## MATH 13 HOMEWORK 4 ANSWER KEY

**Problem 2(a):** ( $\Leftarrow$ ): We assume d|c. By our assumption, let  $(x_0, y_0)$  be an integer solution to ax + by = d. So  $x_0, y_0 \in \mathbb{Z}$  and

$$ax_0 + by_0 = d.$$
 (0.1)

Since d|c, there is an integer k such that c = kd. Multiply both sides of Equation 0.1 by k, we get

$$a(kx_0) + b(ky_0) = c. (0.2)$$

Since  $kx_0, ky_0 \in \mathbb{Z}$ , we have shown that ax + by = c has integer solutions.

(⇒): Now assume ax + by = c has an integer solution. Let  $(x_0, y_0)$  be such a solution. Since d|a, d|ax. Similarly, d|by. So d|(ax + by). So d|c.

**Problem 4.1.1(e):** First, we list out the elements of the set  $A = \{x \in \frac{1}{2}\mathbb{Z} : 0 \le x \le 4\}$ .  $A = \{0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4\}$ . Then we check for each  $x \in A$ , whether  $4x^2 \in 2\mathbb{Z} + 1$ . It is easy to see that this property holds for x = 1/2, 3/2, 5/2, 7/2. So the set

$${x \in \frac{1}{2}\mathbb{Z} : 0 \le x \le 4 \text{ and } 4x^2 \in 2\mathbb{Z} + 1} = {1/2, 3/2, 5/2, 7/2}.$$

**Problem 4.2.5(d):**  $[10] = \{\ldots, -10, -5, 0, 5, 10, \ldots\}$ . In other words, [10] is the set of integers which are divisible by 5. By definition, for all  $x \in \mathbb{Z}$ ,  $x \in M_{[10]}$  iff  $-x \in [10]$ . But we know 5|x iff 5|(-x). So  $M_{[10]} = [10]$ .

**Problem 4.3.5:** ( $\Rightarrow$ ): Assume  $B \setminus A = B$ . This means  $B \cap A^c = B$ . This implies that  $B \subseteq A^c$ . To see this, let  $x \in B$ . Since  $B = B \cap A^c$ ,  $x \in B \cap A^c$ ; hence  $x \in A^c$ . So for each  $x \in B$ ,  $x \notin A$ . In other words,  $A \cap B = \emptyset$ .

(⇐): Suppose  $A \cap B = \emptyset$ . This implies, for each  $x \in B$ ,  $x \notin A$ , so  $x \in A^c$ . Hence  $B \subseteq A^c$ . This in turn imlies  $B \cap A^c = B$ . This means  $B \setminus A = B$ .

**Problem 4.4.9:** Suppose  $g \circ f$  is injective. We show f is injective. Let  $x_1 \neq x_2 \in dom(f)$ . We show  $f(x_1) \neq f(x_2)$ . Suppose not. Then  $f(x_1) = f(x_2)$ . Since g is a function,  $g(f(x_1)) = g(f(x_2))$ . This means  $g \circ f(x_1) = g \circ f(x_2)$ , while  $x_1 \neq x_2$ . This contradicts the fact that  $g \circ f$  is injective. So it must be the case that  $f(x_1) \neq f(x_2)$ .