ be a set Σ1 definable over Mσ but not in H+
σ . Say

α ∈ A⇔Mσ � ψ[α, s, pMσ
1 ], (5.11)

for some s ∈ Θ<ω
σ . Recall that Mσ � Θσ is measurable as witnessed by νσ. We can define a

direct limit system F = {(Q,Λ) | (Q,Λ) ≡DJ (Mσ,Σ
+
σ )} 16. LetM∞ be the direct limit of F and

let iMσ ,∞ : Mσ → M∞ be the iteration embedding. We have that HOD|γσ �M∞ ∈ HOD and

ρ1(M∞) ≤ γσ. Let A∞ be defined over M∞ the same way A is defined over Mσ, i.e.

α ∈ A∞ ⇔M∞ � ψ[α, iMσ ,∞(s), pM∞1 ]. (5.12)

Since A∞ is OD, A is ordinal definable from (Hσ,Σ−σ ). By SMC, A ∈ H+
σ . Contradiction.

Lemma 5.10. L[H++](Γ)∩℘(R) = Γ and L[H++](Γ) � ADR+ there is an R-complete measure on

Θ.

Proof. First note that no H++ �M � L[H++] is such that ρω(M) ≤ Θ. The equality of in the

conclusion of the lemma follows from Theorem 4.1 with HODL(Γ,R) playing the role of H and

L[H++] playing the role of H+. Note that L[H++] � “Θ is regular”. Hence we get L[H++](Γ) �

“ADR + Θ is regular” by Lemma 4.5. The R-complete measure on Θ in L[H++](Γ) comes from

ν from the proof of Theorem 2.4 in [2]. The proof uses the fact that every A ∈ Γ can be added

to L[H++] via a forcing of size < Θ. This means every A ⊆ Θ in L[H++](Γ) is in some generic

extension of L[H++] via a forcing of size < Θ and hence is measured by the canonical extension of

ν. The R-completeness of the induced measure then follows from [2, Theorem 2.4].

This completes the proof of Theorem 1.6.
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