
MATH 13 HOMEWORK 3 ANSWER KEY

Problem 3.1.1: Since 17 ≡ 2(mod 5) and 22 ≡ −1(mod 5), we have

17251 ≡ 2251 ≡ 2 ∗ 2250 ≡ 2 ∗ (22)
125 ≡ 2 ∗ (−1)125 ≡ −2(mod 5)

Now 23 ≡ 3 ≡ −2 (mod 5), so

2312 ≡ (−2)12 ≡ ((−2)2)
6 ≡ (−1)6 ≡ 1 (mod 5).

Now, 19 ≡ 4 ≡ −1(mod 5), so

1941 ≡ (−1)41 ≡ −1(mod 5)

Putting it all together, we have

17251 ∗ 2312 − 1941 ≡ (−2) ∗ 1− (−1) ≡ −1(mod 5).

Problem 3.1.6 (a,b,c):
(a): We need to show that 7x ≡ 28(mod 42)⇒ x ≡ 4(mod 6). Assume 7x ≡ 28(mod 42). Using

Theorem 3.6, we get that

42|(7x− 28).

Since 42 = 7 ∗ 6 and 7x− 28 = 7(x− 4), the above can be written as

7 ∗ 6|7(x− 4).

This means 7(x− 4) = 7 ∗ 6 ∗ k for some integer k. By cancellation, x− 4 = 6 ∗ k; in other words,

6|(x− 4).

Applying Theorem 3.6 again, we get x ≡ 4(mod 6) as desired.
(b): The question asks whether there is an x such that 7x ≡ 28(mod 42) and x ≡ 4(mod 42).

The answer is YES. x = 4 satisfies the requirement.
(c): It is NOT always the case that for any x, if 7x ≡ 28(mod 42), then x ≡ 4(mod 42). For

example if x = 10, then 7x = 70 ≡ 28(mod 42), but ¬(10 ≡ 4(mod 42)).
Problem 3.1.1 and 3.1.2 (b): The gcd(100, 36) = 4. And 4 = 4 ∗ 100− 11 ∗ 36. This is just

using the Euclidean algorithm. I leave the details to you.
Problem 3.2.9: Let m,n be arbitrary integers.
(⇒) : Assume gcd(m,n) = 1. Then by Corollary 3.12, there are integers x, y such that

gcd(m,n) = mx + ny. Since gcd(m,n) = 1, we have 1 = mx + ny.
(⇐) : Assume there are integers x, y such that mx + ny = 1. We want to show gcd(m,n) = 1.
Let d = gcd(m,n). So there are integers k, l such that m = k ∗ d and n = l ∗ d. So mx + ny =

d ∗ (kx + ly). This implies d|(mx + ny). So d|1. The only positive integer that divides 1 is 1 itself.
Hence d = 1 as desired.

Problem 3.2.11: We will apply the Euclidean algorithm to find gcd(12n + 5, 5n + 2). But
first, we need some observation:
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12n + 5 ≥ 5n + 2⇔ 7n ≥ −3⇔ n ≥ −3/7.

Since n is an integer, n ≥ −3/7⇔ n ≥ 0. So we have that

12n + 5 ≥ 5n + 2⇔ n ≥ 0.

So for any integer n ≥ 0, we know 12n + 5 ≥ 5n + 2, applying the Euclidean algorithm:

12n + 5 = 2(5n + 2) + (2n + 1) 5n + 2 = 2(2n + 1) + n

Now if n = 0, then we know 12n+ 5 = 5 and 5n+ 2 = 2 and gcd(2, 5) = 1, so we’re done. If n > 0,
we continue with the Euclidean algorithm

2n + 1 = 2(n) + 1 n = n(1) + 0

So we again conclude that 1 = gcd(12n + 5, 5n + 2).
That takes care of the case n ≥ 0. Now suppose n < 0 (so the absolute value |n| > 0), so we

know 12n + 5 < 5n + 2 < 0, but then |12n + 5| > |5n + 2| > 0. Since gcd(12n + 5, 5n + 2) =
gcd(|12n+ 5|, |5n+ 2|) = gcd(12|n|+ 5, 5|n|+ 2), we apply the Euclidean algorithm in the previous
argument to 12|n|+ 5 and 5|n|+ 2 and conclude again gcd(12|n|+ 5, 5|n|+ 2) = 1.
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