
SOLUTIONS TO SELECTED PROBLEMS FROM HOMEWORK 5

Additional problem 1: (We assume the sets A,B are nonempty. Otherwise, there is nothing
to do.) Given injection f : A → B, one can define surjection g : B → A by g = f−1 ∪ h where
h : B\rng(f) → A by fixing some a ∈ A and let h(x) = a for all x ∈ B\rng(f) if B\rng(f) is
nonempty; if B = rng(f) then simply let g = f−1.

Let g : B → A be surjective. For each a ∈ A, choose an element ba b of g−1(a); recall
g−1(a) = {b ∈ B : g(b) = a}. Notice that if a0 6= a1 then g−1(a0) ∩ g−1(a1) = ∅ because g is a
function. Indeed any c ∈ g−1(a0) ∩ g−1(a1) would have the property that g(c) = a0 6= a1 = g(c).
Of course, this violates the fact that g is a function.

Now define f : A→ B as: f(a) = ba. Since if a0 6= a1, then ba0 6= ba1 , we get that f is injective.

Additional problem 2: Let C = rng(f) = {b ∈ B : ∃a ∈ Af(a) = b}. By dom(f−1), I mean the
set C. This simply means that f−1 is defined only on C.

Assume f is one-to-one. We want to see that f−1 is a function from C to A. To see that f−1

is a function. Suppose not. This means there is some b ∈ C such that there are distinct x, y ∈ A
such that f−1(b) = x and f−1(b) = y. In other words, f(x) = b = f(y). This contradicts the fact
that f is one-to-one. So f−1 is indeed a function.

Now assume f is onto but not one-to-one. So in this case C = B. But f−1 is NOT a func-
tion (from C to B). The reasoning is almost the same as above. Let x, y be distinct such that
f(x) = f(y) = b; x, y exist because we assume f is not one-to-one. By definition, (x, b) ∈ f so
(b, x) ∈ f−1 and similarly, (b, y) ∈ f−1. This means the element b is ”mapped” by f−1 to two
distinct elements x, y. So f−1 is not a function.

Problem 5.1.1:
(a) The recurrence relation is: hn+1 = hn + n. Note that h1 = 0.

(b) The formula for hn in terms of n is: for n ≥ 1, hn =
∑n−1

i=0 i = n(n−1)
2 .

One way you can prove this is to observe that we know the formula for
∑n

i=0 i is n(n+1)
2 , so the

sum

hn =
∑n−1

i=0 i =
∑n

i=0 i− n = n(n+1)
2 − n = n(n−1)

2 .

Problem 5.2.2:
Base case: when n = 0,

∑0
j=0 2j = 20 = 1. On the other hand, 20+1 − 1 = 2− 1 = 1. So these

values are equal. We’re done with the base case.
Inductive step: We show ∀n ≥ 0 (

∑n
j=0 2j = 2n+1 − 1⇒

∑n+1
j=0 2j = 2n+1+1 − 1).

So we fix n ≥ 0 and assume
∑n

j=0 2j = 2n+1 − 1 (this is our inductive hypothesis). We show∑n+1
j=0 2j = 2n+1+1 − 1.
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∑n+1
j=0 2j = 20 + 21 + . . . 2n + 2n+1 =

∑n
j=0 2j + 2n+1.

Now applying the inductive hypothesis, we have:∑n+1
j=0 2j = (2n+1 − 1) + 2n+1 = 2.2n+1 − 1 = 2n+2 − 1

as desired.

Problem 5.2.7 (a): The formula for the sum of the first n odd numbers is:∑n
i=1(2i− 1) = 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Proof by induction that the above formula is true for all n ≥ 1.
Base case: n = 1.

∑1
i=1(2i− 1) = 1 = 12. So the base case holds.

Inductive step: We need to show: ∀n ≥ 1(
∑n

i=1(2i− 1) = n2 ⇒
∑n+1

i=1 (2i− 1) = (n + 1)2).
So fix n ≥ 1 and assume

∑n
i=1(2i− 1) = n2. We need to show∑n+1

i=1 (2i− 1) = (n + 1)2.

Now,
∑n+1

i=1 (2i− 1) =
∑n

i=1(2i− 1) + [2 ∗ (n + 1)− 1].
Apply the inductive hypothesis, we have:∑n+1

i=1 (2i− 1) = n2 + 2 ∗ (n + 1)− 1 = n2 + 2n + 1 = (n + 1)2

as desired.
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