## HOMEWORK 8 ANSWER KEYS

PROBLEMS FROM THE NOTES: 7.3.1, 7.3.4, 7.3.5, 7.4.3, 7.5.3, 7.6.1, 7.6.2, 7.6.5

**Problem 7.3.1 (a,c):** (a)  $R = \{(1,1), (2,2), (3,3)\}$  is both symmetric and antisymmetric. (c)  $R = \{(1,2), (2,3), (1,3)\}$  is transitive. Now  $R^{-1} = \{(2,1), (3,2), (3,1)\}$ .  $R \cup R^{-1} = \{(1,2), (2,3), (1,3), (2,1), (3,2), (3,1)\}$  is NOT transitive because: (3,1) and (1,3) are in  $R \cup R^{-1}$  but  $(3,3) \notin R \cup R^{-1}$ .

**Problem 7.3.5(a):**  $aRb \Leftrightarrow a \equiv b \pmod{3}$  or  $a \equiv b \pmod{4}$ 

Is R reflexive: YES. Because for all  $a \in \mathbb{Z}$ ,  $a \equiv a \pmod{n}$  for all n.

Is R symmetric: YES. Suppose aRb. This means either  $a \equiv b \pmod{3}$  or  $a \equiv b \pmod{4}$ . If the former holds, then  $b \equiv a \pmod{3}$ . So  $b \equiv a \pmod{3}$  or  $b \equiv a \pmod{4}$ . So bRa. If the latter holds, then similarly, we get  $b \equiv a \pmod{4}$ , hence  $b \equiv a \pmod{4}$  or  $b \equiv a \pmod{3}$ . Hence bRa.

Is R transitive: NO. Because  $1 \equiv 4 \pmod{3}$  and  $4 \equiv 8 \pmod{4}$  but  $\neg(1 \equiv 8) \pmod{3}$  and  $\neg(1 \equiv 8) \pmod{4}$ .

**Problem 7.4.3(a,b):** (a) R is reflexive, symmetric, but is NOT transitive. To see why R is not transitive, just note that, for example,  $(2,1) \in R$  and  $(1,3) \in R$  but  $(2,3) \notin R$ .

(b) 
$$A_1 = \{1, 2, 3\}.$$

$$A_2 = \{1, 2\}.$$

$$A_3 = \{1, 3\}.$$

 $\{A_1, A_2, A_3\}$  do not form a partition of X because (even though  $\bigcup_i A_i = X$ ) they are not pairwise disjoint, e.g.  $A_1 \cap A_2 = \{1, 2\} \neq \emptyset$ .

**Problem 7.5.3(c):** I just do this for  $\oplus$  (the  $\otimes$  is similar and easier; grader: please just grade on the work on  $\oplus$ ).

Suppose  $(a,b) \sim (c,d)$  and  $(x,y) \sim (z,t)$ . We want to see that  $[(a,b)] \oplus [(x,y)] = [(c,d)] \oplus [(z,t)]$ . By the definition of  $\sim$ :

- $(a,b) \sim (c,d)$  means ad = bc
- $(x,y) \sim (z,t)$  means xt = yz.

Now, by the definition of  $\oplus$ :

- $[(a,b)] \oplus [(x,y)] = [(ay + bx, by)].$
- $[(c,d)] \oplus [(z,t)] = [(ct+dz,dt)].$

To see that [(ay + bx, by)] = (ct + dz, dt), we need to see that

$$(ay + bx)dt = (ct + dz)by.$$

Now (ay + bx)dt = (ad)(yt) + (bd)(xt) = (bc)(yt) + (bd)(xt) = (bc)(yt) + (bd)(yz) = (ct)(by) + (bd)(yz) = (bc)(yt) + (bd)(yz) = (bc)(yz) + (bd)(yz) + (bd)(yz) = (bc)(yz) + (bd)(yz) + (bd)(yz) = (bc)(yz) + (bd)(yz) + (b(by)(dz) = (ct + dz)by. As desired.

**Problem 7.6.1:**  $f: \mathbb{Z}_3 \to \mathbb{Z}_5$ :  $x \mapsto x^3 \pmod{5}$  is NOT well-defined. Counter-example:  $[2]_3 = [5]_3$  (i.e.  $2 \equiv 5 \pmod{3}$ .  $f(2) = 2^3 = 8 \equiv 3 \pmod{5}$ , but  $f(5) = 5^3 = 125 \equiv 0 \pmod{5}$ . Clearly  $f(2) \neq f(5)$  even though  $[2]_3 = [5]_3$ .