MATH 13 HOMEWORK 3 ANSWER KEY

Problem 3.1.1: Since $17 \equiv 2 \pmod{5}$ and $2^2 \equiv -1 \pmod{5}$, we have

$$17^{251} \equiv 2^{251} \equiv 2 * 2^{250} \equiv 2 * (2^2)^{125} \equiv 2 * (-1)^1 25 \equiv -2 \pmod{5}$$

Now $23 \equiv 3 \equiv -2 \pmod{5}$, so

$$23^{12} \equiv (-2)^{12} \equiv ((-2)^2)^6 \equiv (-1)^6 \equiv 1 \pmod{5}.$$

Now, $19 \equiv 4 \equiv -1 \pmod{5}$, so

$$19^{41} \equiv (-1)^{41} \equiv -1 \pmod{5}$$

Putting it all together, we have

$$17^{251} * 23^{12} - 19^{41} \equiv (-2) * 1 - (-1) \equiv -1 \pmod{5}.$$

Problem 3.1.6 (a,b,c):

(a): We need to show that $7x \equiv 28 \pmod{42} \Rightarrow x \equiv 4 \pmod{6}$. Assume $7x \equiv 28 \pmod{42}$. Using Theorem 3.6, we get that

$$42|(7x-28).$$

Since 42 = 7 * 6 and 7x - 28 = 7(x - 4), the above can be written as

$$7*6|7(x-4)$$
.

This means 7(x-4) = 7*6*k for some integer k. By cancellation, x-4=6*k; in other words,

$$6|(x-4).$$

Applying Theorem 3.6 again, we get $x \equiv 4 \pmod{6}$ as desired.

- (b): The question asks whether there is an x such that $7x \equiv 28 \pmod{42}$ and $x \equiv 4 \pmod{42}$. The answer is YES. x = 4 satisfies the requirement.
- (c): It is NOT always the case that for any x, if $7x \equiv 28 \pmod{42}$, then $x \equiv 4 \pmod{42}$. For example if x = 10, then $7x = 70 \equiv 28 \pmod{42}$, but $\neg (10 \equiv 4 \pmod{42})$.

Problem 3.1.1 and 3.1.2 (b): The gcd(100, 36) = 4. And 4 = 4 * 100 - 11 * 36. This is just using the Euclidean algorithm. I leave the details to you.

Problem 3.2.9: Let m, n be arbitrary integers.

- (\Rightarrow) : Assume gcd(m,n)=1. Then by Corollary 3.12, there are integers x,y such that gcd(m,n)=mx+ny. Since gcd(m,n)=1, we have 1=mx+ny.
 - (\Leftarrow) : Assume there are integers x, y such that mx + ny = 1. We want to show gcd(m, n) = 1.

Let d = gcd(m, n). So there are integers k, l such that m = k * d and n = l * d. So mx + ny = d * (kx + ly). This implies d|(mx + ny). So d|1. The only positive integer that divides 1 is 1 itself. Hence d = 1 as desired.

Problem 3.2.11: We will apply the Euclidean algorithm to find gcd(12n + 5, 5n + 2). But first, we need some observation:

$$12n+5 \ge 5n+2 \Leftrightarrow 7n \ge -3 \Leftrightarrow n \ge -3/7.$$

Since n is an integer, $n \ge -3/7 \Leftrightarrow n \ge 0$. So we have that

$$12n + 5 \ge 5n + 2 \Leftrightarrow n \ge 0.$$

So for any integer $n \ge 0$, we know $12n + 5 \ge 5n + 2$, applying the Euclidean algorithm:

$$12n + 5 = 2(5n + 2) + (2n + 1) 5n + 2 = 2(2n + 1) + n$$

Now if n = 0, then we know 12n + 5 = 5 and 5n + 2 = 2 and gcd(2, 5) = 1, so we're done. If n > 0, we continue with the Euclidean algorithm

$$2n + 1 = 2(n) + 1$$
 $n = n(1) + 0$

So we again conclude that 1 = gcd(12n + 5, 5n + 2).

That takes care of the case $n \ge 0$. Now suppose n < 0 (so the absolute value |n| > 0), so we know 12n + 5 < 5n + 2 < 0, but then |12n + 5| > |5n + 2| > 0. Since $\gcd(12n + 5, 5n + 2) = \gcd(|12n + 5|, |5n + 2|) = \gcd(12|n| + 5, 5|n| + 2)$, we apply the Euclidean algorithm in the previous argument to 12|n| + 5 and 5|n| + 2 and conclude again $\gcd(12|n| + 5, 5|n| + 2) = 1$.