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Useful Texts

• Book of Proof, Richard Hammack, 2nd ed 2013. Available free online! Very good on the basics: if
you’re having trouble with reading set notation or how to construct a proof, this book’s for you!
These notes are deliberately pitched at a high level relative to this textbook to provide contrast.

• Mathematical Reasoning, Ted Sundstrom, 2nd ed 2014. Available free online! Excellent resource.
If you would like to buy the actual book, you can purchase it on Amazon at a really cheap price.

• Mathematical Proofs: A Transition to Advanced Mathematics, Chartrand/Polimeni/Zhang, 3rd Ed
2013, Pearson. The most recent course text. Has many, many exercises; the first half is fairly
straightforward while the second half is much more complex and dauntingly detailed.

• The Elements of Advanced Mathematics, Steven G. Krantz, 2nd ed 2002, Chapman & Hall and
Foundations of Higher Mathematics, Peter Fletcher and C. Wayne Patty, 3th ed 2000, Brooks–Cole
are old course textbooks for Math 13. Both are readable and concise with good exercises.

Learning Outcomes

1. Developing the skills necessary to read and practice abstract mathematics.

2. Understanding the concept of proof, and becoming acquainted with several proof techniques.

3. Learning what sort of questions mathematicians ask, what excites them, and what they are
looking for.

4. Introducing upper-division mathematics by giving a taste of what is covered in several areas of
the subject.

Along the way you will learn new techniques and concepts. For example:

Number Theory Five people each take the same number of candies from a jar. Then a group of
seven does the same. The, now empty, jar originally contained 239 candies. Can you decide
how much candy each person took?

Geometry and Topology How can we visualize and compute with objects like the Mobius strip?

Fractals How to use sequences of sets to produce objects that appear the same at all scales.

To Infinity and Beyond! Why are some infinities greater than others?

http://www.people.vcu.edu/~rhammack/BookOfProof/
http://scholarworks.gvsu.edu/books/9/


1 Introduction

What is Mathematics?

For many students this course is a game-changer. A crucial part of the course is the acceptance that
upper-division mathematics is very different from what is presented at grade-school and in the cal-
culus sequence. Some students will resist this fact and spend much of the term progressing through
the various stages of grief (denial, anger, bargaining, depression, acceptance) as they discover that
what they thought they excelled at isn’t really what the subject is about. Thus we should start at the
beginning, with an attempt to place the mathematics you’ve learned within the greater context of the
subject.

The original Greek meaning of the word mathemata is the supremely unhelpful, “That which is to
be known/learned.” There is no perfect answer to our question, but a simplistic starting point might
be to think of your mathematics education as a progression.

Arithmetic College Calculus Abstract Mathematics

In elementary school you largely learn arithmetic and the basic notions of shape. This is the mathe-
matics all of us need in order to function in the real world. If you don’t know the difference between
15,000 and 150,000, you probably shouldn’t try to buy a new car! For the vast majority of people,
arithmetic is the only mathematics they’ll ever need. Learn to count, add, and work with percent-
ages and you are thoroughly equipped for most things life will throw at you.

Calculus discusses the relationship between a quantity and its rate of change, the applications
of which are manifold: distance/velocity, charge/current, population/birth-rate, etc. Elementary
calculus is all about solving problems: What is the area under the curve? How far has the projec-
tile traveled? How much charge is in the capacitor? By now you will likely have computed many
integrals and derivatives, but perhaps you have not looked beyond such computations. A mathe-
matician explores the theory behind the calculations. From an abstract standpoint, calculus is the
beautiful structure of the Riemann integral and the Fundamental Theorem, understanding why we
can use anti-derivatives to compute area. To an engineer, the fact that integrals can be used to model
the bending of steel beams is crucial, while this might be of only incidental interest to a mathemati-
cian. Perhaps the essential difference between college calculus and abstract mathematics is that the
former is primarily interested in the utility of a technique, while the latter focuses on structure, ve-
racity and the underlying beauty. In this sense, abstract mathematics is much more of an art than a
science. No-one measures the quality of a painting or sculpture by how useful it is, instead it is the
structure, the artist’s technique and the quality of execution that are praised. Research mathemati-
cians, both pure and applied, view mathematics the same way.

In areas of mathematics other than Calculus, the link to applications is often more tenuous. The
structure and distribution of prime numbers were studied for over 2000 years before, arguably, any
serious applications were discovered. Sometimes a real-world problem motivates generalizations
that have no obvious application, and may never do so. For example, the geometry of projecting
3D objects onto a 2D screen has obvious applications (TV, computer graphics/design). Why would
anyone want to consider projections from 4D? Or from 17 dimensions? Sometimes an application
will appear later, sometimes not.1 The reason the mathematician studies such things is because the
structure appears beautiful to them and they want to appreciate it more deeply. Just like a painting.

1There are very useful applications of high-dimensional projections, not least to economics and the understanding of
sound and light waves.
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The mathematics you have learned so far has consisted almost entirely of computations, with
the theoretical aspects swept under the rug. At upper-division level, the majority of mathematics
is presented in an abstract way. This course will train you in understanding and creating abstract
mathematics, and it is our hope that you will develop an appreciation for it.

Proof

The essential concept in higher-level mathematics is that of proof. A basic dictionary entry for the
word would cover two meanings:

1. An argument that establishes the truth of a fact.

2. A test or trial of an assertion.2

In mathematics we always mean the former, while in much of science and wider culture the second
meaning predominates. Indeed mathematics is one of the very few disciplines in which one can
categorically say that something is true or false. In reality we can rarely be so certain. A greasy sales-
man in a TV advert may claim that to have proved that a certain cream makes you look younger; a
defendant may be proved guilty in court; the gravitational constant is 9.81ms−2. Ask yourself what
these statements mean. The advert is just trying to sell you something, but push harder and they
might provide some justification: e.g. 100 people used the product for a month and 75 of them claim
to look younger. This is a test, a proof in the second sense of the definition. Is a defendant really
guilty of a crime just because a court has found them so; have there never been any miscarriages
of justice? Is the gravitational constant precisely 9.81ms−2, or is this merely a good approximation?
This kind of pedantry may seem over the top in everyday life: indeed most of us would agree that
if 75% of people think a cream helps, then it probably is doing something beneficial. In mathematics
and philosophy, we think very differently: the concepts of true and false and of proof are very precise.

So how do mathematicians reach this blissful state where everything is either right or wrong and,
once proved, is forever and unalterably certain? The answer, rather disappointingly, is by cheating.
Nothing in mathematics is true except with reference to some assumption. For example, consider the
following theorem:

Theorem 1.1. The sum of any two even integers is even.

We all believe that this is true, but can we prove it? In the sense of the second definition of proof,
it might seem like all we need to do is to test the assertion: for example 4+ 6 = 10 is even. In the first
sense, the mathematical sense, of proof, this is nowhere near enough. What we need is a definition of
even.3

Definition 1.2. An integer is even if it may be written in the form 2n where n is an integer.

The proof of the theorem now flows straight from the definition.

2It is this notion that makes sense of the seemingly oxymoronic phrase The exception proves the rule. It is the exception
that tests the validity of the rule.

3And more fundamentally of sum and integer.
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Proof. Let x and y be any two even integers. We want to show that x + y is an even integer.
By definition, an integer is even if it can be written in the form 2k for some integer k. Thus there exist
integers n, m such that x = 2m and y = 2n. We compute:

x + y = 2m + 2n = 2(m + n). (∗)

Because m + n is an integer, this shows that x + y is an even integer.

There are several important observations:

• ‘Any’ in the statement of the theorem means the proof must work regardless of what even in-
tegers you choose. It is not good enough to simply select, for example, 4 and 16, then write
4 + 16 = 20. This is an example, or test, of the theorem, not a mathematical proof.

• According to the definition, 2m and 2n together represent all possible pairs of even numbers.

• The proof makes direct reference to the definition. The vast majority of the proofs in this course
are of this type. If you know the definition of every word in the statement of a theorem, you
will often discover a proof simply by writing down the definitions.

• The theorem itself did not mention any variables. The proof required a calculation for which
these were essential. In this case the variables m and n come for free once you write the definition
of evenness! A great mistake is to think that the proof is nothing more than the calculation (∗).
This is the easy bit, and it means nothing without the surrounding sentences.

The important link between theorems and definitions is much of what learning higher-level math-
ematics is about. We prove theorems (and solve homework problems) because they make us use and
understand the subtleties of definitions. One does not know mathematics, one does it. Mathematics is
a practice; an art as much as it is a science.

Conjectures

In this course, you will discover that one of the most creative and fun aspects of mathematics is the
art of formulating, proving and disproving conjectures. To get a taste, consider the following:

Conjecture 1.3. If n is any odd integer, then n2 − 1 is a multiple of 8.

Conjecture 1.4. For every positive integer n, the integer n2 + n + 41 is prime.

A conjecture is the mathematician’s equivalent of the experimental scientist’s hypothesis: a state-
ment that one would like to be true. The difference lies in what comes next. The mathematician
will try to prove that a conjecture is undeniably true by relying on logic, while the scientist will ap-
ply the scientific method, conducting experiments attempting, and hopefully failing, to show that a
hypothesis is incorrect.
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Once a mathematician proves the validity of a conjecture it becomes a theorem. The job of a math-
ematics researcher is thus to formulate conjectures, prove them, and publish the resulting theorems.
The creativity lies as much in the formulation as in the proof. As you go through the class, try to
formulate conjectures. Like as not, many of your conjectures will be false, but you’ll gain a lot from
trying to form them.

Let us return to our conjectures: are they true or false? How can we decide? As a first attempt,
we may try to test the conjectures by computing with some small integers n. In practice this would
be done before stating the conjectures.

n 1 3 5 7 9 11 13

n2 − 1 0 8 24 48 80 120 168

n 1 2 3 4 5 6 7

n2 + n + 41 43 47 53 61 71 83 97

Because 0, 8, 24, 48, 80, 120 and 168 are all multiples of 8, and 43, 47, 53, 61, 71, 83 and 97 are all
prime, both conjectures appear to be true. Would you bet $100 that this is indeed the case? Is n2− 1 a
multiple of 8 for every odd integer n? Is n2 + n + 41 prime for every positive integer n? The only way
to establish whether a conjecture is true or false is by doing one of the following:

Prove it by showing it must be true in all cases, or,

Disprove it by finding at least one instance in which the conjecture is false.

Let us work with Conjecture 1.3. If n is an odd integer, then, by definition, we can write it as
n = 2k + 1 for some integer k. Then

n2 − 1 = (2k + 1)2 − 1 = (4k2 + 1 + 4k)− 1 = 4k2 + 4k.

We need to investigate whether this is always a multiple of 8. Since

4k2 + 4k = 4(k2 + k)

is already a multiple of 4, it all comes down to deciding whether or not k2 + k contains a factor 2 for
all possible choices of k; i.e. is k2 + k even? Do we believe this? We can return to trying out some
small values of k:

k −2 −1 0 1 2 3 4

k2 + k 2 0 0 2 6 12 20

Once again, the claim seems to be true for small values of k, but how do we know it is true for all k?
Again, the only way is to prove it or disprove it. How to proceed? The question here is whether or not
k2 + k is always even. Factoring out k, we get:

k2 + k = k(k + 1).

We have therefore expressed k2 + k as a product of two consecutive integers. This is great, because
for any two consecutive integers, one is even and the other is odd, and so their product must be even.
We have now proved that the conjecture is true. Conjecture 1.3 is indeed a theorem! Everything we’ve
done so far has been investigative, and is laid out in an untidy way. We don’t want the reader to have
to wade through all of our scratch work, so we formalize the above argument. This is the final result
of our deliberations; investigate, spot a pattern, conjecture, prove, and finally present your work in
as clean and convincing a manner as you can.
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Theorem 1.5. If n is any odd integer, then n2 − 1 is a multiple of 8.

Proof. Let n be any odd integer; we want to show that n2 − 1 is a multiple of 8. By the definition of
odd integer, we may write n = 2k + 1 for some integer k. Then

n2 − 1 = (2k + 1)2 − 1 = (4k2 + 1 + 4k)− 1 = 4k2 + 4k = 4k(k + 1).

We distinguish two cases. If k is even, then k(k + 1) is even and so 4k(k + 1) is divisible by 8.
If k is odd, then k + 1 is even. Therefore k(k + 1) is again even and 4k(k + 1) divisible by 8.
In both cases n2 − 1 = 4k(k + 1) is divisible by 8. This concludes the proof.

It is now time to explore Conjecture 1.4. The question here is whether or not n2 + n+ 41 is a prime
integer for every positive integer n. We know that when n = 1, 2, 3, 4, 5, 6 or 7 the answer is yes, but
examples do not make a proof. At this point, we do not know whether the conjecture is true or false.
Let us investigate the question further. Suppose that n is any positive integer; we must ask whether it
is possible to factor n2 + n + 41 as a product of two positive integers, neither of which is one.4 When
n = 41 such a factorization certainly exists, since we can write

412 + 41 + 41 = 41(41 + 1 + 1) = 41 · 43.

Our counterexample shows that there exists at least one value of n for which n2 + n + 41 is not prime.
We have therefore disproved the conjecture that ‘for all positive integers n, n2 + n + 41 is prime,’ and
so Conjecture 1.4 is false!

The moral of the story is this: to show that a conjecture is true you must prove that it holds for
all the cases in consideration, but to show that it is false a single counterexample suffices.

Conjectures: True or False?

Do your best to prove or disprove the following conjectures. Then revisit these problems at the end
of the course to realize how much your proof skills have improved.

1. The sum of any three consecutive integers is even.

2. There exist integers m and n such that 7m + 5n = 4.

3. Every common multiple of 6 and 10 is divisible by 60.

4. There exist integers x and y such that 6x + 9y = 10.

5. For every positive real number x, x + 1
x is greater than or equal to 2.

6. If x is any real number, then x2 ≥ x.

4Once again we rely on a definition: a positive integer is prime if it cannot be written as a product of two integers, both
greater than one.
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7. If n is any integer, n2 + 5n must be even.

8. If x is any real number, then |x| ≥ −x.

9. Consider the set R of all real numbers. For all x in R, there exists y in R such that x < y.

10. Consider the set R of all real numbers. There exists x in R such that, for all y in R, x < y.

11. The sets A = {n ∈ N : n2 < 25} and B = {n2 : n ∈ N and n < 5} are equal. Here N denotes
the set of natural numbers.

Now we know a little of what mathematics is about, it is time to practice some of it!
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2 Logic and the Language of Proofs

In order to read and construct proofs, we need to start with the langauge in which they are written:
logic. Logic is to mathematics what grammar is to English. Section 2.1 will not look particularly
mathematical, but we’ll quickly get to work in Section 2.2 using logic in a mathematical context.

2.1 Propositions

Definition 2.1. A proposition or statement is a sentence that is either true or false.

Examples. 1. 17− 24 = 7.

2. 392 is an odd integer.

3. The moon is made of cheese.

4. Every cloud has a silver lining.

5. God exists.

In order to make sense, these propositions require a clear definition of every concept they contain.
There are many concepts of God in many cultures, but once it is decided which we are talking about,
it is clear that They either exist or do not. This example illustrates that a question need not be indis-
putably answerable (by us) in order to qualify as a proposition. Indeed mostly when people argue
over propositions and statements, what they are really arguing over are the defintions!

Anything that is not true or false is not a proposition. January 1st is not a proposition, neither is
Green.

Truth Tables

Often one has to deal with abstract propositions; those where you do not know the truth or falsity, or
indeed when you don’t explicitly know the proposition! In such cases it can be convenient to repre-
sent the combinations of propositions in a tabular format. For instance, if we have two propositions
(P and Q), or even three (P, Q and R) then all possibile combinations of truth T and falsehood F are
represented in the following tables:

P Q
T T
T F
F T
F F

P Q R
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

The mathematician in you should be looking for patterns and asking: how many rows would a
truth table corresponding to n propositions have, and can I prove my assertion? Right now it is hard
to prove that the answer is 2n: induction (Chapter 5) makes this very easy.
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Connecting Propositions: Conjunction, Disjunction and Negation

We now define how to combine propositions in natural ways, modeled on the words and, or and not.

Definition 2.2. Let P and Q be propositions. The conjunction (AND, ∧) of P and Q, the disjunction
(OR, ∨) of P and Q, and the negation or denial (NOT, ¬, ∼, ) of P are defined by the truth tables,

P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P ∨Q
T T T
T F T
F T T
F F F

P ¬P
T F
F T

It is best to use and, or and not when speaking about these concepts: conjunction, disjunction and
negation may make you sound educated, but at the serious risk of not being understood!

Example. Let P, Q & R be the following propositions:

P. Irvine is a city in California.

Q. Irvine is a town in Ayrshire, Scotland.

R. Irvine has seven letters.

Clearly P is true while R is false. If you happen to know someone from Scotland, you might know
that Q is true.5 We can now compute the following (increasingly grotesque) combinations. . .

P ∧Q P ∨Q P ∧ R ¬R (¬R) ∧ P ¬(R ∨ P) (¬P) ∨ [((¬R) ∨ P) ∧Q]

T T F T T F T

How did we establish these facts? Some are quick, and can be done in your head. Consider, for
instance, the statement (¬R) ∧ P. Because R is false, ¬R is true. Thus (¬R) ∧ P is the conjunction of
two true statements, hence it is true. Similarly, we can argue that R∨ P is true (because R is false and
P is true), so the negation ¬(R ∨ P) is false.

Establishing the truth value of the final proposition (¬P)∨ [((¬R)∨ P)∧Q] requires more work.
You may want to set up a truth table with several auxiliary columns to help you compute:

P Q R ¬P ¬R (¬R) ∨ P ((¬R) ∨ P) ∧Q (¬P) ∨ [((¬R) ∨ P) ∧Q]

T T F F T T T T

The importance of parentheses in a logical expressions cannot be stressed enough. For example,
try building the truth table for the propositions P ∨ (Q ∧ R) and (P ∨Q) ∧ R. Are they the same?

5The second syllable is pronounced like the i in bin or win. Indeed the first Californian antecedent of the Irvine family
which gave its name to UCI was an Ulster-Scotsman named James Irvine (1827–1886). Probably the family name was
originaly pronounced in the Scottish manner.
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Conditional and Biconditional Connectives

In order to logically set up proofs, we need to see how propositions can lead one to another.

Definition 2.3. The conditional ( =⇒ ) and biconditional (⇐⇒ ) connectives have the truth tables

P Q P =⇒ Q
T T T
T F F
F T T
F F T

P Q P ⇐⇒ Q
T T T
T F F
F T F
F F T

For the proposition P =⇒ Q, we call P the hypothesis and Q the conclusion.

Observe that the expressions P =⇒ Q and P ⇐⇒ Q are themselves propositions. They are,
after all, sentences which are either true or false!

Synonyms

=⇒ and ⇐⇒ can be read in many different ways:

P =⇒ Q P ⇐⇒ Q
P implies Q P if and only if Q

Q if P P iff Q
P only if Q P and Q are (logically) equivalent

P is sufficient for Q P is necessary and sufficient for Q
Q is necessary for P

For instance, the following propositions all mean exactly the same thing:

• If you are born in Rome, then you are Italian.

• You are Italian if you are born in Rome.

• You are born in Rome only if you are Italian.

• Being born in Rome is sufficient to be Italian.

• Being Italian is necessary for being born in Rome.

Are you comfortable with what P and Q are here?

The biconditional connective should be easy to remember: P ⇐⇒ Q is true precisely when
P and Q have identical truth states. It is harder to make sense of the conditional connective. One
way of thinking about it is to consider what it means for an implication to be false. If P =⇒ Q is
false, it is impossible to create a logical argument which assumes P and concludes Q. The second
row of P =⇒ Q encapsulates the fact that it should be impossible for truth ever to logcially imply
falsehood.
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Aside: Why is F =⇒ T considered true?
This is the most immediately confusing part of the truth table for the conditional connective. Here

is a mathematical example, written with an English translation at the side.

7 = 3 =⇒ 0 · 7 = 0 · 3 (If 7 = 3, then 0 times 7 equals 0 times 3)
=⇒ 0 = 0 (then 0 equals 0)

Thus 7 = 3 =⇒ 0 = 0. Logically speaking this is a perfectly correct argument, thus the implication
is true. The argument makes us uncomfortable because 7 = 3 is clearly false.

If you want to understand connectives more deeply than this, then take a logic or philosophy
course! For example, although neither statement makes the least bit of sense in English;

17 is odd =⇒ Mexico is in China is false,
whilst

17 is even =⇒ Mexico is in China is true.

Such bizarre constructions are happily beyond the consideration of this course!

Theorems and Proofs

Truth tables and connectives are very abstract. To apply them to mathematics we need the following
basic notions of theorem and proof.

Definition 2.4. A theorem is a justified assertion that some statement of the form P =⇒ Q is true.
A proof is an argument that justifies the truth of a theorem.

Think back to the truth table for P =⇒ Q in Definition 2.3. Suppose that the hypothesis P is
true and that P =⇒ Q is true: that is, P =⇒ Q is a theorem. We must be in the first row of the truth
table, and so the conclusion Q is also true. This is how we think about proving basic theorems. In a
direct proof we start by assuming the hypothesis (P) is true and make a logical argument (P =⇒ Q)
which asserts that the conclusion (Q) is true. As such, it often convenient to rewrite the statement of
a theorem as an implication of the form P =⇒ Q. Here is an example of a direct proof.

Theorem 2.5. The product of two odd integers is odd.

We can write the theorem in terms of propositions and connectives:

• P is ‘x and y are odd integers.’ This is our assumption, the hypothesis.

• Q is ‘The product of x and y is odd.’ This is what we want to show, the conclusion.

• Showing that P =⇒ Q is true, that (the truth of) P implies (the truth of) Q requires an
argument. This is the proof.
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Proof. Let x and y be any two odd integers. We want to show that product x · y is an odd integer.
By definition, an integer is odd if it can be written in the form 2k + 1 for some integer k. Thus there
must be integers n, m such that x = 2n + 1 and y = 2m + 1. We compute:

x · y = (2n + 1)(2m + 1) = 4mn + 2n + 2m + 1 = 2(2mn + n + m) + 1.

Because 2mn + n + m is an integer, this shows that x · y is an odd integer.

The Converse and Contrapositive

The following constructions are used continually in mathematics: it is vitally important to know the
difference between them.

Definition 2.6. The converse of an implication P =⇒ Q is the reversed implication Q =⇒ P.
The contrapositive of P =⇒ Q is ¬Q =⇒ ¬P.

In general, we can’t say anything about the truth value of the converse of a true statement. The
contrapositive of a true statement is, however, always true.

Theorem 2.7. The contrapositive of an implication is logically equivalent the original implication.

Proof. Simply use our definitions of negation and implication to compute the truth table:

P Q P =⇒ Q ¬Q ¬P ¬Q =⇒ ¬P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

Since the truth states in the third and sixth columns are identical, we see that P =⇒ Q and its
contrapositive ¬Q =⇒ ¬P are logically equivalent.

Example. Let P and Q be the following statements:

P. Claudia is holding a peach.

Q. Claudia is holding a piece of fruit.

The implication P =⇒ Q is true, since all peaches are fruit. As a sentence, we have:

If Claudia is holding a peach, then Claudia is holding a piece of fruit.

The converse of P =⇒ Q is the sentence:

If Claudia is holding a piece of fruit, then Claudia is holding a peach.

This is palpably false: Claudia could be holding an apple!
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The contrapositive of P =⇒ Q is the following sentence:

If Claudia is not holding any fruit, then she is not holding a peach.

This is clearly true.

The fact that P =⇒ Q and ¬Q =⇒ ¬P are logically equivalent allows us, when convenient,
to prove P =⇒ Q by instead proving its contrapositive. . .

Proof by Contrapositive

Here is another basic theorem.

Theorem 2.8. Let x and y be two integers. If x + y is odd, then exactly one of x or y is odd.

The statement of the theorem is an implication of the form P =⇒ Q . Here we have

P. The sum x + y of integers x and y is odd.

Q. Exactly one of x or y is odd.

A direct proof would require that we assume P is true and logically deduce the truth of Q. The
problem is that it is hard to work with these propositions, especially Q. The negation of Q is, however,
much easier:

¬Q. x and y are both even or both odd (they have the same parity).

¬P. The sum x + y of integers x and y is even.

Since P =⇒ Q is logically equivalent to the simpler-seeming contrapositive (¬Q) =⇒ (¬P),
we choose to prove the latter. This is, after all, equivalent to proving the original implication.

Proof. There are two cases: x and y are both even, or both odd.
Case 1: Let x = 2m and y = 2n be even. Then x + y = 2(m + n) is even.
Case 2: Let x = 2m + 1 and y = 2n + 1 be odd. Then x + y = 2(m + n + 1) is even.

The above is an example of a proof by contrapositive.

De Morgan’s Laws

Two of the most famous results in logic are attributable to Augustus De Morgan, a very famous 19th
century logician.

Theorem 2.9 (De Morgan’s laws). Let P and Q be any propositions. Then:

1. ¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q.

2. ¬(P ∨Q) ⇐⇒ ¬P ∧ ¬Q.

The first law says that the negation of P ∧ Q is logically equivalent to ¬P ∨ ¬Q: the two expres-
sions have the same truth table. Here is a proof of the first law. Try the second on your own.
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Proof. P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Simply observe that the fourth and seventh columns are identical.

It is worth pausing to notice how similar the two laws are, and how concise. There is some beauty
here. With a written example the laws are much easier to comprehend.

Example. (Of the first law) Suppose that of a morning you can choose (or not) to ride the subway to
work, and you can choose (or not) to have a cup of coffee. Consider the following sentence:

I rode the subway and I had coffee.

What is its negation (opposite)? Clearly it is:

I didn’t ride the subway or I didn’t have coffee.

Note that the mathematical use of or includes the possibility that you neither rode the subway nor
had coffee.

You will see these laws again when we think about sets.

Aside: Think about the meaning!
In the previous example we saw how negation switches and to or. This is true only when and

denotes a conjunction between two propositions. Before applying De Morgan’s laws, think about the
meaning of the sentence. For example, the negation of

Mark and Mary have the same height.

is the proposition:

Mark and Mary do not have the same height.

If you blindly appeal to De Morgan’s laws you might end up with the following piece of nonsense:

Mark or Mary do not have the same height.

Logical rules are wonderfully concise, but very easy to misuse. Always think about the meaning of a
sentence and you shouldn’t go wrong.

Negating Conditionals

As our discussion of contrapositives makes clear, you will often want to understand the negation of
a statement. In particular, it is important to understand the negation of a conditional P =⇒ Q. Is it
enough to say ‘P doesn’t imply Q’? And what could this mean? To answer the question you can use
truth tables, or just think.
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Here is the truth table for P =⇒ Q and its negation: recall that negation simply swaps T and F.

P Q P =⇒ Q ¬(P =⇒ Q)
T T T F
T F F T
F T T F
F F T F

The only time there is a T in the final column is when both P is true and Q is false. We have therefore
proved the following:

Theorem 2.10. ¬(P =⇒ Q) is logically equivalent to P ∧ ¬Q (read ‘P and not Q’).

Now think rather than calculate. What is the opposite of the following implication?

It’s the morning therefore I’ll have coffee.

Hopefully it is clear that the negation is:

It’s the morning and I won’t have coffee.

The implication ‘therefore’ has disappeared and a conjuction ‘and’ is in its place.

Warning! The negation of P =⇒ Q is not a conditional. In particular it is neither of the following:

The converse, Q =⇒ P.

The contrapositive of the converse, ¬P =⇒ ¬Q.

If you are unsure about this, write down the truth tables and compare.

Example. Let x be an integer. What is the negation of the following sentence?

If x is even then x2 is even.

Written in terms of propositions, we wish to negate P =⇒ Q , where P and Q are:

P. x is even.

Q. x2 is even.

Hence the negation is P ∧ ¬Q, which is:

x is even and x2 is odd.

This is very different to ¬P =⇒ ¬Q (if x is odd then x2 is odd).

Keep yourself straight by thinking about the meaning of the sentences. It should be obvious that
‘x even =⇒ x2 even’ is true. It negation should therefore be false. Even reading the negation should
make you feel a little uncomfortable.
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Tautologies and Contradictions

There are two final related concepts that are helpful for understanding proofs.

Definition 2.11. A tautology is a logical expression that is always true, regardless of what the compo-
nent statments might be.
A contradiction is a logical expression that is always false.

The easiest way to detect these is simply to construct a truth table.

Examples. 1. P ∧ (¬P) is a very simple contradiction:

P ¬P P ∧ (¬P)
T F F
F T F

Whatever the proposition P is, it cannot be true at the same time as its negation.

2. (P ∧ (P =⇒ Q)) =⇒ Q is a tautology.

P Q P =⇒ Q P ∧ (P =⇒ Q) (P ∧ (P =⇒ Q)) =⇒ Q
T T T T T
T F F F T
F T T F T
F F T F T

Aside: Algebraic Logic
One can study logic in a more algebraic manner. De Morgan’s Laws are algebraic. Here are a few

of the other basic laws of logic:

P ∧Q ⇐⇒ Q ∧ P P ∨Q ⇐⇒ Q ∨ P
(P ∧Q) ∧ R ⇐⇒ P ∧ (Q ∧ R), (P ∨Q) ∨ R ⇐⇒ P ∨ (Q ∨ R),
(P ∧Q) ∨ R ⇐⇒ (P ∨ R) ∧ (Q ∨ R), (P ∨Q) ∧ R ⇐⇒ (P ∧ R) ∨ (Q ∧ R).

The three pairs are, respectively, the commutative, associative, and distributive laws of logic, and you
can check them all with truth tables. Using these rules, one can answer questions, such as deciding
when an expression is a tautology, without laboriously creating truth tables. It is even fun! Such
an approach is appropriate when you are considering abstract propositions, say in a formal logic
course. In this text our primary interest with logic lies in using it to prove theorems. When one has
an explicit theorem it is important to keep the meanings of all propositions clear. By relying too much
on abstract laws like the above, it is easy to lose the meaning and write nonsense!
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Exercises

2.1.1 Express each of the following statements in the “If . . . , then . . . ” form.
(a) You must eat your dinner if you want to grow.

(b) Being a multiple of 12 is a sufficient condition for a number to be even.

(c) It is necessary for you to pass your exams in order for you to obtain a degree.

(d) A triangle is equilateral only if all its sides have the same length.

2.1.2 Suppose that “Girls smell of roses” and “Boys have dirty hands” are true statements and that
“The Teacher is always right” is a false statment. Which of the following are true?
Hint: Label each of the given statements, and think about each of the following using connectives.

(a) If girls smell of roses, then the Teacher is always right.

(b) If the Teacher is always right, then boys have dirty hands.

(c) If the Teacher is always right or girls smell of roses, then boys have dirty hands.

(d) If boys have dirty hands and girls smell of roses, then the Teacher is always right.

2.1.3 Write the negation (in words) of the following claim:
If Jack and Jill climb up the hill, then they fall down and like pails of water.

2.1.4 Orange County has two competing transport plans under consideration: widening the 405
freeway and constructing light rail down its median. A local politician is asked, “Would you
like to see the 405 widened or would you like to see light rail constructed?” The politician
wants to sound positive, but to avoid being tied to one project. What is their response? Think
about how the word ‘OR’ is used in logic. . .

2.1.5 Construct the truth tables for the propositions P∨ (Q∧ R) and (P∨Q)∧ R. Are they the same?

2.1.6 Use De Morgan’s laws to prove that P =⇒ Q is logically equivalent to ¬P ∨Q.

2.1.7 Prove that the expressions (P =⇒ Q) ∧ (Q =⇒ P) and P ⇐⇒ Q are logically equivalent
(have the same truth table). Why does this make sense?

2.1.8 Prove that ((P ∨Q) ∧ ¬P) ∧ ¬Q is a contradiction.

2.1.9 Prove that (¬P ∧Q) ∨ (P ∧ ¬Q) ⇐⇒ ¬(P ⇐⇒ Q) is a tautology:

2.1.10 Suppose that “If Colin was early, then no-one was playing pool” is a true statement.
(a) What is its contrapositive of this statement? Is it true?

(b) What is the converse? Is it true?

(c) What can we conclude (if anything?) if we discover each of the following? Treat the two
scenarios separately.

(i) Someone was playing pool.
(ii) Colin was late.

2.1.11 Suppose that “Ford is tired and Zaphod has two heads” is a false statement. What can we
conclude if we discover each of the following? Treat the two scenarios separately.

(a) Ford is tired.
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(b) Ford is tired if and only if Zaphod has two heads.

2.1.12 (a) Do there exists propositions P, Q such that both P =⇒ Q and its converse are true?

(b) Do there exist propositions P, Q such that both P =⇒ Q and its converse are false?

Justify your answers by giving an example or a proof that no such examples exist.

2.1.13 Let R be the proposition “The summit of Mount Everest is underwater”. Suppose that S is a
proposition such that (R ∨ S) ⇐⇒ (R ∧ S) is false.

(a) What can you say about S?

(b) What if, instead, (R ∨ S) ⇐⇒ (R ∧ S) is true?

2.1.14 (Hard) Suppose that P, Q are propositions. Argue that any of the 16 possible truth tables

P Q ?
T T T/F
T F T/F
F T T/F
F F T/F

represents an expression ? created using only P and Q and the operations ∧,∨,¬. Can you
extend your argument to show that any truth table with any number of inputs represents some
logical expression?
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2.2 Methods of Proof

There are four standard methods for proving P =⇒ Q. In practice, long proofs will use several of
these.

Direct Assume P and logically deduce Q.

Contrapositive Assume ¬Q and deduce ¬P. This is enough since the contrapositive ¬Q =⇒ ¬P
is logically equavalent to P =⇒ Q.

Contradiction Assume that P and ¬Q are true and deduce a contradiction. Since P ∧ ¬Q implies a
contradiction, this shows that P ∧ ¬Q must be false. Because P ∧ ¬Q is equivalent to ¬(P =⇒
Q), this is enough to conclude that P =⇒ Q is true (Theorem 2.10).

Induction This has a completely different flavor: we will consider it in Chapter 5.

The direct method has the advantage of being easy to follow logically. The contrapositive method
has its advantage when it is difficult to work directly with the propositions P, Q, especially if one or
both involve the non-existence of something. Working with their negations might give you the exis-
tence of ingredients with which you can calculate. Proof by contradiction has a similar advantage:
assuming both P and¬Q gives you two pieces of information with which you can calculate. Logically
speaking there is no difference between the three methods, beyond how you visualize the argument.

To illustrate the difference between direct proof, proof by contrapositive, and proof by contradic-
tion, we prove the same simple theorem in three different ways.

Theorem 2.12. Suppose that x is an integer. If 3x + 5 is even, then 3x is odd.

Direct Proof. We show that if 3x + 5 is even then 3x is odd. Assume that 3x + 5 is even, then 3x + 5 =
2n for some integer n. Hence

3x = 2n− 5 = 2(n− 3) + 1.

This is clearly odd, because it is of the form ‘an even integer plus one.’

Contrapositive Proof. We show that if 3x is even then 3x + 5 is odd. Assume that 3x is even, and write
3x = 2n for some integer n. Then

3x + 5 = 2n + 5 = 2(n + 2) + 1.

This is odd, because n + 2 is an integer.
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Contradiction Proof. We assume that 3x + 5 and 3x are both even, and we deduce a contradiction.
Write 3x + 5 = 2n and 3x = 2k for some integers n and k. Then

5 = (3x + 5)− 3x = 2n− 2k = 2(n− k).

But this says that 5 is even: a contradiction.

Some simple proofs

We now give several examples of simple proofs. The only notation needed to speed things along
is that of some basic sets of numbers: N for the positive integers, Z for the integers, R for the real
numbers, and ∈ for ‘is a member of the set’. Thus 2 ∈ Z is read as ‘2 is a member of the set of
integers’, or more concisely, ‘2 is an integer’.

Theorem 2.13. Let m, n ∈ Z. Both m and n are odd if and only if the product mn is odd.

There are two theorems here:

(⇒) If m and n are both odd, then the product mn is odd.

(⇐) If the product mn is odd, then both integers m and n are odd.

Most often when there are two directions you’ll have to prove them separately. Here we give a
direct proof for (⇒) and a contapositive proof for (⇐).

Proof. (⇒) Let m and n be odd. Then m = 2k + 1 and n = 2l + 1 for some k, l ∈ Z. Then

mn = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.

This is odd, because 2kl + k + l ∈ Z.

(⇐) Suppose that the integers m and n are not both odd. That is, assume that at least one of m and n
is even. We show that the product mn is even. Without loss of generality,a we may assume that
n is even, from which n = 2k for some integer k. Then,

mn = m(2k) = 2(mk) is even.

aSee ‘Potential Mistakes’ below for what this means.

In the second part of the proof, we did not need to consider whether m was even or odd: if n was
even, the product mn would be even regardless. The second part would have been very difficult to
prove directly: Assume mn is odd, then mn = 2k + 1, so. . . We are stuck!

Theorem 2.14. If 3x + 5 is even, then x is odd.

We can prove this directly, by the contrapositive method, or by contradiction. We’ll do all of them,
so you can appreciate the difference.
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Direct Proof. Simply quote the two previous theorems. Because 3x + 5 is even, 3x must be odd by
Theorem 2.12. Now, since 3x is odd, both 3 and x are odd by Theorem 2.13.

Contrapositive Proof. Suppose that x is even. Then x = 2m for some integer m and we get

3x + 5 = 6m + 5 = 2(3m + 2) + 1.

Because 3m + 2 ∈ Z, we have 3x + 5 odd.

Contradiction Proof. Suppose that both 3x + 5 and x are even. We can write 3x + 5 = 2m and x = 2k
for some integers m and k. Then

5 = (3x + 5)− 3x = 2m− 6k = 2(m− 3k) is even. Contradiction.

Selecting a method of proof is often a matter of taste. You should be able to see the advantages
and disadvantages of the various approaches. The direct proof is more logically straightforward, but
it depends on two previous results. The contrapositive and the contradiction arguments are quicker
and more self-contained, but they require a deeper familiarity with logic.6

Potential Mistakes: Generality and ‘Without Loss of Generality’

There are many common mistakes that you should be careful to avoid. Here are two incorrect ‘proofs’
of the =⇒ direction of Theorem 2.13.

Fake Proof 1. m = 3 and n = 5 are both odd, and so mn = 15 is odd.

This is an example of the theorem, not a proof. Examples are critical to helping you understand
and believe what a theorem says, but they are no substitute for a proof! Recall the discussion in the
Introduction on the usage of the word proof in English.

Fake Proof 2. Let m = 2k + 1 and n = 2k + 1 be odd. Then, mn = (2k + 1)(2k + 1) = 2(2k2 + 2k) + 1
is odd.

The problem with this second ‘proof’ is that it is not sufficiently general. m and n are supposed
to be any odd integers, but by setting both of them equal to 2k + 1, we’ve chosen m and n to be the

6For even more variety, here is a direct proof of Theorem 2.14 that does not use any previous theorem. Suppose 3x + 5
is even, so 3x + 5 = 2n for some integer n. Then

x = (3x + 5)− 2x− 5 = 2n− 2x− 5 = 2(x− n− 3) + 1 is odd.

You will often have a variety of possible approaches: this just makes proving theorems even more fun!
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same! Notice how the correct proof uses m = 2k + 1 and n = 2l + 1, where we place no restriction on
the integers k and l.

By generality we mean that we must make sure to consider all possibilities encompassed by the
hypothesis. The phrase Without Loss of Generality, often shorted to WLOG, is used when a choice is
made which might at first appear to restrict things but, in fact, does not.

Think back to how this was used in the the proof of Theorem 2.13. If at least one of integers m, n
is even, then we lose nothing by assuming that it is the second integer n. The labels m, n are arbitrary:
if n happened not to be even, we could simply relabel the integers, changing their order so that the
second is now even.

The phrase WLOG is used to pre-empt a challenge to a proof in the sense of Fake Proof 2, as if to
say to the reader:

‘You might be tempted to object that my argument is not general enough. However, I’ve thought
about it, and there is no problem.’

Here is a palpably ludicrous ‘theorem’ which illustrates another potential mistake.

Theorem (Fake Theorem). The only number is zero.

Fake Proof. Let x be any number and let y = x, then

x = y =⇒ x2 = xy (Multiply both sides by x)

=⇒ x2 − y2 = xy− y2 (Subtract y2 from both sides)
=⇒ (x− y)(x + y) = (x− y)y (Factorize)
=⇒ x + y = y (Divide both sides by x− y)
=⇒ x = 0

Everything is fine up to the third line, but then we divide by x − y, which is zero! Don’t let
yourself become so enamoured of logical manipulations that you forget to check the basics.

More simple proofs

Theorem 2.15. Suppose x ∈ R. Then x3 + 2x2 − 3x− 10 = 0 =⇒ x = 2.

We can prove this theorem using any of the three methods. All rely on your ability to factorize
the polynomial:

x3 + 2x2 − 3x− 10 = (x− 2)(x2 + 4x + 5) = (x− 2)[(x + 2)2 + 1],

and partly on your knowledge that ab = 0 ⇐⇒ a = 0 or b = 0 (proof in the exercises).
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Direct Proof. If x3 + 2x2− 3x− 10 = 0, then (x− 2)[(x + 2)2 + 1] = 0. Hence at least one of the factors
x− 2 or (x + 2)2 + 1 is zero.
In the first case we conclude that x = 2.
The second case is impossible, since (x + 2)2 ≥ 0 =⇒ (x + 2)2 + 1 > 0.
Therefore x = 2 is the only solution.

Contrapositive Proof. Suppose x 6= 2. Then x3 + 2x2 − 3x − 10 = (x − 2)[(x + 2)2 + 1] 6= 0 since
neither of the factors is zero.

Contradiction Proof. Suppose that x3 + 2x2 − 3x− 10 = 0 and x 6= 2. Then

0 = x3 + 2x2 − 3x− 10 = (x− 2)[(x + 2)2 + 1].

Since x 6= 2, we have x− 2 6= 0.
It follows that (x + 2)2 + 1 must be zero. However, (x + 2)2 + 1 ≥ 1 for all real numbers x, so we
have a contradiction.

On balance the contrapositive proof is probably the nicest, but you may decide for yourself.

Aside: Being Excessively Logical
The statement of Theorem 2.15 is an implication P =⇒ Q where P and Q are:

P. x3 + 2x2 − 3x− 10 = 0, Q. x = 2.

You can make life very hard for yourself by being overly logical. For instance, you may wish take
a third proposition R. x ∈ R, and state the theorem as R =⇒ (P =⇒ Q). This is the way of
pain! It’s easier to assume that you’re always dealing with real numbers as a universal constraint,
and ignore it entirely in the logic.

One can always append a third proposition to the front of any theorem, namely, “all math I al-
ready know.” Try to resist the temptation to be so logical that your arguments become unreadable!

Theorem 2.16. If n ∈ Z is divisible by p ∈N, then n2 is divisible by p2.

Before trying to prove this, recall what ‘n is divisible by p’ means: that n = pk for some integer k.
With the correct definition, the proof is immediate.

Proof. We prove directly. Let n be divisible by p. Then n = pk for some k ∈ Z. Then n2 = p2k2, and
so n2 is divisible by p2.

Remember: state the definition of everything important in the theorem and often the proof will
be staring you in the face.
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Proof by Cases

The next proof involves breaking things into cases. The relevant definition here is that of remainder.
An integer n is said to have remainder r = 0, 1, or 2 upon division by 3 if we can write n = 3k + r for
some integer k. With a little thought, it should be clear that every integer is of the form 3k, 3k + 1, or
3k + 2. This is analogous to how all integers are either even (2k) or odd (2k + 1). We will consider
remainders more carefully in Chapter 3.

Theorem 2.17. If n is an integer, then n2 has remainder 0 or 1 upon dividing by 3.

Proof. We again prove directly. There are three cases: n has remainder 0, 1 or 2 upon dividing by 3.

(a) If n has remainder 0, then n = 3m for some m ∈ Z and so n2 = 9m2 has remainder 0.

(b) If n has remainder 1, then n = 3m + 1 for some m ∈ Z and so

n2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1 has remainder 1.

(c) If n has remainder 2, then n = 3m + 2 for some m ∈ Z and so

n2 = 9m2 + 12m + 4 = 3(3m2 + 4m + 1) + 1 has remainder 1.

Thus n2 has remainder 0 or 1 and cannot have remainder 2.

Non-existence Proofs

When a Theorem claims that something does not exist, it is generally a good time for a contrapositive
or contradiction proof. This is since ‘does not exist’ is already a negative condition. A contradiction
or contrapositive proof of a theorem P =⇒ Q already involve the negated statement ¬Q. If Q
states that something does not exist, then ¬Q states that it does! To see this in action, consider the
following result.

Theorem 2.18. x17 + 12x3 + 13x + 3 = 0 has no positive (real number) solutions.

First we interpret the theorem as an implication: throughout we assume that x is a real number.

If x is a solution to the equation x17 + 12x3 + 13x + 3 = 0, then x ≤ 0.

The theorem is of the form P =⇒ Q, with:

P. x17 + 12x3 + 13x + 3 = 0, Q. x ≤ 0.

The negation of Q is simply ‘x > 0.’ To prove the theorem by contradiction, we assume P and not Q,
and deduce a contradiction.
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Proof. Assume that x satisfies x17 + 12x3 + 13x + 3 = 0, and that x > 0. Because all terms on the left
hand side are positive, we have x17 + 12x3 + 13x + 3 > 0. A contradiction.

Note how quickly the proof is written: it assumes that you, and any reader, are familiar with the
underlying logic of a contradiction proof without it needing to be spelled out. The discussion we
undertook before writing the proof would be considered scratch work: you shouldn’t include it a
final write-up.

If you recall the Intermediate and Mean Value Theorems from Calculus, you should be able to
prove that there is exactly one (necessarily negative!) solution to the above polynomial equation.

The AM-GM inequality

Next we give several proofs of a famous inequality relating the arithmetic and geometric means of
two or more numbers.

Theorem 2.19. If x, y are positive real numbers, then x+y
2 ≥

√
xy with equality if and only if x = y.

First a direct proof: note how the implication signs are stacked to make the argument easy to read.

Direct Proof. Clearly (x− y)2 ≥ 0 with equality ⇐⇒ x = y. Now multiply out:

x2 − 2xy + y2 ≥ 0 ⇐⇒ (x2 + 2xy + y2)− 4xy ≥ 0

⇐⇒ x2 + 2xy + y2 ≥ 4xy

⇐⇒ (x + y)2 ≥ 4xy
⇐⇒ x + y ≥ 2

√
xy (∗)

⇐⇒ x + y
2
≥ √xy.

The square-root in (∗) is well-defined because x + y is positive.a Moreover, it is clear that the final
inequality is an equality if and only if all of them are, which is if and only if x = y.

aWe are using the fact that the function f (t) = t2 is increasing for t positive.

The argument for ‘with equality if and only if x = y’ depended on all of the implications in the
proof are biconditionals.

The following contradiction proof incorporates exactly the same calculation, but is laid out in a
different order. This is not always possible, and you have to take great care when trying it. You will
likely agree that the direct proof is easier to follow.
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Contradiction Proof. Suppose that x+y
2 <

√
xy. Since x + y ≥ 0, this is if and only if (x + y)2 < 4xy.

Now multiply out and rearrange:

(x + y)2 < 4xy ⇐⇒ x2 + 2xy + y2 < 4xy

⇐⇒ x2 − 2xy + y2 < 0

⇐⇒ (x− y)2 < 0.

Since squares of real numbers are non-negative, this is a contradiction. Thus x+y
2 ≥

√
xy.

Now suppose that x+y
2 =

√
xy. Following the biconditionals through the proof, we see that this is if

and only if (x− y)2 = 0, from which we recover x = y. Hence result.

Aside: The general AM-GM inequality
Both the statement and the proof of the general inequality are more difficult. You might be sur-

prised that an argument involving ‘raising to the nth power’ doesn’t work. Try it and see why. . .
The general proof is harder and we present it at a higher level, leaving out some of the more obvi-
ous details. This helps us view the proof as a whole, and makes the logical flow clearer. The only
prerequisite is a little calculus, namely the First Derivative Test at the end of the first paragraph.

Theorem 2.20. If x1, . . . , xn > 0 then x1+···+xn
n ≥ n

√
x1 · · · xn, with equality if and only if x1 = · · · = xn.

Proof. Consider the function f (x) = ex−1 − x. Its derivative is f ′(x) = ex−1 − 1, which is zero if and
only if x = 1. The sign of the derivative changes from negative to positive at x = 1, whence this is a
local minimum. f has no other critical points and its domain is the whole real line, whence x = 1 is
the location of the global minimum of f . Since f (1) = 0, we have ex−1 ≥ x with equality if and only
if x = 1.

Now consider the average µ = x1+x2+···+xn
n . Applying our inequality to x = xi

µ , we have

xi

µ
≤ exp

(
xi

µ
− 1
)

, for each i = 1, 2, . . . , n. (∗)

Since all xi are positive, we may multiply the expressions (∗) while preserving the inequality:

x1

µ
· · · xn

µ
≤ exp

(
x1

µ
− 1 + · · ·+ xn

µ
− 1
)
= exp(n− n) = 1. (†)

Thus µn ≥ x1 · · · xn from which the result, µ ≥ n
√

x1 · · · xn, follows.
Equality is if and only if all the inequalities (∗) are equalities, which is if and only if xi = µ for all

i = 1, . . . , n. That is, all the xi are equal.

Given the theorem and proof are both more difficult, there are a few things you should do to help
convince yourself of their legitimacy.
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1. Write down some examples. E.g. if x1 = 20, x2 = 27, x3 = 50, the inequality reads

97
3
≥ 3
√

20 · 27 · 50 = 30.

2. Observe that Theorem 2.19 is a special case.

3. Work through the proof, inserting comments and extra calculations until you are convinced
that the argument is correct. For example, the calculation x1+···+xn

µ = µn
µ = n was omitted from

(†): anyone with the prerequisite knowledge to read the rest of the proof should easily be able
to supply this.

It is perfectly reasonable to ask how you would know to try such a proof. The answer is that you
wouldn’t. You should appreciate that a proof like this is a distillation of thousands of attempts and
improvements, perhaps over many years. No-one came up with this argument as a first attempt!

Combining and Subdividing Theorems

Sometimes it is useful to break a proof into pieces, akin to viewing a computer program as a collection
of subroutines that you combine for the finale. Usually the purpose is to make the proof of a difficult
result more readable, but it can be done to emphasize the importance of certain aspects of your work.
Mathematics does this by using lemmas and corollaries.

Lemma: a theorem whose importance you want to downplay. Often the result is individually
unimportant, but becomes more useful when incorporated as part of a larger theorem.

Corollary: a theorem which follows quickly from a larger result. Corollaries can be used to draw
attention to a particular aspect or a special case of a theorem.

In many mathematical papers the word theorem is reserved only for the most important results,
everything else being presented as a lemma or corollary. The choice of what to call a result is entirely
one of presentation. If you want your paper to be more readable, or to highlight the what you think
is important, then lemmas and corollaries are your friends!

Here is a famous example of a lemma at work.

Lemma 2.21. Suppose that n ∈ Z. Then n2 is even ⇐⇒ n is even.

Prove this yourself: the (⇒) direction is easiest using the contrapositive method, while the (⇐)
direction works well directly.

Theorem 2.22.
√

2 is irrational.

This is tricky for a few reasons. The theorem does not appear to be of the form P =⇒ Q, but in
fact it is. Consider:

Q.
√

2 is irrational.
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P. Everything you already know in mathematics!

Of course P is entirely unhelpful; How would we start a direct proof when we don’t know what to
choose from the whole universe of mathematics? A contrapositive proof might also be difficult: ¬Q
straightforwardly states that

√
2 is rational, but ¬P is the cryptic statement, ‘something we know

happens to be false.’ But what is the something? Instead we use a proof by contradiction.

Proof. Suppose that
√

2 = m
n for some m, n ∈N, where m, n have no common factors.

Then m2 = 2n2 which says that m2 is even.
By Lemma 2.21 we have that m is even.
Thus m = 2k for some k ∈ Z.
But now, n2 = 2k2, from which (Lemma 2.21 again) we see that n is even.
Thus m and n have a common factor of 2. This is a contradiction.

First observe how Lemma 2.21 was used to make the proof easier to read. Now try to make sense
of the proof. The main challenge comes in the first line. Once we assume that

√
2 = m

n , we can
immediately insist that m, n have no common factors. It is important to realize that this is not the
assumption being contradicted. Indeed it is no real restriction once we assume that

√
2 is rational. If

you find this approach difficult, you may prefer the alternative proof given in the exercises.

Here is another famous result involving prime numbers.

Definition 2.23. A positive integer p ≥ 2 is prime if its only positive divisors are itself and 1.

The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, . . .. It follows7 from the definition that all positive
integers ≥ 2 are either primes or composites (products of primes).

Theorem 2.24. There are infinitely many prime numbers.

To break down the proof we first prove a lemma: the symbol := is read ‘defined to be equal to.’

Lemma 2.25. Suppose that p1, . . . , pn are integers ≥ 2. Then Π := p1 p2 · · · pn + 1 is not divisible by pi for
any i.

Proof. Suppose that Π is divisible by pi. Observe that

Π− p1 · · · pn = 1.

Since p1 · · · pn is divisible by pi, the left hand side of this equation is divisible by pi. But then 1 must
be disvisible by pi. Since pi ≥ 2, this is a contradiction.

7This is not obvious: we will prove it much later in Theorem 5.16.
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Proof of theorem. Again we prove by contradiction. Assume that there are exactly n prime numbers
p1, . . . , pn and consider Π := p1 · · · pn + 1. By the lemma, Π is not divisible by any of the primes
p1, . . . , pn. There are two cases:

(a) Π is prime, in which case it is a larger prime than anything in our list p1, . . . , pn.

(b) Π is composite, in which case it is divisible by a prime. But this prime cannot be in our list
p1, . . . , pn.

In either case we’ve shown that there is another prime not in the list p1, . . . , pn, and we’ve contra-
dicted our assumption that we had all the primes.

The lemma approach was almost essential for this example, since both the lemma and the theorem
were proved by contradiction. Nesting one contradiction argument within another is a recipe for
serious confusion!

Exercises

2.2.1 Show that for any given integers a, b, c, if a is even and b is odd, then 7a− ab + 12c + b2 + 4 is
odd.

2.2.2 Prove or disprove the following conjectures.
(a) There is an even integer which can be expressed as the sum of three even integers.

(b) Every even integer can be expressed as the sum of three even integers.

(c) There is an odd integer which can be expressed as the sum of two odd integers.

(d) Every odd integer can be expressed as the sum of three odd integers.
To get a feel about whether a claim is true or false, try out some examples. If you believe a claim is
false, provide a specific counterexample. If you believe a claim is true, give a (formal) proof.

2.2.3 Prove or disprove the following conjectures:
(a) The sum of any 3 consecutive integers is divisible by 3.

(b) The sum of any 4 consecutive integers is divisible by 4.

(c) The product of any 3 consecutive integers is divisible by 6.

2.2.4 Augustus De Morgan satisfied his own problem:

I turn(ed) x years of age in the year x2.

(a) Given that de Morgan died in 1871, and that he wasn’t the beneficiary of some miraculous
anti-aging treatment, find the year in which he was born.

(b) Suppose you have an acquaintance who satisfies the same problem. How old will they
turn in 2014?

Give a formal argument which justifies that you are correct.

2.2.5 Prove that if n is a natural number greater than 1, then n! + 2 is even.
Here n! denotes the factorial of the integer n. Look up the definition if you forgot about it.
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2.2.6 Let x, y ∈ Z. Prove that if xy is odd, then x and y are odd.

2.2.7 (a) Let x ∈ Z. Prove that 5x + 3 is even if and only if 7x− 2 is odd.

(b) Can you conclude anything about 7x− 2 if 5x + 3 is odd?

2.2.8 Below is the proof of a result. What result is being proved?

Proof. Assume that x is odd. Then x = 2k + 1 for some integer k. Then

2x2 − 3x− 4 = 2(2k + 1)2 − 3(2k + 1)− 4 = 8k2 + 2k− 5 = 2(4k2 + k− 3) + 1.

Since 4k2 + k− 3 is an integer, 2x2 − 3x− 4 is odd.

2.2.9 Given below is the proof of a result. What is the result?

Proof. Assume, without loss of generality, that x and y are even. Then x = 2a and y = 2b for
some integers a, b. Therefore,

xy + xz + yz = (2a)(2b) + (2a)z + (2b)z = 2(2ab + az + bz).

Since 2ab + az + bz is an integer, xy + xz + yz is even.

2.2.10 Suppose that x, and y are real numbers. Prove that if 3x + 5y is irrational, then at least one of x
and y is irrational. Recall that x is irrational if it cannot be written as a ratio of integers.

2.2.11 Let x and y be integers. Prove: For x2 + y2 to be even, it is necessary that x and y have the same
parity (i.e. both even or both odd).

2.2.12 Prove that if x and y are positive real numbers, then
√

x + y 6= √x +
√

y. Argue by contradiction.

2.2.13 Prove that ab = 0 ⇐⇒ a = 0 or b = 0.

2.2.14 You meet three old men, Alain, Boris, and César, each of whom is a Truthteller or a Liar.
Truthtellers speak only the truth; Liars speak only lies. You ask Alain whether he is a Truthteller
or a Liar. Alain answers with his back turned, so you cannot hear what he says.
“What did he say?” you ask Boris.
Boris says: “Alain says he is a Truthteller.”
César says: “Boris is lying.”
Is César a Truthteller or a Liar? Explain your answer.

2.2.15 (Snake-like integers) Let’s say that an integer y is Snake-like if and only if there is some integer k
such that y = (6k)2 + 9.

(a) Give three examples and three non-examples of Snake-like integers.

(b) Given y ∈ Z, compute the negation of the statement, ‘y is Snake-like.’

(c) Show that every Snake-like integer is a multiple of 9.
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(d) Show that the statements, ‘n is Snake-like,’ and, ‘n is a multiple of nine,’ are not equivalent.

2.2.16 Assume that Ben’s father lives in Peru. Consider the following implication β:

If Ben’s father is an artist and does not have any friends in Asia, then Ben plays tennis or
ping-pong, or he appeared in at least one picture of the May 1992 Time magazine.

(a) Find the contrapositive of β.

(b) Find the converse of β.

(c) Find the negation of β.

(d) Imagine you are a detective and want to find the truth value of β. Describe your action-
strategy in full detail.

2.2.17 Here is an alternative argument that
√

2 is irrational. Suppose that
√

2 = m
n where m, n ∈ N.

This time we don’t assume that m, n have no common factors.

(a) m, n satisfy the equation m2 = 2n2. Prove that there exist positive integers m1, n1 which
satisfy the following three conditions:

m2
1 = 2n2

1, m1 < m, n1 < n.

(b) Show that there exist two sequences of decreasing positive integers m > m1 > m2 > · · ·
and n > n1 > n2 > · · · which satisfy m2

i = 2n2
i for all i ∈N.

(c) Is it possible to have an infinite sequence of decreasing positive integers? Why not? Show
that we obtain a contradiction and thus conclude that

√
2 6∈ Q.

This is an example of the method of infinite descent, which is very important in number theory.

2.2.18 You are given the following facts.

(a) All polynomials are continuous.

(b) (Intermediate Value Theorem) If f is continuous on [a, b] and L lies between f (a) and f (b),
then f (x) = L for some x ∈ (a, b).

(c) If f ′(x) > 0 on an interval, then f is an increasing function.

Use these facts to give a formal proof that x17 + 12x3 + 13x + 3 = 0 has exactly one solution x,
and that x lies in the interval (−1, 0).
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2.3 Quantifiers

The proofs we’ve dealt with thusfar have been fairly straightforward. In higher mathematics, how-
ever, there are often definitions and theorems that involve many pieces, and it becomes unwieldy to
write everything out in full sentences. Two space-saving devices called quantifiers are often used to
contract sentences and make the larger structure of a statement clearer.8 Their use in formal logic
is more complex, but for most of mathematics (and certainly this text) all you need is to be able to
recognize, understand, and negate them. This last is most important for attempting contrapositive
or contradiction proofs.

Definition 2.26. The universal quantifier ∀ is read ‘for all’. The existential quantifier ∃ is read ‘there
exists.’

Many sentences in English can be restated using quantifiers:

Examples. 1. Every cloud has a silver lining: ∀ clouds, ∃ a silver lining.

2. All humans have a brain: ∀ humans, ∃ a brain.

3. There is an integer smaller than π: ∃n ∈ Z such that n < π.

4. π cannot be written as a ratio of integers: ∀ integers m, n, we have m
n 6= π.

Propositional Functions and Quantified Propositions

Definition 2.27. A propositional function is an expression P(x) which depends on a variable x. The
collection of allowed variables x is the domain of P. For each x, the expression P(x) is a proposition
in the usual sense.
The quantified proposition ∀x, P(x) is an assertion that P(x) is true for all values of x. Similarly ∃x, P(x)
asserts that P(x) is true for at least one value of x.

Example. Suppose that x is allowed to be any real number. We could define the propositional func-
tion P(x) by

P(x). x2 > 4.

For this example, P(5) is true, whilst P(−1) is false. More generally, P(x) is true for some values of x
(namely x > 2 or x < −2) and false for others (−2 ≤ x ≤ 2).
In this case the quantified proposition ∀x ∈ R, P(x) is false, while ∃x ∈ R, P(x) is true.

Aside: Clarity versus Concision
As we’ve observed, mathematics is something of an art form and, like with all art, different prac-

titioners have different tastes. Some mathematicians write very concisely, keeping words to a mini-
mum. Some write almost entirely in English. Most use a hybrid of quantifiers and English, aiming for
a balance between brevity and clarity. For example, consider the famous sum of four squares theorem:

8At least that’s the idea: very often they are over-used and achieve the opposite effect!
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English Every positive integer may be written as the sum of four squares

Full Logic (∀n ∈N)(∃a, b, c, d ∈ Z)(n = a2 + b2 + c2 + d2)

Hybrid ∀n ∈N, ∃a, b, c, d ∈ Z such that n = a2 + b2 + c2 + d2

You will probably agree that the English version is easiest to follow, and the Full Logic the most ab-
stract. However, the English version is less precise: ‘sum of four squares’ has to be interpreted. The
Full Logic expression avoids this by introducing variables and a formula. The Hybrid expression
aims for a balance between these extremes. The insertion of a single comma and the phrase ‘such
that’ increases readabilty, while retaining the benefit of precision. Remember that the purpose of
writing mathematics is so that someone else can read and understand what you’ve written without
you being there to explain it to them. Your presentation style has an enormous effect on whether you
are successful!

Similarly, in our previous example, the sentence ‘∃x ∈ R such that x2 > 4’ is more understand-
able than our original formulation ‘∃x ∈ R, x2 > 4.’

Counterexamples and Negating Quantified Propositions

Besides the concision afforded by quantifiers, one of their benefits is a rule that allows for easy nega-
tion.

Theorem 2.28. For any propositional function P(x), we have:

1. ¬(∀x, P(x)) is equivalent to ∃x, ¬P(x).

2. ¬(∃x, P(x)) is equivalent to ∀x, ¬P(x).

Like with all theorems, to understand it you should unpack it, write it in English, and come up
with an example:

1. The negation of ‘For all x, P(x) is true’ is

There exists an x such that P(x) is false.’

2. The negation of ‘There exists an x such that P(x) is true’ is

For all x, P(x) is false.

Definition 2.29. A counterexample to ∀x, P(x) is a single element t in the domain of P such that P(t)
is false.

Clearly x = 1 is a suitable counterexample to ∀x ∈ R, x2 > 4.

Examples. Here are two examples, numbered corresponding to the parts of Theorem 2.28.

1. The negation of the statement, ‘Everyone owns a bicycle’ is:
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Somebody does not own a bicycle.

It certainly looks pedantic, but symbolically we might write:

¬
[
∀ people x, x owns a bicycle

]
⇐⇒ ∃ a person x such that x does not own a bicycle.

2. Suppose that x is a real number and consider the quantified proposition:

∃x ∈ R such that sin x = 4.

This has the form ∃x, P(x), and therefore has negation ∀x, ¬P(x). Explicitly:

∀x ∈ R we have sin x 6= 4.

Note how we introduced the words we have to make the sentence read more clearly.

Advice when Negating: Hidden and Excess Quantifiers

Theorem 2.28 seems very simple, but in practice it can be very easy to misuse. Here are some points
to consider when negating quantifiers.

1. Don’t forget the meaning of the sentence. Use the logical rules in Theorem 2.28 but also think
it out in words. You should get the same result. Think about the finished sentence and read it
aloud: if it sounds like the opposite of what you started with then it probably is!

2. The symbol @ for ‘does not exist’ is much abused. Very occasionally its use is appropriate, but
it too often demonstrates laziness or a lack of understanding. Avoid using it unless absolutely
necessary.

3. Only switch the symbols ∀ and ∃ if they preceed a proposition and are truly used as logical
quantifiers. In the following example, ‘silver lining’ is not a proposition.

∀ clouds, ∃ a silver lining.

When negating, we don’t switch ∃ to ∀. Indeed its negation is

∃ a cloud without a silver lining.

4. Beware of hidden quantifiers! Sometimes a quantifier is implied but not explicitly stated. This
is very common when a statement contains an implication. Consider the following very easy
theorem.

If n is an odd integer, then n2 is odd. (∗)

This is really a statement about all integers. There is a hidden quantifier that’s been suppressed
in the interest of readability. Instead, the theorem could have been written

∀n ∈ Z, n is odd =⇒ n2 is odd.
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In this form we can negate by combining the rules in Theorems 2.10 and 2.28. The pattern is

¬ [∀n, P(n) =⇒ Q(n)] ⇐⇒ ∃n, P(n) and ¬Q(n).

The negation of (∗) is therefore,

∃n ∈ Z such that n is odd and n2 is even.

The negation of (∗) is, of course, false!

Here is a harder example of a hidden quantifier, this time from Linear Algebra.

Definition 2.30. Vectors x, y, z are linearly independent if ax + by + cz = 0 =⇒ a = b = c = 0.

The implication is a statement about all real numbers a, b, c. We could instead have written

∀a, b, c ∈ R we have ax + by + cz = 0 =⇒ a = b = c = 0.

To negate the definition, we must also negate the hidden quantifier:

Vectors x, y, z are linearly dependent if ∃a, b, c not all zero such that ax + by + cz = 0.

The final challenge is recalling how to negate an implication: recall Theorem 2.10, and note that the
negation of a = b = c = 0 is that at least one of a, b, c is non-zero.

Multiple quantifiers

Once you’re comfortable negating simple propositions and quantifiers, negating multiple quantifiers
is easy. Just follow the rules, think, and take your time.

Example. Show that the following statement is false.

∀x ∈ R, ∃y ∈ R such that xy = 3.

The negation of this expression follows the rules for switching quantifiers and negating the final
statement:

∃x ∈ R such that ∀y ∈ R we have xy 6= 3.

It is easy to see that the negated statement is true:

Proof. Let x = 0, then, regardless of y, we have xy = 0 6= 3.

Because the negation is true, the original statement is false.

Putting it all together: Continuity

The definition of continuity from calculus combines multiple quantifiers, a hidden quantifier and
an implication. The purpose of this text isn’t to teach you the subtleties of what the following def-
inition means, that’s for a later Analysis class. We simply want to be able to read and negate such
expressions.
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Definition 2.31. Suppose that f is a function whose domain and codomain are sets of real numbers.
We say that f is continuous at x = a if,

∀ε > 0, ∃δ > 0 such that |x− a| < δ =⇒ | f (x)− f (a)| < ε. (∗)

The implication is a statement about all real numbers x which satisfy some property, so we once
again have a hidden quantifier:

∀ε > 0, ∃δ > 0 such that ∀x ∈ R, |x− a| < δ =⇒ | f (x)− f (a)| < ε.

We can now use our rules to state what it means for f to be discontinuous at x = a:

∃ε > 0 such that ∀δ > 0, ∃x ∈ R such that |x− a| < δ and | f (x)− f (a)| ≥ ε.

Warning! The negation of ∀ε > 0 is not ∃ε ≤ 0. Only the ultimate proposition9 is negated!
For an example of this definition in use, see the exercises.

The Order of Quantifiers Matters!

We conclude this section with an important observation: the order of quantifiers matters critically!
Consider, for example, the following two propositions:

1. For every person x, there exists a person y such that y is a friend of x.

2. There exists a person y such that, for every person x, y is a friend of x.

Assuming x and y always represent people, we can rewrite the sentences as follows:

1. ∀x, ∃y such that y is a friend of x.

2. ∃y such that, ∀x, y is a friend of x.

All we have done is to switch the order of the two quantifiers! How does this affect the meaning?
Written entirely in English, the statments become:

1. Everyone has a friend.

2. There exists somebody who is friend with everybody.

Quite different!

Play around with the pairs of examples below. What are the meanings? Which ones are true?

• ∀days x, ∃ a person y such that y was born on day x.

• ∃ a person y such that, ∀ days x, y was born on day x.

• ∀ circles x, ∃ a point y such that y is the center of x.

• ∃ a point y such that, ∀ circles x, y is the center of x.

• ∀ x ∈ Z, ∃y ∈ Z such that y < x.

• ∃y ∈ Z such that, ∀x ∈N, y < x.
9In this case |x− a| < δ =⇒ | f (x)− f (a)| < ε.
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Exercises

2.3.1 For each of the following sentences, rewrite the sentence using quantifiers. Then write the
negation (using both words and quantifiers)

(a) All mathematics exams are hard.

(b) No football players are from San Diego.

(c) There is a odd number that is a perfect square.

2.3.2 Let P be the proposition: ‘Every positive integer is divisible by thirteen.’
(a) Write P using quantifiers.

(b) What is the negation of P?

(c) Is P true or false? Prove your assertion.

2.3.3 Prove or disprove: There exist integers m and n such that 2m− 3n = 15.

2.3.4 Prove or disprove: There exist integers m and n such that 6m− 3n = 11.
Hint: The left-hand side is always divisible by. . .

2.3.5 Prove that between any two distinct rational numbers there exists another rational number.

2.3.6 Let p be an odd integer. Prove that x2 − x− p = 0 has no integer solutions.

2.3.7 Prove: For every positive integer n, n2 + n + 3 is an odd integer greater than or equal to 5.
There are two claims here: n2 + n + 3 is odd, and n2 + n + 3 ≥ 5.

2.3.8 Consider the propositional function

P(x, y, z) : (x− 3)2 + (y− 2)2 + (z− 7)2 > 0

where the domain of each of the variables x, y and z is R.
(a) Express the quantified statement ∀x ∈ R, ∀y ∈ R, ∀z ∈ R, P(x, y, z) in words.

(b) Is the quantified statement in (a) true or false? Explain.

(c) Express the negation of the quantified statement in (a) in symbols.

(d) Express the negation of the quantified statement in (a) in words.

(e) Is the negation of the quantified statement in (a) true or false? Explain.

2.3.9 The following statements are about positive real numbers. Which one is true? Explain your
answer.

(a) ∀x, ∃y such that xy < y2.

(b) ∃x such that ∀y, xy < y2.

2.3.10 Which of the following statements are true? Explain.
(a) ∃ a married person x such that ∀married people y, x is married to y.

(b) ∀married people x, ∃ a married person y such that x is married to y.

2.3.11 Here are four propositions. Which are true and which false? Justify your answers.
(a) ∀x ∈ R, ∃y ∈ R such that y4 = 4x.
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(b) ∃y ∈ R such that ∀x ∈ R we have y4 = 4x.

(c) ∀y ∈ R, ∃x ∈ R such that y4 = 4x.

(d) ∃x ∈ R such that ∀y ∈ R we have y4 = 4x.

2.3.12 A function f is said to be decreasing if:

x ≤ y =⇒ f (x) ≥ f (y).

(a) There is a hidden quantifier in the definition: what is it?

(b) State what it means for f not to be decreasing.

(c) Give an example to demonstrate the fact that not decreasing and increasing do not mean the
same thing!

2.3.13 Prove or disprove each of the following statements.
(a) For every two points A and B in the plane, there exists a circle on which both A and B lie.

(b) There exists a circle in the plane on which lie any two points A and B.

2.3.14 You are given the following definition (you do not have to know what is meant by a field).

Let x be an element of a field F. An inverse of x is an element y in F such that xy = 1.

Consider the following proposition:

All non-zero elements in a field have an inverse.

(a) Restate the proposition using both of the quantifiers ∀ and ∃.

(b) Find the negation of the proposition, again using quantifiers.

2.3.15 Recall from calculus the definitions of the limit of a sequence (xn) = (x1, x2, x3, . . .).

‘xn diverges to ∞’ means: ∀M > 0, ∃N ∈N such that n > N =⇒ xn > M.

‘xn converges to L’ means: ∀ε > 0, ∃N ∈N such that n > N =⇒ |xn − L| < ε.

Here we assume that all elements of (xn) are real numbers.

(a) State what it means for a sequence xn not to diverge to ∞. Beware of the hidden quantifier!

(b) State what it means for a sequence xn not to converge to L.

(c) State what it means for a sequence xn not to converge at all.

(d) Prove, using the definition, that xn = n diverges to ∞.

(e) Prove that xn = 1
n converges to zero.

2.3.16 This question uses Definition 2.31. You will likely find this difficult.

(a) Prove, directly from the definition, that f (x) = x2 is continuous at x = 0. If you are given
ε > 0, what should δ be?
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(b) Prove that g(x) =

{
1 + x if x ≥ 0,
x if x < 0,

is discontinuous at x = 0.

(c) (Very hard) Let h(x) =

{
x if x is rational,
0 if x is irrational.

Prove that f is continuous only at x = 0.

2.3.17 In this question we prove Rolle’s Theorem from calculus:
If f is continuous on [a, b], differentiable on (a, b), and f (a) = f (b) = 0, then ∃c ∈ (a, b) such
that f ′(c) = 0.
As you work through the question, think about where the hypotheses are used and why we
need them.

(a) Recall the Extreme Value Theorem. The function f is continuous on [a, b], so f is bounded
and attains its bounds. Otherwise said,

∃m, M ∈ [a, b] such that ∀x ∈ [a, b] we have f (m) ≤ f (x) ≤ f (M).

Suppose that f (m) = f (M). Why is the conclusion of Rolle’s Theorem obvious in this
case?

(b) Now suppose that f (m) 6= f (M). Argue that at least one of the following cases holds:

f (M) > 0 or f (m) < 0.

(c) Without loss of generality, we may assume that f (M) > 0. By considering the function
− f , explain why.

(d) Assume f (M) > 0. Then M 6= a and M 6= b. Consider the difference quotient,

f (M + h)− f (M)

h
.

Show that if 0 < |h| < min{M − a, b − M} then the difference quotient is well-defined
(exists and makes sense).

(e) Suppose that 0 < h < b−M. Show that

f (M + h)− f (M)

h
≤ 0.

How do we know that L+ := lim
h→0+

f (M+h)− f (M)
h exists? What can you conclude about L+?

(f) Repeat part (d) for L− := lim
h→0−

f (M+h)− f (M)
h .

(g) Conclude that L+ = L− = 0. Why have we completed the proof?
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3 Divisibility and the Euclidean Algorithm

In this section we introduce the notion of congruence: a generalization of the idea of separating all
integers into ‘even’ and ‘odd.’ At its most basic it involves going back to elementary school when
you first learned division and would write something similar to

33÷ 5 = 6 r 3 ‘6 remainder 3.’

The study of congruence is of fundamental importance to Number Theory, and provides some of
the most straightforward examples of Groups and Rings. We will cover the basics in this section—
enough to compute with—then return later for more formal observations.

3.1 Remainders and Congruence

Definition 3.1. Let m and n be integers. We say that n divides m and write n |m if m is divisible by n:
that is if there exists some integer k such that m = kn. Equivalently, we say that n is a divisor of m, or
that m is a multiple of n.

For example: 4 |20 and 17 |51, but 12 -8.

When one integer does not divide another, there is a remainder left over.

Theorem 3.2 (The Division Algorithm). Let m be an integer and n a positive integer. Then there exist
unique integers q (the quotient) and r (the remainder) which satisfy the following conditions:

1. 0 ≤ r < n.

2. m = qn + r.

For example: If m = 23 and n = 7, then q = 3 and r = 2 because ‘23÷ 7 = 3 remainder 2.’ More
formally, 23 = 3 · 7 + 2, with 0 ≤ 2 < 7. Similarly, if m = −11 and n = 3, then q = −4 and r = 1
because −11 = (−4) · 3 + 1, with 0 ≤ 1 < 3.

For practice, find a formula for all the integers that have remainder 4 after division by 6.

The proof of the Division Algorithm relies on the development of induction, to which we will
return in Chapter 5. The theorem should be read as saying that n goes q times into m with r left over.
The fact that the remainder is nicely defined allows us to construct an alternative form of arithmetic.

Definition 3.3. Let a, b be integers, and n a positive integer. We say that a is congruent to b modulo n
and write a ≡ b (mod n) if a and b have the same remainder upon dividing by n.
When the modulus n is clear, it tends to be dropped, and we just write a ≡ b.

For example: 7 ≡ 10 (mod 3), since both have the same remainder (1) on dividing by 3. Can you
find a formula for all the integers that are congruent to 10 modulo 3?

Let a be an integer. Consider the following conjectures. Are they true or false?
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Conjecture 3.4. a ≡ 8 (mod 6) =⇒ a ≡ 2 (mod 3).

Conjecture 3.5. a ≡ 2 (mod 3) =⇒ a ≡ 8 (mod 6).

The first conjecture is true. Indeed, if a ≡ 8 (mod 6), we can write a = 6k + 8 for some integer k.
Then a = 6k + 8 = 6k + 6 + 2 = 3(2k + 2) + 2 so a has remainder 2 upon division by 3, showing that
a is congruent to 2 modulo 3.
On the other hand, the second conjecture is false. All we need is a counterexample. Consider a = 5:
clearly a is congruent to 2 modulo 3, but a is not congruent to 8 modulo 6 (because it has remainder
5, not 2, upon division by 6).

The following theorem is crucial, and provides an equivalent definition of congruence.

Theorem 3.6. a ≡ b (mod n) ⇐⇒ n | (b− a).

Proof. There are two separate theorems here, although both rely on the Division Algorithm (Theorem
3.2) to divide both a and b by n. Given a, b, n, the Division Algorithm shows that there exist unique
quotients q1, q2 and remainders r1, r2 which satisfy

a = q1n + r1, b = q2n + r2, 0 ≤ r1, r2 < n. (∗)

Now we perform both directions of the proof.

(⇒) Suppose that a ≡ b (mod n). By definition, this means that a and b have the same remainder
when divided by n. That is, r1 = r2. Now subtracting a from b gives us

b− a = (q2 − q1)n + (r2 − r1) = (q2 − q1)n,

which is divisible by n. Therefore n | (b− a).

(⇐) This direction is a little more subtle. We assume that b− a is divisible by n. Thus b− a = kn for
some integer k. According to (∗), this implies that

r2 − r1 = (b− a)− (q2 − q1)n = (k− q2 + q1)n

is also a multiple of n. Now consider the condition on the remainders in (∗): since 0 ≤ r1, r2 < n, we
quickly see that

{
0 ≤ r2 < n
−n < −r1 ≤ 0

=⇒ −n < r2 − r1 < n.

This says that r2− r1 is a multiple of n lying strictly between±n. The only possibility is that r2− r1 =
0. Otherwise said, r2 = r1, whence a and b have the same remainder, and so a ≡ b (mod n).
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If you are having some trouble with the final step, think about an example. Suppose that n = 26
and that and that r2 − r1 is an integer satisfying the inequalities −26 < r2 − r1 < 26. It should be
obvious that r2 − r1 = 0.

To gain some familiarity with congruence, use Theorem 3.6 to show that

a ≡ b (mod n) ⇐⇒ b ≡ a (mod n).

Note that both this expression and the theorem contain a hidden quantifier, as discussed in Section
2.3. Morover, combining the theorem with Definition 3.1 leads to the observation that

a ≡ b (mod n) ⇐⇒ ∃k ∈ Z such that b− a = kn,

that is, b = a + kn.

Congruence and Divisibility

The previous two theorems may appear a little abstract, so it’s a good idea to recap the relationship
between congruence and divisibility. The following observations should be immediate to you!

Let a be any integer and let n be a positive integer. Then

• a is congruent to either 0, 1, 2,. . . or n− 1 modulo n.

• a is divisible by n if and only if a ≡ 0 (mod n).

• a is not divisible by n if and only if a ≡ 1, 2, 3, . . . , n− 1 (mod n).

To test your level of comfort with the definition of congruence, and review some proof techniques,
prove the following theorem.

Theorem 3.7. Suppose that n is an integer. Then

n2 6≡ n (mod 3) ⇐⇒ n ≡ 2 (mod 3).

If you don’t know how to start, try completing the following table:

n n2 n2 ≡ n (mod 3)
0 0 T
1
2

Now try to write a formal proof.
That the congruence sign ≡ appears similar to the equals sign = is no accident. In many ways it

behaves exactly the same. In Chapter 7.3 we shall see that congruence is an important example of an
equivalence relation.
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Modular Arithmetic

The arithmetic of remainders is almost exactly the same as the more familiar arithmetic of real num-
bers, but comes with all manner of fun additional applications, most importantly cryptography and
data security: your cell-phone and computer perform millions of these calculations every day! Here
we spell out the basic rules of congruence arithmetic.10

Theorem 3.8. Suppose throughout that a, b, c, d are integers, and that all congruences are modulo the same
integer n.

1. a ≡ b and c ≡ d =⇒ ac ≡ bd

2. a ≡ b and c ≡ d =⇒ a± c ≡ b± d

What the theorem says is that the operations of ‘take the remainder’ and ‘add’ (or ‘multiply’) can
be performed in either order; the result will be the same. For example, consider a = 29, b = 14 and
n = 6. We can add a and b then take the remainder when dividing by n:

29 + 14 = 43 = 6 · 7 + 1.

Instead we could first take the remainders of a and b modulo 6 and then add these:

5 + 2 = 7, which has the same remainder 1.

Either way, we may write the result as a congruence,

29 + 14 ≡ 1 (mod 6).

Proof of Theorem 3.8. Suppose that a ≡ b and c ≡ d. By Theorem 3.6 we have a− b = kn and c− d = ln
for some integers k, l. Thus

ac = (b + kn)(d + ln) = bd + n(bl + kd + kln)⇒ ac− bd = n(bl + kd + kln)

is divisible by n. Hence ac ≡ bd.
Try the second argument yourself.

The ability to take remainders before adding and multiplying is remarkably powerful, and allows
us to perform some surprising calculations.

Examples. 1. What is the remainder when 3923 is divided by 10? At the outset this appears im-
possible. Ask your calculator and it will tell you that 3923 ≈ 3.93× 1036, which is of no help at
all! Instead think about the rules of arithmetic modulo 10. Since 39 ≡ 9 ≡ −1 (mod 10), we
quickly notice that

39 · 39 ≡ (−1) · (−1) ≡ 1 (mod 10),

10The usual associative, commutative and distributive laws of arithmetic

a + (b + c) ≡ (a + b) + c, a(bc) ≡ (ab)c, a + b ≡ b + a, ab ≡ ba, a(b + c) ≡ ab + ac

all follow because x = y =⇒ x ≡ y (mod n), regardless of n: equal numbers have the same remainder after all!
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whence 392 ≡ 1 (mod 10). Since positive integer exponents signify repeated multiplication,
we can repeat the exercise to obtain

3923 ≡ (−1)23 ≡ −1 ≡ 9 (mod 10).

Therefore 3923 has remainder 9 when divided by 10. Otherwise said, the last digit of 3923 is a 9.
If you ask a computer for all the digits you can check this yourself.

2. Now that we understand powers, more complex examples become easy. Here we compute
modulo n = 6.

79 + 143 ≡ 19 + 23 ≡ 1 + 8 ≡ 9 ≡ 3 (mod 6).

Hence 79 + 143 = 40356351 has remainder 3 when divided by 6.

3. Find the remainder when 12412 · 6549 is divided by 11. This time we’ll need to perform multiple
calculations to keep reducing the base to something managable. Since 124 = 112 + 3 and 65 =
11 · 6− 1, we write

12412 · 6549 ≡ 312 · (−1)49 ≡ 274 · (−1) ≡ 54 · (−1)

≡ −(252) ≡ −(32) ≡ 2 (mod 11)

The remainder is therefore 2. There is no way to do this on a pocket calculator, since the original
number 12412 · 6549 ≈ 9× 10113 is far too large to work with!

The primary difference between modular and normal arithmetic is, perhaps unsurprisingly, with
regard to division.

Theorem 3.9. If ka ≡ kb (mod kn) then a ≡ b (mod n).

The modulus is divided by k as well as the terms, so the meaning of ≡ changes. In Exercise 3.1.6
you will prove this theorem, and observe that, in general, we do not expect a ≡ b (mod n).

Exercises

3.1.1 Find the remainder when 17251 · 2312− 1941 is divided by 5. Hint: 17 ≡ 2 and 22 ≡ −1 (mod 5).

3.1.2 Is the statement

n2 ≡ n (mod 3) ⇐⇒ n ≡ 0 (mod 3) or n ≡ 1 (mod 3),

identical to Theorem 3.7? Why/why not?

3.1.3 Prove that if a ≡ b (mod n) and c ≡ d (mod n) then 3a− c2 ≡ 3b− d2 (mod n).

3.1.4 Find a natural number n and integers a, b such that a2 ≡ b2 (mod n) but a 6≡ b (mod n).

3.1.5 Let p be a prime number greater than or equal to 3. Show that if p ≡ 1 (mod 3), then p ≡ 1
(mod 6). Hint: p is odd.
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3.1.6 Suppose that 7x ≡ 28 (mod 42). By Theorem 3.9, it follows that x ≡ 4 (mod 6).

(a) Check this explicitly using Theorem 3.6.

(b) If 7x ≡ 28 (mod 42), is it possible that x ≡ 4 (mod 42)?

(c) Is it always the case that 7x ≡ 28 (mod 42) =⇒ x ≡ 4 (mod 42)? Why/why not?

(d) Prove Theorem 3.9.

3.1.7 If a |b and b | c, prove that a | c.

3.1.8 Let a, b be positive integers. Prove that a = b ⇐⇒ a |b and b | a.

3.1.9 Here are two conjectures:

Conjecture 1 a |b and a | c =⇒ a |bc.

Conjecture 2 a | c and b | c =⇒ ab | c.

Decide whether each conjecture is true or false and prove/disprove your assertions.

3.1.10 Fermat’s Little Theorem (to distinguish it from his ‘Last’) states that if p is prime and a 6≡ 0
mod p, then ap−1 ≡ 1 (mod p).

(a) Use Fermat’s Little Theorem to prove that bp ≡ b (mod p) for any integer b.

(b) Prove that if p is prime then p | (2p − 2).

(c) Prove that the converse is not true, that 2n − 2 being divisible by n does not imply that n
is prime (take n = 341...).
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3.2 Greatest Common Divisors and the Euclidean Algorithm

At its most basic, Number Theory involves finding integer solutions to equations. Here are two
simple-sounding questions:

1. The equation 9x − 21y = 6 represents a straight line. Are there any integer points on this line?
That is, can you find integers x, y satisfying 9x− 21y = 6?

2. What about on the line 4x + 6y = 1?

Before you do anything else, try sketching both lines (lined graph paper will help) and try to decide
if there are any integer points. If there are any, how many are there? Can you find them all?

In this section we will see how to answer these questions in general: for which lines ax + by = c
with a, b, c ∈ Z, are there integer solutions, and how can we find them all? The method introduces the
appropriately named Euclidean algorithm, a famous procedure dating at least as far back as Euclid’s
Elements (c. 300 BC.).

Definition 3.10. Let m, n be integers, not both zero. Their greatest common divisor gcd(m, n) is the
largest (positive) divisor of both m and n. We say that m, n are relatively prime if gcd(m, n) = 1.

Example. Let m = 60 and n = 90. The positive divisors of the two integers are listed in the table:

m 1 2 3 4 5 6 10 12 15 20 30 60
n 1 2 3 5 6 9 10 15 18 30 45 90

The greatest common divisor is the largest number common to both rows: clearly gcd(60, 90) = 30.

Finding the greatest common divisor by listing all the positive divisors of a number is extremely
tedious. This is where Euclid rides to the rescue.

Euclidean Algorithm. To find gcd(m, n) for two positive integers m > n:

(i) Use the division algorithm (Theorem 3.2) to write m = q1n + r1 with 0 ≤ r1 < n.

(ii) If r1 = 0, set gcd(m, n) = n. Otherwise,
If r1 > 0, apply again: divide n by r1 to obtain n = q2r1 + r2 with 0 ≤ r2 < r1.

(iii) If r2 = 0, set gcd(m, n) = r1. Otherwise,
If r2 > 0, apply again: divide r1 by r2 to obtain r1 = q3r2 + r3 with 0 ≤ r3 < r2.

(iv) If r2 = 0, set gcd(m, n) = r1. Otherwise,
Repeat the process: obtain a decreasing sequence of positive integers

r1 > r2 > r3 > . . . > 0

Theorem 3.11. The Algorithm eventually produces a remainder of zero: ∃rp+1 = 0. The greatest common
divisor of m, n is the last non-zero remainder: gcd(m, n) = rp.

The proof is in the exercises. If m, n are not both positive, take absolute values first and apply the
algorithm. For instance gcd(−6, 45) = 3.
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Example. Compute gcd(1260, 750) using the Euclidean algorithm: the steps are labeled as in the
original algorithm. You might instead find it easier to create a table with and observe each remainder
moving diagonally down and left at each successive step.

(i) 1260 = 1× 750 + 510

(ii) 750 = 1× 510 + 240

(iii) 510 = 2× 240 + 30

(iv) 240 = 8× 30 + 0

m n q r

1260 750 1 510

750 510 1 240

510 240 2 30

240 30 8 0
Theorem 3.11 says that gcd(1260, 750) = 30, the last non-zero remainder.

As you can see, the Euclidean algorithm is very efficient.

Reversing the Algorithm: Integer Points on Lines

To apply the Euclidean algorithm to finding integer points on lines, we must turn it on its head. By
starting with the second last line of the algorithm and substituing the previous lines one at a time,
we can find integers x, y such that gcd(m, n) = mx + ny. This is easiest to demonstrate by continuing
our previous example:

Example (continued). Find integers x, y such that 1260x + 750y = 30.

Solve for 30 (the gcd of 1260 and 750) using step (iii), to get

30 = 510− 2× 240.

Now use the equation in step (ii) to solve for 240 and substitute:

30 = 510− 2× (750− 510) = 3× 510− 2× 750.

Finally, substitute for 510 using equation (i):

30 = 3× (1260− 750)− 2× 750 = 3× 1260− 5× 750.

We have expressed 30 as a linear combination of 1260 and 750, as desired. Reading off the coefficients
of the combination, we get x = 3 and y = −5 therefore satisfy 1260x + 750y = 30.
Note how the process to find x and y is twofold: first we find gcd(m, n) using the Euclidean Algo-
rithm, then we do a series of back substitutions to recover x and y.

More generally, we have the following corollary.

Corollary 3.12. Given any integers m, n there exist integers x, y such that gcd(m, n) = mx + ny.

We are now in a position to solve our motivating problem: finding all integer points on the line
ax + by = c where a, b, c are integers.
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Theorem 3.13. Let a, b, c be integers and d = gcd(a, b). Then the equation ax + by = c has an integer
solution (x, y) iff d | c. In such a case, all integer solutions are given by

x = x0 +
b
d

t, y = y0 −
a
d

t, (∗)

where (x0, y0) is any fixed integer solution, and t takes any integer value.

One uses the Euclidean Algorithm to find the initial solution (x0, y0), then applies (∗) to obatin all
of them.11 The proof is again in the exercises.

Examples. 1. Find all integer solutions to the equation 1260x + 750y = 90.
We calculated earlier that gcd(1260, 750) = 30. Thus d = 30. Since d | c (that is, 30 | 90), we
know that there are integer solutions. We also calculated that

1260× 3 + 750× (−5) = 30.

Since we want 90, we simply multiply our pair (3,−5) by three:

1260× 9 + 750× (−15) = 90.

whence (x0, y0) = (9,−15) is an integer solution to the equation. The general solution is there-
fore

(x, y) =
(

9 +
750
30

t,−15− 1260
30

t
)
= (9 + 25t,−15− 42t), where t ∈ Z.

2. No consider the line 570x + 123y = 7. We calculate the greatest common divisor using the
Euclidean algorithm:

570 = 4× 123 + 78
123 = 1× 78 + 45
78 = 1× 45 + 33
45 = 1× 33 + 12
33 = 2× 12 + 9
12 = 1× 9 + 3
9 = 4× 3 + 0





=⇒ gcd(570, 123) = 3.

Since 3 - 7, we conclude that the line 570x + 123y = 7 has no integer points.

3. Repeat the above calculations for our motivating problems: what does the theorem say?
11The astute observer should recognize the similarity between this and the complementary function/particular integral

method for linear differential equations: (x0, y0) is a ‘particular solution’ to the full equation ax + by = c, while ( b
d t,− a

d t)
comprises all solutions to the ‘homogeneous equation’ ax + by = 0.
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Exercises

3.2.1 Use the Euclidean Algorithm to compute the greatest common divisors indicated.

(a) gcd(20, 12) (b) gcd(100, 36) (c) gcd(207, 496)

3.2.2 For each part of Question 3.2.1, find integers x, y for which gcd(m, n) = mx + ny.

3.2.3 (a) Answer our motivating problems using the above process.

(i) Find all integer points on the line 9x− 21y = 6.
(ii) Show that there are no integer points on the line 4x + 6y = 1.

(b) Can you give an elementary proof as to why there are no integer points on the line 4x +
6y = 1?

3.2.4 Find all the integer points on the following lines, or show that none exist.

(a) 16x− 33y = 2.

(b) 122x + 36y = 3.

(c) 324x− 204y = −12.

3.2.5 Find all possible solutions to the motivating problem at the start of the notes: Five people each
take the same number of candies from a jar. Then a group of seven does the same. The, now
empty, jar originally contained 239 candies. How much candy did each person take?

3.2.6 Show that there exists no integer x such that 3x ≡ 5 (mod 6).

3.2.7 In Theorem 3.11 we claim that the Euclidean algorithm terminates with rp+1 = 0. Why? Show
that the number of steps p is no more than n. The algorithm is much faster than this in practice!

3.2.8 Let m = qn + r be the result of the division algorithm for integers m, n.

(a) Let d be a common positive divisor of m, n. Prove that d | r.

(b) Now suppose that c is a common divisor of n and r. Prove that c |m.

(c) Explain why parts (a) and (b) prove that gcd(m, n) = gcd(n, r).

(d) Conclude that the final remainder rp in the Euclidean algorithm really is gcd(m, n).

3.2.9 Prove the following:

gcd(m, n) = 1 ⇐⇒ ∃x, y ∈ Z such that mx + ny = 1.

One direction can be done by applying Corollary 3.12, but the other direction requires an argument.

3.2.10 In this question we prove the Theorem on integer solutions to linear equations. Let a, b, c ∈ Z.
Suppose that (x0, y0) and (x1, y1) are two integer solutions to the linear Diophantine equation
ax + by = c.

(a) Show that (x0 − x1, y0 − y1) satisfies the equation ax + by = 0.

(b) Suppose that gcd(a, b) = d. Prove that gcd( a
d , b

d ) = 1. (Use Question 3.2.9)
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(c) Find all integer solutions (x, y) to ax + by = 0 (Don’t use the Theorem, it’s what you’re trying
to prove! Think about part (b) and divide through by d first.).

(d) Use (a) and (b) to conclude that (x, y) is an integer solution to ax + by = c if and only if

x = x0 +
b
d

t y = y0 −
a
d

t, where t ∈ Z.

3.2.11 Show that gcd(5n + 2, 12n + 5) = 1 for every integer n. There are two ways to approach this: you
can try to use the Euclidean algorithm abstractly, or you can use the result of Exercise 3.2.9.

3.2.12 The set of remainders Zn = {0, 1, 2, . . . , n − 1} is called a ring when equipped with addition
and multiplication modulo n. For example 5 + 6 ≡ 3 (mod 8). We say that b ∈ Zn is an inverse
of a ∈ Zn if

ab ≡ 1 (mod n).

(a) Show that 2 has no inverse modulo 6.

(b) Show that if n = n1n2 is composite (∃ integers n1, n2 ≥ 2) then there exist elements of the
ring Zn which have no inverses.

(c) Prove that a has an inverse modulo n if and only if gcd(a, n) = 1. Conclude that the only
sets Zn for which all non-zero elements have inverses are those for which n is prime.
You will find Exercise 3.2.9 helpful.
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4 Sets and Functions

Sets are the fundamental building blocks of mathematics. In the sub-discipline of Set Theory, mathe-
maticians define all basic notions, including number, addition, function, etc., purely in terms of sets.
In such a system it can take over 100 pages of discussion to prove that 1 + 1 = 2! We will not be any-
thing like so rigorous. Indeed, before one can accept that such formality has its place in mathematics,
a level of familiarity with sets and their basic operations is necessary.

4.1 Set Notation and Describing a Set

We start with a very naı̈ve notion: a set is a collection of objects.12

Definition 4.1. If x is an object in a set A, we write x ∈ A and say that x is an element or member of A.
On the other hand, if x is a member of some other set B, but not of A, we write x /∈ A.
Two sets are described as equal if they have exactly the same elements.

When thinking abstractly about sets, you may find Venn diagrams useful.
A set is visualized as a region in the plane and, if necessary, members of
the set can be thought of as dots in this region. This is most useful when
one has to think about multiple, possibly over-lapping, sets. The graphic
here represents a set A with at least three elements a1, a2, a3.

A
a1

a2

a3

Notation and Conventions

Use capital letters for sets, e.g. A, B, C, S, and lower-case letters for elements. It is conventional,
though not required, to denote an abstract element of a set by the corresponding lower-case letter:
thus a ∈ A, b ∈ B, etc.
Curly brackets { , } are used to bookend the elements of a set: for instance, if we wrote

S = {3, 5, f , α, β}

then we’d say, ‘S is the set whose elements are 3, 5, f , α and β.’
The order in which we list the elements in a set is irrelevant, thus

S = {β, f , 5, α, 3} = { f , α, 3, β, 5}.

Listing the elements in a set in this way is often known as roster notation.
By contrast, set-builder notation describes the elements of a set by starting with a larger set and

restricting to those elements which satisfy some property. The symbols | or : are used as a short-hand
for ‘such that.’ Which symbol you use depends partly on taste, although the context may make one
clearer to read.13 For example, if S = {3, 5, f , α, β} is the set defined above, we could write,

{s ∈ S : s is a Greek letter} = {α, β}
12Much thinking was required before mathematicians realized that this is indeed naı̈ve. It eventually became clear that

some collections of objects cannot be considered sets, and the search for a completely rigorous definition began. Thus was
Axiomatic Set Theory born. For the present, our notion is enough.

13See Choice of Notation, below.
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or

{s ∈ S | s is a Greek letter} = {α, β}.

We would read: ‘The set of elements s in the set S such that s is a Greek letter is {α, β}.’

Example. Let A = {2, 4, 6} and B = {1, 2, 5, 6}. There are many options for how to write A and B in
set-builder notation. For example, we could write

A = {2n : n = 1, 2 or 3} and B = {n ∈ Z | 1 ≤ n ≤ 6 and n 6= 3, 4}.

We now practice the opposite skill by converting five sets from set-builder to roster notation.

S1 = {a ∈ A : a is divisible by 4} = {4}

S2 = {b ∈ B : b is odd} = {1, 5}

S3 = {a ∈ A | a ∈ B} = {2, 6}

S4 = {a ∈ A : a 6∈ B} = {4}

S5 = {b ∈ B | b is odd and b− 1 ∈ A} = {5}

Take your time getting used to this notation. Can you find an alternative description in set-
builder notation of the sets S1, . . . , S5 above? It is crucial that you can translate between set notations
and English, or you will be incapable of understanding most higher-level mathematics.

Sets of Numbers

Common sets of numbers are written in the BLACKBOARD BOLD typeface.

N = Z+ = natural numbers = {1, 2, 3, 4, . . .}
N0 = W = Z+

0 = whole numbers = {0, 1, 2, 3, 4, . . .}
Z = integers = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q = rational numbers = {m

n : m ∈ Z and n ∈N} = { a
b : a, b ∈ Z and b 6= 0}

R = real numbers

R \Q = irrational numbers (read ‘R minus Q’)

C = complex numbers = {x + iy : x, y ∈ R, where i =
√
−1}

Z≥n = Integers ≥ n = {n, n + 1, n + 2, n + 3, . . .}
nZ = multiples of n = {. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . .}

Where there are multiple choices of notation, we will tend to use the first in the list: for example
N0 = Z≥0. The use of a subscript 0 to include zero and superscript ± to restrict to positive or
negative numbers is standard.

Examples. 7 ∈ Z, π ∈ R, π 6∈ Q,
√
−5 ∈ C, −e2 ∈ R−.
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There are often many different ways to represent the same set in set-builder notation. For exam-
ple, the set of even numbers may be written in multiple ways:

2Z = {2n : n ∈ Z} (The set of numbers of the form 2n such that n is an integer)
= {n ∈ Z : ∃k ∈ Z, n = 2k} (The set of integers which are a multiple of 2)
= {n ∈ Z : n ≡ 0 (mod 2)} (The set of integers congruent to 0 modulo 2)
= {n ∈ Z : 2 |n} (The set of integers which are divisible by 2)

Here we use both congruence and divisor notation to obtain suitable descriptions. Can you find any
other ways to describe the even numbers using basic set notation?

The notation nZ is most commonly used when n is a natural number, but it can also be used for
other n. For example

1
2 Z =

{ 1
2 x : x ∈ Z

}
=
{

m, m + 1
2 : m ∈ Z

}

is the set of multiples of 1
2 (comprising the integers and half-integers). The notation can also be

extended: for example 2Z + 1 would denote the odd integers.

Aside: Choice of Notation
The two notations for ‘such that’ ( | and :) are to give you leeway in case of potential confusion.

For example, the final expression (above) for the even numbers 2Z = {n ∈ Z : 2 |n} is much cleaner
than the alternative

2Z = {n ∈ Z | 2 | n}.

In other situations the opposite is true. In Section 4.4 we shall consider functions. If you recall the
concept of an odd function from calculus, we could denote the set of such with domain the real
numbers as

{ f : R→ R : ∀x, f (x) = f (−x)} or { f : R→ R | ∀x, f (x) = f (−x)}.

In this case the latter notation is superior. You may use whichever notation you prefer, provided the
outcome is unambiguous.

Examples. 1. List the elements of the set A = {x ∈ R : x2 + 3x + 2 = 0}.
We are looking for the set of all real number solutions to the quadratic equation x2 + 3x + 2 = 0.
A simple factorization tells us that x2 + 3x + 2 = (x + 1)(x + 2), whence A = {−1,−2}.

2. Use the set B = {0, 1, 2, 3, . . . , 24} to describe C = {n ∈ Z : n2 − 3 ∈ B} in roster notation.
We see that

n2 − 3 ∈ B ⇐⇒ n2 ∈ {3, 4, 5, . . . , 25, 26, 27}

Since n must be an integer, it follows that

C = {±2,±3,±4,±5}.
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3. It is often harder to convert from roster to set-builder notation, as you might be required to spot
a pattern, and many choice could be available. For example, if

D =

{
1
6

,
1
20

,
1
42

,
1
72

,
1

110
,

1
156

, . . .
}

,

you might consider it reasonable to write

D =

{
1

2n(2n + 1)
: n ∈N

}
.

Of course the ellipses (. . . ) might not indicate that the elements of the set continue in the way
you expect. For larger sets, the concision and clarity of set-builder notation makes it much
preferred!

4. Are the following sets equal?

E = {n2 + 2 : n is an odd integer}, F = {n ∈ Z : n2 + 2 is an odd integer}.

It will help to first construct a table to list some of the values of n2 + 2:

n n2 n2 + 2
±1 1 3
±3 9 11
±5 25 27
±7 49 51
±9 81 83...

...
...

The set E consists of those integers of the form n2 + 2 where n is an odd integer. By the table,

E = {3, 11, 27, 51, 83, . . .}.

On the other hand, F includes all those integers n such that n2 + 2 is odd. It is easy to see that

n2 + 2 is odd ⇐⇒ n2 is odd ⇐⇒ n is odd.

Thus F is simply the set of all odd integers:

F = {±1,±3,±5,±7, . . .} = 2Z + 1.

Plainly the two sets are not equal.

Intervals

Interval notation is useful when discussing collections of real numbers. For example,

(0, 1) = {x ∈ R : 0 < x < 1},
[0, 1] = {x ∈ R : 0 ≤ x ≤ 1},
(0, 1] = {x ∈ R : 0 < x ≤ 1}.
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When writing intervals with±∞ use an open bracket at the infinite end(s): [1, ∞) = {x ∈ R : x ≥ 1}.
This is since the symbols ±∞ do not represent real numbers and so are not members of any interval.

Example. Recall some basic trigonometry: the so-
lutions of the equation cos x = − 1

2 on the interval
[0, 4π] can be written in set-builder and roster nota-
tion as
{

x ∈ [0, 4π] : cos x = −1
2

}
=

{
2π

3
,

4π

3
,

8π

3
,

10π

3

}

−1

0

1
y

x
π 2π 3π 4π

2π
3

4π
3

8π
3

10π
3

−1
2

Cardinality and the Empty Set

Definition 4.2. A set A is finite if it contains a finite number of elements: this number is the set’s
cardinality, written |A|. A is said to be infinite otherwise.

Cardinality is a very simple concept for finite sets. For infinite sets, such as the natural numbers
N, the concept of cardinality is much more subtle. We cannot honestly talk about N having an
‘infinite number’ of elements, since infinity is not a number! In Chapter 8 we will consider what
cardinality means for infinite sets and meet several bizarre and fun consequences. For the present,
cardinality only has meaning for finite sets.

Examples. 1. Let A = {a, b, α, γ,
√

2}, then |A| = 5.

2. Let B =
{

4, {1, 2}, {3}
}

. It is important to note that the elements/members of B are 4, {1, 2} and

{3}, two of which are themselves sets. Therefore |B| = 3. The set {1, 2} is an object in its own
right, and can therefore be placed in a set along with other objects.14

To round things off we need a symbol to denote a set that contains nothing at all!

Axiom. There exists a set ∅ with no elements (cardinality zero: |∅| = 0). We call ∅ the empty set.

There are many representations of the empty set. For example {x ∈ N : x2 + 3x + 2 = 0} and
{n ∈ N : n < 0} are both empty. Despite this, we will see in Theorem 4.4 that there is only one
set with no elements, so that all such representations actually denote the same set ∅. Note also that
|A| ∈N for any finite non-empty set A.

Aside: Axioms
An axiom is a basic assumption; something that we need in order to do mathematics, but cannot

prove. This is the cheat by which mathematicians can be 100% sure that something is true: a result is
proved based on the assumption of several axioms. With regard to the empty set axiom, it probably
seems bizarre that we can assume the existence of some set that has nothing in it. Regardless, mathe-
maticians have universally agreed that we need the empty set in order to do the rest of mathematics.

14The fact that a set (containing objects) is also an object might seem confusing, but you should be familiar with the
same problem in English. Consider the following sentences: ‘UCI are constructing a laboratory’ and ‘UCI is constructing a
laboratory.’ In the first case we are thinking of UCI as a collection of individuals, in the latter case UCI is a single object.
Opinions differ in various modes of English as to which is grammatically correct.
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Exercises

4.1.1 Describe the following sets in roster notation, that is, list their elements.

(a) {x ∈N : x2 ≤ 3x}.
(b) {x2 ∈ R : x2 − 3x + 2 = 0}.
(c)

{
n + 2 ∈ {0, 1, 2, 3, . . . , 19} : n + 3 ≡ 5 (mod 4)

}

(d)
{

n ∈ {−2,−1, 0, 1, . . . , 23} : 4 |n2} (does : or | denote the condition?)

(e) {x ∈ 1
2 Z : 0 ≤ x ≤ 4 and 4x2 ∈ 2Z + 1}

4.1.2 Describe the following sets in set-builder notation (look for a pattern).

(a) {. . . ,−3, 0, 3, 6, 9, . . .}
(b) {−3, 1, 5, 9, 13, . . .}
(c) {1, 1

3 , 1
7 , 1

15 , 1
31 , . . .}

4.1.3 Each of the following sets of real numbers is a single interval. Determine the interval.

(a) {x ∈ R : x > 3 and x ≤ 17}
(b) {x ∈ R : x � 3 or x ≤ 17}
(c) {x2 ∈ R : x 6= 0}
(d) {x ∈ R− : x2 ≥ 16 and x3 ≤ 27}

4.1.4 Can you describe the set {x ∈ Z : −1 ≤ x < 43} in interval notation? Why/why not?

4.1.5 Compare the sets A = {3x : x ∈ 2Z} and B = {x ∈ Z : x ≡ 12 (mod 6)}. Are they equal?

4.1.6 What is the cardinality of the following set? What are the elements?
{

∅,
{

∅
}

,
{

∅, {∅}
}}

.

4.1.7 Let A = {orange, banana, apple, mango}, and let B be the set

B =
{
{x, y} : x, y ∈ A

}
.

(a) Describe B in roster notation.

(b) Now compute the cardinality of the sets

C =
{
(x, y) : x, y ∈ A

}

and

D =
{{
{x, {y}

}
: x, y ∈ A}

}
.

Compare them to |B|.
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4.2 Subsets

In this section we consider the most basic manner in which two sets can be related.

Definition 4.3. If A and B are sets such that every element of A is also an element of B, then we say
that A is a subset of B and write A ⊆ B.
Sets A, B are equal, written A = B, if they have exactly the same elements. Equivalently

A = B ⇐⇒ A ⊆ B and B ⊆ A. (∗)

A is a proper subset of B if it is a subset which is not equal. This can be written A ( B.a

aWe will religiously stick to this notation. When reading other texts, note that some authors prefer A ⊂ B for proper
subset. Others use ⊂ for any subset, whether proper or not.

The characterization (∗) of equality is very important. In order to prove that two sets are equal
you will often have to show double-inclusion.

Venn diagrams are particularly useful for depicting subset re-
lations. The graphic on the right depicts three sets A, B, C: it
should be clear that the only valid subset relation between the
three is A ⊆ B.

A BC

Set-builder notation implicitly uses the concept of subset: the notation X = {y ∈ Y : . . .} de-
scribes a set X as a subset of some larger set Y. The previous section contained many examples that
were subsets of the set of real numbers R. Here are some other examples of subsets.

Examples. 1. N = {n ∈ Z : n > 0}. This is clearly a subset of Z.

2. {x ∈ R : x2 − 1 = 0} ⊆ {y ∈ R : y2 ∈N}.
To make sense of this relationship, convert to roster notation: we obtain

{−1, 1} ⊆ {±
√

1,±
√

2,±
√

3,±
√

4, . . .}.

3. mZ ⊆ nZ ⇐⇒ n |m. Make sure you’re comfortable with this! For example, 4Z ⊆ 2Z since
every multiple of 4 is also a multiple of 2.

Here we collect several results relating to subsets.

Theorem 4.4. 1. If |A| = 0, then A = ∅ (Uniqueness of the empty set)

2. For any set A, we have ∅ ⊆ A and A ⊆ A (Trivial and non-proper subsets)

3. If A ⊆ B and B ⊆ C, then A ⊆ C (Transititvity of subsets)

Proof. 1. Let A be a set with cardinality zero, i.e., with no elements. ∅ has no members, therefore
∅ ⊆ A is trivial: there is nothing to check to see that all elements of ∅ are also elements of A!
The argument for A ⊆ ∅ is identical.
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2. Let A be any set. ∅ ⊆ A follows by the argument in 1. To prove that A ⊆ A we must show that
all elements of A are also elements of A. But this is completely obvious!

3. Assume that A is a subset of B and that B is a subset of C. We must show that all elements of A
are also elements of C. Let a ∈ A. Since A ⊆ B we know that a ∈ B. Since B ⊆ C and a ∈ B, we
conclude that a ∈ C. This shows that every element of A belongs to C. Hence A ⊆ C.

As a final observation, to which we will return in Theorem 4.12 and in Chapter 8, your intutition
should tell you that, for finite sets, subsets have smaller cardinatlity:

A ⊆ B =⇒ |A| ≤ |B| .

More generally, consider replacing the terms in Theorem 4.4 according to the following table:

⊆ ≤
∅ 0
sets A, B, C non-negative integers
cardinality absolute value

The results should seem completely natural! Recognizing the similarities between a new concept and
a familiar one, essentially spotting patterns, is perhaps the most necessary skill in mathematics.

Exercises

4.2.1 Let A, B, C, D be the following sets.

A = {−4, 1, 2, 4, 10}
B = {m ∈ Z : |m| ≤ 12}
C = {n ∈ Z : n2 ≡ 1 (mod 3)}
D = {t ∈ Z : t2 + 3 ∈ [4, 20)}

Of the 12 possible subset relations A ⊆ B, A ⊆ C, . . . D ⊆ C, which are true and which false?

4.2.2 Let A = {x ∈ R : x3 + x2 − x− 1 = 0} and B = {x ∈ R : x4 − 5x2 + 4 = 0}. Are either of the
relations A ⊆ B or B ⊆ A true? Explain.

4.2.3 For which values of x > 0 is the following claim true?

[0, x] ⊆ [0, x2]

Prove your assertion.

4.2.4 Given A ⊆ Z and x ∈ Z, we say that x is A-mirrored if and only if −x ∈ A. We also define:

MA := {x ∈ Z : x is A-mirrored}.

(a) What is the negation of ‘x is A-mirrored.’

(b) Find MB for B = {0, 1,−6,−7, 7, 100}.
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(c) Assume that A ⊆ Z is closed under addition (i.e., x + y ∈ A, for all x, y ∈ A). Show that
MA is closed under addition.

(d) In your own words, under which conditions is A = MA?

4.2.5 Define the set [1] by:

[1] = {x ∈ Z : x ≡ 1 (mod 5)}.

(a) Describe the set [1] in roster notation.

(b) Compute the set M[1], as defined in Exercise 4.2.4

(c) Are the sets [1] and M[1] equal? Prove/Disprove.

(d) Now consider the set [10] = {x ∈ Z : x ≡ 10 (mod 5)}. Are the sets [10] and M[10] equal?
Prove/Disprove.

4.2.6 (a) Give a formal proof of the fact that A ⊆ B =⇒ |A| ≤ |B| for finite sets. Resist the
temptation to look at Theorem 4.12: it is far more technical than you need for this!

(b) Explain why |A| ≤ |B| 6=⇒ A ⊆ B.

60



4.3 Unions, Intersections, and Complements

In the last section we compared nested sets. In this section we constuct new sets from old, modeled
precisely on the logical concepts of and, or, and not. For the duration of this section, suppose that U is
some universal set, of which every set mentioned subsequently is a subset.15

First we consider the set contruction modeled on not.

Definition 4.5. Let A ⊆ U be a set. The complement of A is the set

AC = {x ∈ U : x /∈ A}.

This can also be written U \ A, U − A, A′, or A.

The Venn diagram is drawn on the right: A is represented by a
circular region, while the rectangle represents the universal set U .
The complement AC is the blue shaded region.

If B ⊆ U is some other set, then the complement of A relative B is

B \ A = {x ∈ B : x /∈ A}.

The set B \ A is also called B minus A. For its Venn diagram, we
represent A and B as overlapping circular regions. The comple-
ment B \ A is the green shaded region.

Note that AC = U \ A, so that the two definitions correspond.

A

AC

AC: everything not in A

B \ A

A BU

B \ A: everything in B but
not in A

Example. Let U = {1, 2, 3, 4, 5}, A = {1, 2, 3}, and B = {2, 3, 4}. Then

AC = {4, 5}, BC = {1, 5}, B \ A = {4}, A \ B = {1}.

Now we construct sets based on or and and.

Definition 4.6. The union of A and B is the set

A ∪ B = {x ∈ U : x ∈ A or x ∈ B}.

The intersection of A and B is the set

A ∩ B = {x ∈ U : x ∈ A and x ∈ B}.

We say that A and B are disjoint if A ∩ B = ∅.

A \ B B \ A

A B

A ∩ B

︸ ︷︷ ︸
A ∪ B

U

In the Venn diagram, the sets A and B are again depicted as overlapping circles. Although it doesn’t
constitute a proof, the diagram makes it clear that

A = (A \ B) ∪ (A ∩ B) and B = (B \ A) ∪ (A ∩ B).
15This is necessary so that the definitions in this section are legitimate.
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‘Or’ is used in the logical sense: A ∪ B is the collection of all elements that lie in A, in B, or in
both. Now observe the notational pattern: ∪ looks very similar to the logic symbol ∨ from Chapter
2. The symbols ∩ and ∧ are also similar.

Examples. 1. Let U = {fish, dog, cat, hamster}, A = {fish, cat}, and B = {dog, cat}. Then,

A ∪ B = {fish, dog, cat}, A ∩ B = {cat}.

2. Using interval notation, let U = [−4, 5], A = [−3, 2], and B = [−4, 1). Then

AC = [−4,−3) ∪ (2, 5], BC = [1, 5], B \ A = [−4,−3), A \ B = [1, 2].

−4 −3 −2 −1 0 1 2 3 4 5
U [ ]

A [ ]

B [ )

AC [ ) ( ]

BC [ ]

B \ A [ )

A \ B [ ]

3. Let A = (−∞, 3) and B = [−2, ∞) in interval notation. Then A ∪ B = R and A ∩ B = [−2, 3).

In the final example it seems reasonable to assume that U = R. The universal set is rarely
made explicit in practice, and is often assumed to be the smallest suitable uncomplicated set. When
dealing with sets of real numbers this typically means U = R. In other situations U = Z or
U = {0, 1, 2, 3, . . . , n− 1}might be more appropriate.

The next theorem comprises the basic rules of set algebra.

Theorem 4.7. Let A, B, C be sets. Then:

1. ∅ ∪ A = A and ∅ ∩ A = ∅.

2. A ∩ B ⊆ A ⊆ A ∪ B.

3. A ∪ B = B ∪ A and A ∩ B = B ∩ A.

4. A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C.

5. A ∪ A = A ∩ A = A.

6. A ⊆ B =⇒ A ∪ C ⊆ B ∪ C and A ∩ C ⊆ B ∩ C.

You should be able to prove each of these properties directly from Definitions 4.3 and 4.6. Don’t
memorize the proofs: with a little practice working with sets, each of these results should feel com-
pletely obvious. It is more important that you are able to vizualize the laws using Venn diagrams.
A Venn diagram does not constitute a formal proof, though it is extremely helpful for clarification.
Here we prove only second result: think about how the Venn diagram in Defintion 4.6 illustrates the
result. Some of the other proofs are in the Exercises.
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Proof of 2. There are two results here: A ∩ B ⊆ A and A ⊆ A ∪ B. We show each separately, along
with some thinking.

Suppose that x ∈ A ∩ B. (Must show x ∈ A ∩ B⇒ x ∈ A)
Then x ∈ A and x ∈ B. (Definition of intersection)
But then x ∈ A, whence A ∩ B ⊆ A (Definition of subset)
Now let y ∈ A. (Must show y ∈ A⇒ y ∈ A ∪ B)
Then ‘y ∈ A or y ∈ B’ is true, from which we conclude that y ∈ A ∪ B.
Thus A ⊆ A ∪ B.

Once you get comfortable, you can strip away all the comments and write the proof more quickly.

The following theorem describes how complements interact with other set operations.

Theorem 4.8. Let A, B be sets. Then:

1. (A ∩ B)C = AC ∪ BC.

2. (A ∪ B)C = AC ∩ BC.

3. (AC)C = A.

4. A \ B = A ∩ BC.

5. A ⊆ B ⇐⇒ BC ⊆ AC.

A B

(A ∩ B)C = AC ∪ BC

Again: don’t memorize these laws! Draw Venn diagrams to help with visualization.

Proof of 1. We start by trying to show that the left hand side is a subset of the right hand side.

x ∈ (A ∩ B)C =⇒ x /∈ A ∩ B
=⇒ x not a member of both A and B
=⇒ x not in at least one of A and B
=⇒ x /∈ A or x /∈ B

=⇒ x ∈ AC or x ∈ BC

=⇒ x ∈ AC ∪ BC

With a little thinking, we realize that all of the =⇒ arrows may be replaced with if and only if arrows
⇐⇒without compromising the argument. We’ve therefore shown that the sets (A∩ B)C and AC ∪ BC

have the same elements, and are thus equal.

In the proof we were lucky. Showing that both sides are subsets of each other would have been
tedious, but we found a quicker proof by carefully laying out one direction. This happens more often
than you might think. Just be careful: you can’t always make conditional connectives biconditional.
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Parts 1. and 2. of the theorem are known as De Morgan’s laws, just as the equivalent statements in
logic: Theorem 2.9. Indeed, we could rephrase our proof in that language.

Alternative Proof of 1.

x ∈ (A ∩ B)C ⇐⇒ ¬[x ∈ A ∩ B]
⇐⇒ ¬[x ∈ A and x ∈ B]
⇐⇒ ¬[x ∈ A] or ¬[x ∈ B] (De Morgan’s first law)

⇐⇒ x ∈ AC or x ∈ BC

⇐⇒ x ∈ AC ∪ BC

Theorem 4.9 (Distributive laws). For any sets A, B, C:

1. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

2. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

We prove only the second result. The method is the standard ap-
proach: show that each side is a subset of the other. We do both
directions this time, though with a little work and the cost of some
clarity, you might be able to slim down the proof. The Venn di-
agram on the right illustrates the second result: simply add the
colored regions.

A B

C

Proof. (⊆) Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. There are two cases:

(a) If x ∈ A, then x ∈ A ∪ B and x ∈ A ∪ C by Theorem 4.7, part 2.

(b) If x ∈ B ∩ C, then x ∈ B and x ∈ C. It follows that x ∈ A ∪ B and x ∈ A ∪ C, again by
Theorem 4.7.

In both cases x ∈ (A ∪ B) ∩ (A ∪ C).

(⊇) Let y ∈ (A ∪ B) ∩ (A ∪ C). Then y ∈ A ∪ B and y ∈ A ∪ C. There are again two cases:

(a) If y ∈ A, then we are done, for then y ∈ A ∪ (B ∩ C).

(b) If y /∈ A, then y ∈ B and y ∈ C. Hence y ∈ B ∩ C. In particular y ∈ A ∪ (B ∩ C).

In both cases y ∈ A ∪ (B ∩ C).

Exercises

4.3.1 Describe each of the following sets in as simple a manner as you can: e.g.,

{x ∈ R : (x2 > 4 and x3 < 27) or x2 = 15} = (−∞,−2) ∪ (2, 3) ∪ {
√

15,−
√

15}.
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(a) {x ∈ R : x2 6= x}
(b) {x ∈ R : x3 − 2x2 − 3x ≤ 0 or x2 = 4}
(c) {x2 ∈ R : x 6= 1}
(d) {z ∈ Z : z2 is even and z3 is odd}
(e) {y ∈ 3Z + 2 : y2 ≡ 1 (mod 3)}

4.3.2 Let A = {1, 3, 5, 7, 9, 11} and B = {1, 4, 7, 10, 13}. What are the following sets?

(a) A ∩ B

(b) A ∪ B

(c) A \ B

(d) (A ∪ B) \ (A ∩ B)

4.3.3 Let A ⊆ R, and let x ∈ R. We say that the point x is far away from the set A if and only if:

∃d > 0 : No element of A belongs to the set [x− d, x].

Equivalently, A ∩ [x− d, x] = ∅. If this does not happen, we say that x is close to A.

(a) Draw a picture of a set A and an element x such that is far away from A.

(b) Draw a picture of a set A and an element x such that x is close to A.

(c) Compute the definition of “x is close to A”. [So negate “x is far away from A”.]

(d) Let A = {1, 2, 3}. Show that x = 4 is far away from A, by using definitions.

(e) Let A = {1, 2, 3}. Show that x = 1 is close to A, by using definitions.

(f) Show that if x ∈ A, then x is close to A.

(g) Let A be the open interval (a, b). Is the end-point a far away from A? What about the
end-point b?

4.3.4 Consider Theorems 4.7 and 4.9. In all seven results, replace the symbols in the first row of the
following table with those in the second. Which of the results seem familar? Which are false?

∅ A, B, C sets ∪ ∩ ⊆
0 A, B, C ∈N0 + · ≤

4.3.5 Prove that B \ A = B ⇐⇒ A ∩ B = ∅.

4.3.6 Practice your proof skills by giving formal proofs of the following results from Theorems 4.7
and 4.8. With practice you should be able to prove all of parts of these theorems (and of Theorem
4.9) these without looking at the arguments in the notes!

(a) ∅ ∩ A = ∅.

(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C.

(c) (AC)C = A.

(d) A ⊆ B ⇐⇒ BC ⊆ AC.
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4.4 Introduction to Functions

You have been using functions for a long time. A formal definition in terms of relations will be given
in Section 7.2. For the present, we will just use the following.

Definition 4.10. Let A and B be sets. A function from A to B is a rule f that assigns one (and only one)
element of B to each element of A.
The domain of f , written dom( f ), is the set A. The codomain of f is the set B.
The range of f , written range( f ) or Im( f ), is the subset of B consisting of all the elements assigned
by f .

You can think of the domain of f as the set of all inputs for the function, and the range of f as the
set of all outputs. The codomain is the set of all potential values the function may take (of course,
only the values in the range are actually achieved).

Notation

If f is a function from A to B we write f : A→ B.
If a ∈ A, we write b = f (a) for the the element of B assigned to a by the function f .
We can also write f : a 7→ b, which is read ‘ f maps a to b.’
If U is a subset of A then the image of U is the following subset of B,

f (U) = { f (u) ∈ B : u ∈ U}.

The image of A is precisely the range of f , hence the notaion Im( f ),

f (A) = range( f ) = Im( f ) = { f (a) : a ∈ A}.

f

a1

f (a1)

a2

f (a2)

a3

f (a3) = f (a4)

a4

A B





f (A)

Examples. 1. Let f : [−3, 2)→ R be the square function

f : x 7→ x2.

We have dom( f ) = [−3, 2), and range( f ) = [0, 9], as
shown in the picture. We could also calculate other im-
ages, for example,

f
(
[−1, 2)

)
= [0, 4).

3

6

9
y

−3 −2 −1 0 1 2
x

ra
ng

e

domain
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2. Define f : Z→ {0, 1, 2} by f : n 7→ n2 (mod 3), where we take the remainder of n2 modulo 3.
Clearly dom( f ) = Z, but what is the range? Trying a few examples, we see the following:

n 0 1 2 3 4 5 6 7 8 9 10
f (n) 0 1 1 0 1 1 0 1 1 0 1

It looks like the range is simply {0, 1}. We have already proved this fact in Theorem 2.17,
although a faster proof can now be given by appealing to modular arithmetic (Section 3.1).

If n ≡ 0, then n2 ≡ 0 (mod 3).
If n ≡ 1, then n2 ≡ 1 (mod 3).
If n ≡ 2, then n2 ≡ 4 ≡ 1 (mod 3).

Thus n2 ≡ 0, 1 (mod 3), and range( f ) = {0, 1}.

3. Let A = {0, 1, 2, . . . , 9} be the set of remainders modulo 10 and define f : A→ A by f : n 7→ 3n
(mod 10). To help understand this function, list the elements: the domain only has 10 elements
after all.

n 0 1 2 3 4 5 6 7 8 9
f (n) 0 3 6 9 2 5 8 1 4 7

It should be obvious that range( f ) = A.

4. With the same notation as the previous example, let g : A → A : n 7→ 4n (mod 10). Now we
have the following table:

n 0 1 2 3 4 5 6 7 8 9
g(n) 0 4 8 2 6 0 4 8 2 6

with range(g) = {0, 2, 4, 6, 8}.

Injections, surjections and bijections

Definition 4.11. A function f : A→ B is 1–1 (one-to-one), injective, or an injection if it never takes the
same value twice. Equivalently,a

∀a1, a2 ∈ A, f (a1) = f (a2) =⇒ a1 = a2.

f : A→ B is onto, surjective, or a surjection if it takes every value in the codomain: i.e., B = range( f ).
Equivalently,

∀b ∈ B, ∃a ∈ A such that f (a) = b.

f : A→ B is invertible, bijective, or a bijection if it is both injective and surjective.
aThis is the contrapositive: if f never takes the same value twice, then ∀a1, a2 ∈ A we have a1 6= a2 =⇒ f (a1) 6= f (a2).
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Remark: Since the definitions of injective and surjective are both ‘forall’ statements, to show that a
function is not injective or not surjective you will need counterexamples.

First we consider our examples above. The details are provided for 1 and 2. For the remaining
examples, make sure you understand why the answer is correct.

1. f : [−3, 2) → R : x 7→ x2 is neither injective nor surjective. Indeed we have the following
counterexamples:

• f (−1) = f (1). If f were injective, the values at 1 and −1 would have to be different.

• 81 ∈ R, yet there is no x ∈ [−3, 2) such that f (x) = 81. Thus f is not surjective.

2. f : Z→ {0, 1, 2} : n 7→ n2 (mod 3) is neither injective nor surjective.

• If f were injective, then we could not have f (1) = f (2).

• 2 is in the codomain {0, 1, 2} of f , yet 2 /∈ range( f ), so f is not surjective.

3. A bijection: this is an example of a permutation, a bijection from a set onto itself.

4. Neither injective, nor surjective.

Here is a more complicated example.

Example. Prove that f : R \ {1} → R \ {2} defined by f (x) = 2 + 1
1−x is bijective.

(Injectivity) Suppose that x1 and x2 are in R \ {1},
and f (x1) = f (x2). Then

2 +
1

1− x1
= 2 +

1
1− x2

.

A little elementary algebra shows that x1 = x2, whence
f is injective.

(Surjectivity) Let y ∈ R \ {2} and define x = 1− 1
y−2 .

This makes sense since y 6= 2. Then

f (x) = 2 +
1

1− (1− 1
y−2 )

= y

whence f is surjective.

y

x
−2

−1
−1

1

1

2

2

3

3

4

4

5

The graphic is colored so that you can see how the different parts of the range and domain corre-
spond bijectively. The argument for surjectivity is sneaky: how did we know to choose x = 1− 1

y−2 ?

The answer is scratch work: just solve y = 2 + 1
1−x for x. Essentially we’ve shown that f has the

inverse function f−1(x) = 1− 1
x−2 .
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Aside: Inverse Functions
The word invertible is a synonym for bijective because bijective functions really have inverses!

Indeed, suppose that f : A → B is bijective. Since f is surjective, we know that B = range( f ) and so
every element of B has the form f (a) for some a ∈ A. Moreover, since f is injective, the a in question
is unique. The upshot is that, when f is bijective, we can construct a new function

f−1 : B→ A : f (a) 7→ a.

This may appear difficult at the moment but we will return to it in Chapter 7.
Instead, recall that in Calculus we saw that any injective function has an inverse. How does this

fit with our definition? Consider, for example, f : [0, 3] → R : x 7→ x2. This is injective but not
surjective. To fix this, simply define a new function with the same formula but with codomain equal
to the range of f . We obtain the bijective function

g : [0, 3]→ [0, 9] : x 7→ x2,

with inverse

g−1 : [0, 9]→ [0, 3] : x 7→
√

x.

In Calculus we didn’t nitpick like this and would simply go straight to f−1(x) =
√

x.
In general, if f : A → B is any injective function, then g : A → f (A) : x 7→ f (x) is automatically
bijective, since we are forcing the codomain of g to match its range.

Functions and Cardinality

Injective and surjective functions are intimately tied to the notion of cardinality. Indeed, in Chapter
8, we will use such functions to give a definition of cardinality for infinite sets. For the present we
stick to finite sets.

Theorem 4.12. Let A and B be finite sets. The following are equivalent:

1. |A| ≤ |B|.
2. ∃ f : A→ B injective.

3. ∃g : B→ A surjective.

Read the theorem carefully. It is simply saying that, of the three statements, if
any one is true then all are true. Similarly, if one is false then so are the others. It
might appear that we require six arguments! Instead we illustrate an important
technique: when showing that multiple statements are equivalent, it is enough
to prove in a circle. E.g., if we prove the three implications indicated in the
picture, then 1©⇒ 3©will be true because both 1©⇒ 2© and 2©⇒ 3© are true.

1©

2©3©

=⇒

=⇒=
⇒

More generally, to show that n statements are equivalent, only n arguments are required.

The proof may appear very abstract, but it is motivated by two straightforward pictures. Don’t be
afraid to use pictures to illustrate your proofs if it’s going to make them easier to follow! If |A| = m
and |B| = n, then the two functions can be displayed pictorially. Refer back to these pictures as you
read through the proof.
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A = {a1, a2, a3, · · · , am}7→ 7→ 7→ 7→

B = {b1, b2, b3, · · · , bm, · · · , bn}

A = {a1, a2, a3, · · · , am}

7→ 7→ 7→ 7→

B = {b1, b2, b3, · · · , bm,
︷ ︸︸ ︷
bm+1, · · · , bn }

The function f The function g

Proof. The proof relies crucially on the fact that A, B are finite. Suppose that |A| = m and |B| = n
throughout and list the elements of A and B as,

A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn}.
(

1©⇒ 2©
)

Assume that m ≤ n. Define f : A→ B by f (ak) = bk. This is injective since the elements
b1, . . . , bm are distinct.(

2©⇒ 3©
)

Suppose that f : A→ B is injective. Without loss of generality we may assume that the
elements of A and B are labeled such that f (ak) = bk. Now define g : B→ A by

g(bk) =

{
ak if k ≤ m,
a1 if k > m.

Then g is surjective since every element ak is in the image of g.(
3©⇒ 1©

)
Finally suppose that g : B→ A is surjective. Without loss of generality we may assume
that ak = g(bk) for 1 ≤ k ≤ m. Thus n ≥ m.

If you read the proof carefully, it should be clear that when m = n, the function f is actually a
bijection (with inverse f−1 = g).

Corollary 4.13. If A, B are finite sets, then |A| = |B| ⇐⇒ ∃ f : A→ B bijective.

Proof. Suppose that m = n. The argument 1©⇒ 2© creates an injective function f : A→ B. However
every element bk ∈ B is in the image of f , so this function is also surjective. Hence f is a bijection.
Conversely, if f : A → B is a bijection, then it is injective, whence m ≤ n. It is also surjective, from
which n ≤ m. Therefore m = n.

Composition of functions

Definition 4.14. Suppose that f : A→ B and g : B→ C are functions. The composition g ◦ f : A→ C
is the function defined by (g ◦ f )(a) = g( f (a)). Note the order: to compute (g ◦ f )(x), you apply f
first, then g.
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f g

g ◦ f

a f (a) g( f (a))

A B C

Example. If f (x) = x2 and g(x) = 1
x−1 , then

(g ◦ f )(x) =
1

x2 − 1
, and ( f ◦ g)(x) =

1
(x− 1)2 .

You should be extra careful of ranges and domains when composing functions. The domain and
range are not always explicitly mentioned, and at times some restriction of the domain is implied. In
this example, you might assume that dom( f ) = R and dom(g) = R \ {1}. This is perfectly good if
we are considering f and g separately. However, it should be clear from the formulæ that the implied
domains of the compositions are,

dom(g ◦ f ) = R \ {±1}, and dom( f ◦ g) = R \ {1}.

Finally we consider how injectivity and surjectivity interact with composition.

Theorem 4.15. Let f : A→ B and g : B→ C be functions. Then:

1. If f and g are injective, then g ◦ f is injective.

2. If f and g are surjective, then g ◦ f is surjective.

It follows that the composition of bijective functions is also bijective.

Proof. 1. Suppose that f and g are injective and let a1, a2 ∈ A satisfy (g ◦ f )(a1) = (g ◦ f )(a2). We
are required to show that a1 = a2. However,

(g ◦ f )(a1) = (g ◦ f )(a2) =⇒ g
(

f (a1)
)
= g

(
f (a2)

)

=⇒ f (a1) = f (a2) (since g is injective)
=⇒ a1 = a2 (since f is injective)

Part 2 is in the Exercises. It is an interesting to observe that the converse of this theorem is false.
Assuming that a composition is injective or surjective only requires that one of the component func-
tions be so.
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Theorem 4.16. Suppose that f : A→ B and g : B→ C are functions.

1. If g ◦ f is injective, then f is injective.

2. If g ◦ f is surjective, then g is surjective.

Before showing the proof, consider the following picture of two functions f and g which simulta-
neously illustrate both parts of the theorem. It should be clear that g ◦ f is bijective, f is only injective,
and g is only surjective.

f g

a2

a1

b2

b1

b3

c2

c1

A B C

Here is a formulaic example of the same thing. Make sure you’re comfortable with the definitions
and draw pictures or graphs to help make sense of what’s going on.

f : [0, 2]→ [−4, 4] : x 7→ x2 (injective only)

g : [−4, 4]→ [0, 16] : x 7→ x2 (surjective only)

g ◦ f : [0, 2]→ [0, 16] : x 7→ x4 (bijective!)

Proof. 2. Let c ∈ C and assume that g ◦ f is surjective. We wish to prove that ∃b ∈ B such that
g(b) = c.
Since g ◦ f is surjective, ∃a ∈ A such that (g ◦ f )(a) = c. But this says that

g( f (a)) = c.

Hence b = f (a) is an element of B for which g(b) = c. Thus g is surjective.

We leave part 1 for the Exercises.

Exercises

4.4.1 For each of the following functions f : A → B determine whether f is injective, surjective or
bijective. Prove your assertions.

(a) f : [0, 3]→ R where f (x) = 2x.

(b) f : [3, 12)→ [0, 3) where f (x) =
√

x− 3.

(c) f : (−4, 1]→ (−5,−3] where f (x) = −
√

x2 + 9.
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4.4.2 Suppose that f : [−3, ∞)→ [−8, ∞) and g : R→ R are defined by

f (x) = x2 + 6x + 1, g(x) = 2x + 3.

Compute g ◦ f and show that g ◦ f is injective.

4.4.3 (If you did Exercise 2.3.12 you should find this easy) Let X be a subset of R. A function f : X → R

is strictly increasing if

∀ a, b ∈ X, a < b =⇒ f (a) < f (b).

For example, the function f : [0, ∞)→ R, x 7→ x2 is increasing because

∀a, b ∈ [0, ∞), a < b =⇒ f (a) = a2 < b2 = f (b).

(a) Give another example of a function that is increasing. Draw its graph, and prove that the
function is increasing.

(b) By negating the above definition, state what it means for a function not to be strictly increas-
ing.

(c) Give an example of a function that is not strictly increasing. Draw its graph, and prove
that the function is not stictly increasing.

(d) Let f , g : R → R be strictly increasing. Prove or disprove: The function h = f + g is
strictly increasing. Note that the formula for h is h(x) = f (x) + g(x).

4.4.4 Find:

(a) A set A so that the function f : A→ R : x 7→ sin x is injective.

(b) A set B so that the function f : R→ B : x 7→ sin x is surjective.

4.4.5 A function f : R→ R is even if

∀ x ∈ R, f (−x) = f (x).

For example, the function f : R→ R, x 7→ x2 is even because

∀ x ∈ R, f (−x) = (−x)2 = x2 = f (x).

Note that f is even if and only if the graph of f is symmetric with respect to the y axis.

(a) Give an example of a function that is even. Draw its graph, and prove that the function is
even.

(b) Define what it means for a function not to be even, by negating the definition above.

(c) Give an example of a function that is not even. Draw its graph, and prove that the function
is not even.

(d) Prove or disprove: for every f , g : R→ R even, the composition h = f ◦ g is even. Here h
is the function mapping x to f (g(x)).
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4.4.6 Define f : (−∞, 0]→ R and g : [0, ∞)→ R by

f (x) = x2, g(x) =

{
x

1−x x < 1,
1− x x ≥ 1.

Does g ◦ f map (−∞, 0] onto R? Justify your answer.

4.4.7 Negate Definition 4.11 to find what it means for a function to be

(a) Not injective.

(b) Not surjective.

4.4.8 Prove that the composition of two surjective functions is surjective.

4.4.9 Suppose that g ◦ f is injective. Prove that f is injective.

4.4.10 In the proof of Theorem 4.12 we twice invoked without loss of generality. In both cases explain
why the phrase applies.

4.4.11 Recall Examples 3 and 4 on page 67.

(a) Consider the nine functions fk : A → A : x 7→ kx (mod 10), where k = 1, 2, . . . , 9. Find
the range of fk for each k. Can you find a relationship between the cardinality of range( fk)
and k?

(b) More generally, let A = {0, 1, 2 . . . , n− 1} be the set of remainders modulo n. If fk : A →
A : x 7→ kx (mod n), conjecture a relationship between |range( fk)|, k and n. You don’t
need to prove your assertions.
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5 Mathematical Induction and Well-ordering

In Section 2.2 we discussed three methods of proof: direct, contrapositive, and contradiction. The
fourth standard method of proof, induction, has a very different flavor. In practice it formalizes the
idea of spotting a pattern. Before we give the formal definition of induction, we consider where
induction fits into the investigative process.

5.1 Investigating Recursive Processes

In applications of mathematics, one often has a simple recurrence relation but no general formula.
For instance, a process might be described by an expression of the form

xn+1 = f (xn),

where some initial value x1 is given. While investigating such recurrences, you might hypothesize a
general formula

xn = g(n).

Induction is a method of proof that allows us to prove the correctness of such general formulæ. Here
is a simple example of the process.

Stacking Paper

Consider the operation whereby you take a stack of paper, cut all sheets in half, then stack both halves
together.

Cut and stack

If a single sheet of paper has thickness 0.1 mm, how many times would you have to repeat the pro-
cess until the stack of paper reached to the sun? (≈ 150 million kilometers).

The example is describing a recurrence relation. If hn is the height of the stack after n operations,
then we have a sequence (hn)∞

n=0 satisfying
{

hn+1 = 2hn

h0 = 0.1 mm.

It is easy to compute the first few terms of the sequence:

n 0 1 2 3 4 5 6 7 8 · · ·
hn (mm) 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 · · ·

It is not hard to hypothesize that, after n such operations, the stack of paper will have height

hn = 2n × 0.1 mm.
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All we have done is to spot a pattern. We can reassure ourselves by checking that the first few terms
of the sequence satisfy the formula: certainly h0 = 20 × 0.1 mm and h1 = 21 × 0.1 mm, etc. Unfor-
tunately the sequence has infinitely many terms, so we need a trick which confirms all of them at once.
Unless we can prove that our formula is correct for all n ∈N0 it will remain just a guess. This is where
induction steps in.

The trick is called the induction step. We assume that we have already confirmed the formula
for some fixed, but unspecified, value of n and then use what we know (the recurrence relation
hn+1 = 2hn) to confirm the formula for the next value n + 1. Here it goes:

Induction Step Suppose that hn = 2n × 0.1 mm, for some fixed n ∈N0. Then

hn+1 = 2hn = 2(2n × 0.1) = 2n+1 × 0.1 mm.

This is exactly the expression we hoped to find for the (n + 1)th term of the sequence. Think about
what the induction step is doing. By leaving n unspecified, we have proved an infinite collection of
implications at once! Each implication has the form

hn = 2n × 0.1 =⇒ hn+1 = 2n+1 × 0.1.

Since the implications have been proved for all n ∈N0, we can string them together:

h0 = 20 × 0.1 =⇒ h1 = 21 × 0.1 =⇒ h2 = 22 × 0.1 =⇒ h3 = 23 × 0.1 =⇒ · · ·

We have already checked that the first formula h0 = 20 × 0.1 in the implication chain is true. By the
induction step, the entire infinite collection of formulæ must be true. We have therefore proved that

hn = 2n × 0.1 mm= 2n × 10−4 m, ∀n ≥ 0.

Now that we’ve proved the formula for every hn, finishing the original problem is easy: we need to
find n ∈N0 such that

hn = 2n × 10−4 ≥ 150× 109 m ⇐⇒ 2n ≥ 15× 1014.

Since logorithms are increasing functions, they preserve inequalities and we may easily solve to see
that

n ≥ log2(15× 1014) = log2 15 + 14 log2 10 ≈ 50.4.

Thus 51 iterations of the cut-and-stack process are sufficient for the pile of paper to reach the sun!

We will formalize the discussion of induction in the next section so that you will never have to
write as much as we’ve just done. However, it is important to remember how induction fits into
a practical investigation. It is the missing piece of logic that turns a guess into a justified formula.
Before we do so, here is a famous and slightly more complicated problem.
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The Tower of Hanoi

The Tower of Hanoi is a game involving circular disks of decreasing radii stacked on three pegs. A
‘move’ consists of transferring the top disk in any stack onto a larger disk or an empty peg. If we
start with n disks on the first peg, how many moves are required to transfer all the disks to one of the
other pegs?

The challenge here is that we have no formula to play with, only the variable n for the number
of disks. The first thing to do is to play the game. If the variable rn represents the number of moves
required when there are n disks, then it should be immediately clear that r1 = 1: one disk only
requires one move! The picture below shows that r2 = 3.

With more disks you can keep experimenting and find that r3 = 7, etc. At this point you may be
ready to hypothesize a general formula.

Conjecture 5.1. The Tower of Hanoi with n disks requires rn = 2n − 1 moves.

Certainly the conjecture is true for n = 1, 2 and 3. To see that it is true in general, we need to think
about how to move a stack of n + 1 disks. Since the largest disk can only be moved onto an empty
peg, it follows that the n smaller disks must already be stacked on a single peg before the (n + 1)th
disk can move. From the starting position this requires rn moves.





n disks rn moves

1 move

rn moves

The largest disk can now be moved to the final peg, before the original n disks are moved on top of it.
In total this requires rn + 1 + rn moves, as illustrated in the picture. We therefore have a recurrence
relation for rn:

{
rn+1 = 2rn + 1
r1 = 1.

We are now in a position to prove our conjecture. Again we know that the conjecture is true for
n = 1 and we assume that the formula rn = 2n − 1 is true for some fixed but unspecified n. Now we
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use the recurrence relation to prove that rn+1 = 2n+1 − 1.

Induction Step Suppose that rn = 2n − 1 for some fixed n ∈N. Then

rn+1 = 2rn + 1 = 2(2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1.

Exactly as in the paper-stacking example, we have simultaneously proved an infinite collection of
implications:

r1 = 21 − 1 =⇒ r2 = 22 − 1 =⇒ r3 = 23 − 1 =⇒ r4 = 24 − 1 =⇒ · · ·

Since the first of these statements is true, it follows that all of the others are true. Hence Conjecture 5.1
is true, and becomes a theorem.

As an illustration of how ridiculously time-consuming the Tower becomes, the following table
gives the time taken to complete the Tower if you were able to move one disk per second.

Disks Time
5 31sec
10 17min 3sec
15 9hr 6min 7sec
20 12days 3hrs 16min 15sec
25 ∼ 1yr 23days
30 ∼ 34yrs 9days Animation of five disks (click)

Exercises

5.1.1 A room contains n people. Everybody wants to shake everyone else’s hand (but not their own).

(a) Suppose that n people require hn handshakes. If an (n + 1)th person enters the room, how
many additional handshakes are required? Obtain a recurrence relation for hn+1 in terms
of hn.

(b) Hypothesize a general formula for hn, and prove it using the method in this section.

5.1.2 Skippy the Kangaroo is playing jump rope, but he tires as the day goes on. The heights hn
(inches) of successive jumps are related by the recurrence

hn+1 =
8
9

hn + 1.

(a) Suppose that Skippy’s initial jump has height h1 = 100 in. Show that Skippy fails to jump
above 10in for the first time on the 40th jump.

(b) Find the total height jumped by Skippy in the first n jumps.

You may find it useful to define Hn = hn − 9 and think about the recurrence for Hn. Now guess and
prove a general formula for Hn. Finally, remind yourself about geometric series.)
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5.2 Proof by Induction

The previous section motivated the need for induction and helped us see where induction fits into a
logical investigation. In this section we formally lay out several induction proofs.

Induction is the mathematical equivalent of a domino rally; toppling the nth domino causes the
(n + 1)th domino to fall, hence to knock all the dominos over it is enough merely to topple the first.
Instead of dominoes, in mathematics we consider a sequence of propositions: P(1), P(2), P(3), etc.
Induction demonstrates the truth of every proposition P(n) by doing two things:

1. Proving that P(1) is true (Base Case)

2. Proving that ∀n ∈N, P(n) =⇒ P(n + 1) (Induction Step)

You could think of the base case as knocking over the first domino, and the induction step as the nth
domino knocking over the (n + 1)th, for all n. Both of the examples in the previous section followed
this pattern. Unpacking the induction step gives an infinite chain of implications:

P(1) =⇒ P(2) =⇒ P(3) =⇒ P(4) =⇒ P(5) =⇒ · · · .

The base case says that P(1) is true, and so all of the remaining propositions P(2), P(3), P(4), P(5), . . .
are also true.

All induction proofs have the same formal structure:

(Set-up) Define P(n), set-up notation and orient the reader as to what you are about to
prove.

(Base Case) Prove P(1).

(Induction Step) Let n ∈N be fixed and assume that P(n) is true. This assumption is the induction
hypothesis. Perform calculations or other reasonings to conclude that P(n + 1) is
true.

(Conclusion) Remind the reader what it is you have proved.

As you read more mathematics, you will find that the induction step is often the most involved
part of the proof. The set-up stage is often no more than a sentence: ‘We prove by induction,’ and
the explicit definition of P(n) is commonly omitted. These are the only shortcuts that it is sensible to
take until you are extremely comfortable with induction. Practice making it completely clear what
you are doing at each juncture.

Here is a straightforward theorem, where we write the proof in the above language.

Theorem 5.2. The sum of the first n positive integers is given by the formula

n

∑
i=1

i =
1
2

n(n + 1).
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Proof. (Set-up) We prove by induction. For each n ∈N, let P(n) be the proposition

n

∑
i=1

i =
1
2

n(n + 1).

(Base Case) Clearly
1
∑

i=1
i = 1 = 1

2 1(1 + 1), and so P(1) is true.

(Induction Step) Assume that P(n) is true for some fixed n ≥ 1. We compute the sum of the first
n + 1 positive integers using our induction hypothesis P(n) to simplify:

n+1

∑
i=1

i = (n + 1) +
n

∑
i=1

i = (n + 1) +
1
2

n(n + 1) (by assumption of P(n))

=

(
1 +

1
2

n
)
(n + 1) =

1
2
(n + 2)(n + 1)

=
1
2
(n + 1)

[
(n + 1) + 1

]
.

This last says that P(n + 1) is true.
(Conclusion) By mathematical induction, we conclude that P(n) is true for all n ∈N. That is

∀n ∈N,
n

∑
i=1

i =
1
2

n(n + 1).

Note how we grouped 1
2 (n + 1)

[
(n + 1) + 1

]
so that it is obviously the right hand side of P(n + 1).

Here is another example in the same vein, but done a little faster.16

Theorem 5.3. Prove that n(n + 1)(2n + 1) is divisible by 6 for all natural numbers n.

Proof. We prove by induction. For each n ∈N, let P(n) be the proposition

n(n + 1)(2n + 1) is divisible by 6.

(Base Case) Clearly 1 · (1 + 1) · (2 · 1 + 1) = 6 is divisible by 6, hence P(1) is true.
(Induction Step) Assume that P(n) is true for some fixed n ∈N. Then

(n + 1)(n + 2)
[
2(n + 1) + 1

]
− n(n + 1)(2n + 1) = (n + 1)

[
(n + 2)(2n + 3)− n(2n + 1)

]

= (n + 1)(2n2 + 7n + 6− 2n2 − n)

= 6(n + 1)2.

This is divisible by 6. Since, by the induction hypothesis, n(n + 1)(2n + 1) is also divisible by 6, it

16The most common question after reading this proof is, ‘How would I know to do that calculation?’ It is better to think
on how much scratch work was done before the originator stumbled on exactly this argument. Read more proofs and
practice writing them, and you’ll soon find that strategies like these will suggest themselves!
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follows that

(n + 1)(n + 2)
[
2(n + 1) + 1

]
= n(n + 1)(2n + 1) + 6(n + 1)2

is divisible by 6, as required. Thus P(n + 1) is true.
By mathematical induction, P(n) is true for all n ≥ 1.

Theorem 5.3 is also true for n = 0, and indeed for all integers n. As we shall see in the next section,
induction works perfectly well with any base case (say n = 0): you are not tied to n = 1. We can even
modify induction to prove the result for the negative integers!

Here is another example, written in a more advanced style: we don’t explicitly name P(n), and
the reader is expected to be familiar enough with induction to realize when we are covering the base
case and induction step. If you find this proof a challenge, you should rewrite it in the same style as
we used previously. Some assistance in this is given below.

Theorem 5.4. For all n ∈N, 2 + 5 + 8 + · · ·+ (3n− 1) = 1
2 n(3n + 1).

Proof. For n = 1 we have 2 = 2, hence the proposition holds. Now suppose the proposition holds
for some fixed n ∈N. Then

2 + 5 + · · ·+ [3(n + 1)− 1] = [2 + 5 + · · ·+ (3n− 1)] + 3n + 2

=
1
2

n(3n + 1) + 3n + 2 =
1
2
(3n2 + 7n + 4)

=
1
2
(n + 1)(3n + 4) =

1
2
(n + 1)

[
3(n + 1) + 1

]
.

This says that the proposition holds for n + 1. By mathematical induction the proposition holds for
all n ∈N.

Scratch work is your friend! Once you are comfortable with the structure of an induction proof,
the challenge is often in finding a clear argument for the induction step. Don’t dive straight into the
proof! First try some scratch calculations. Be creative, since the same approach will not work for all
proofs.

One of the benefits of explicitly stating P(n) is that it helps you to isolate what you know and to
identify your goal. When stuck, write down both expressions P(n) and P(n + 1) and you will often
see how to proceed. Consider, for example, the proof of Theorem 5.4. We have:

P(n) : 2 + 5 + 8 + · · ·+ (3n− 1) =
1
2

n(3n + 1).

P(n + 1) : 2 + 5 + 8 + · · ·+ [3(n + 1)− 1] =
1
2
(n + 1)

[
3(n + 1) + 1

]

Simply by writing these down, we know that our goal is to somehow convert the left hand side of
P(n + 1) into the right hand side, using P(n).
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As a final comment on scratch work, remember that it is very unlikely to constitute a proof. Here
is a typical attempt at a proof of Theorem 5.4 by someone who is new to induction.

False Proof. P(n + 1) : 2 + 5 + · · ·+ (3n− 1)︸ ︷︷ ︸
= 1

2 n(3n+1) by P(n)

+[3(n + 1)− 1] =
1
2
(n + 1)

[
3(n + 1) + 1

]

=
1
2
(n + 1)(3n + 4)

=⇒ 3
2

n2 +
1
2

n + 3n + 3− 1 =
1
2
(3n2 + 7n + 4)

=⇒ 3
2

n2 +
7
2

n + 2 =
3
2

n2 +
7
2

n + 2

Such an approach is likely to score zero in an exam! Here are some of the reasons why.

• P(n+ 1) is the goal, the conclusion of the induction step. You cannot prove P(n) =⇒ P(n+ 1)
by starting with P(n + 1)!

• More logically: the false proof says that something we don’t know (P(n) ∧ P(n + 1)) implies
something true (the trivial final line). Since the implications T =⇒ T and F =⇒ T are both
true, this tells us nothing about whether P(n + 1) is true.

• Reversing the arrows and turning the false proof upside down would be a start. However there
is no explanation as to why the calculation is being done. The induction step is only part of an
induction proof and it need to be placed and explained in context. More concretely:

– There is no set-up. P(n) has not been defined, neither indeed has n. You cannot use
symbols in a proof unless they have been properly defined.

– The base case is missing.

– There is no conclusion. Indeed the word induction isn’t mentioned: is the reader supposed
to guess that we’re doing induction?!

For all this negativity, there are some good things here. If you remove the =⇒ symbols, you are
left with an excellent piece of scratch work. By simplifying both sides of your goal you can more
easily see how to calculate. For example, the expression 1

2 (n + 1)(3n + 4) is an easier target to aim
for when manipulating the left hand side of P(n + 1).

Your scratch work may make perfect sense to you, but if a reader cannot follow it without your
assistance then it isn’t a proof. The moral of the story is to do your scratch work for the induction step
then lay out the structure of the proof (set-up, base case, etc.) before incorporating your calculation
into a coherent and convincing argument.

Exercises

5.2.1 (a) Complete Gauss’ direct proof of Theorem 5.2.

(b) Give a direct proof of Theorem 5.3.

(c) In Theorem 5.3, what is the proposition P(n + 1)?

(d) In the Induction Step of Theorem 5.3, explain why it would be incorrect to write

P(n + 1)− P(n) = (n + 1)
[
(n + 2)(2n + 3)− n(2n + 1)

]
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= (n + 1)(2n2 + 7n + 6− 2n2 − n)

= 6(n + 1)2.

5.2.2 Prove by induction that for each natural number n, we have
n

∑
j=0

2j = 2n+1 − 1.

5.2.3 Consider the following Theorem:

If n is a natural number, then
n
∑

k=1
k3 = 1

4 n2(n + 1)2.

(a) What explicitly is the meaning of
4
∑

k=1
k3?

(b) What would be meant by the expression
n
∑

k=1
n3, and why is it different to

n
∑

k=1
k3?

(c) If the Theorem is written in the form ∀n ∈N, P(n), what is the proposition P(n)?
(d) Give as many reasons as you can as to why the following ‘proof’ of the induction step is

incorrect.

P(n + 1) =
n+1

∑
k=1

k3 =
1
4
(n + 1)2((n + 1) + 1)2

=
n

∑
k=1

k3 + (n + 1)3 =
1
4
(n + 1)2(n + 2)2

=
1
4

n2(n + 1)2 + (n + 1)3 =
1
4
(n + 1)2(n + 2)2

=
1
4
(n + 1)2 [n2 + 4(n + 1)

]
=

1
4
(n + 1)2(n + 2)2

=
1
4
(n + 1)2(n + 2)2 =

1
4
(n + 1)2(n + 2)2

(e) Give a correct proof of the Theorem by induction.

5.2.4 (a) Prove by induction that ∀n ∈N we have 3 | (2n + 2n+1).
(b) Give a direct proof that 3 | (2n + 2n+1) for all integers n ≥ 1 and for n = 0.
(c) Look carefully at your proof for part (a). If you had started with the base case n = 0

instead of n = 1, would your proof still be valid?

5.2.5 Show by induction, that for every n ∈ N we have: n ≡ 5 (mod 3) or n ≡ 6 (mod 3) or n ≡ 7
(mod 3).

5.2.6 Show, by induction, that for all n ∈N, 4 divides the integer 11n − 7n.

5.2.7 (a) Find a formula for the sum of the first n odd natural numbers. Prove your assertion by
induction.

(b) Give an alternative direct proof of your formula from part (a). You may use results such

as
n
∑

i=1
i = 1

2 n(n + 1).

83



5.3 Well-ordering and the Principle of Mathematical Induction

Before seeing more examples of induction, it is worth thinking more carefully about the logic behind
induction. The fact that induction really proves statements of the form ∀n ∈ N, P(n) depends on a
fundamental property of the natural numbers.

Definition 5.5. A set of real numbers A is well-ordered if every non-empty subset of A has a minimum
element.

The definition is delicate: to test if a set A is well-ordered, we need to check all of its non-empty
subsets. The definition could be written as follows:

∀B ⊆ A such that B 6= ∅, we have that min(B) exists.

Consequently, to show that a set A is not well-ordered, we need only exhibit a non-empty subset B
which has no minimum.

Examples. 1. A = {4,−7, π, 19, ln 2} is a well-ordered set. There are 31 non-empty subsets of A,
each of which has a minimum element. Can you justify this fact without listing the subsets?

2. The interval [3, 10) is not well-ordered. Indeed (3, 4) is a non-empty subset which has no mini-
mum element.

3. The integers Z are not well-ordered, since there is no minimum integer.

More generally, every finite set of numbers is well-ordered, and intervals are not. Are there any
infinite sets which are well-ordered? The answer is yes. Indeed it is part of the standard definition
(Peano’s Axioms) of the natural numbers that N is such a set.

Axiom. N is well-ordered.

Armed with this axiom, we can justify the method of proof by induction.

Theorem 5.6 (Principle of Mathematical Induction). Let P(n) be a proposition for each n ∈N. Suppose:

(a) P(1) is true.

(b) ∀n ∈N, P(n) =⇒ P(n + 1).

Then P(n) is true for all n ∈N.

Proof. We argue by contradiction. Assume that conditions (a) and (b) hold and that ∃n ∈ N such
that P(n) is false. Then the set

S = {k ∈N : P(k) is false}

is a non-empty subset of the well-ordered set N. It follows that S has a minimum element m =
min(S). Note that P(m) is false.
Clearly m 6= 1, since P(1) is true (condition (a)). Therefore m ≥ 2 and so m− 1 ∈N.
Since m = min(S) it follows that m− 1 6∈ S and so P(m− 1) must be true.
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Now condition (b) forces P(m) to be true. A contradiction.
We conclude that P(n) is true for all n ∈N.

Different Base Cases

An induction argument need not begin with the case n = 1. By proving Theorem 5.6 it should be
clear where we used the well-ordering of N. Now fix an integer m (positive, negative or zero) and
consider the set

Z≥m = {n ∈ Z : n ≥ m} = {m, m + 1, m + 2, m + 3, . . .}.
This set is well-ordered, whence the following modification of the induction principle is immediate.

Corollary 5.7. Fix m ∈ Z. Let P(n) be a proposition for each integer n ≥ m. Suppose:

(a) P(m) is true.

(b) ∀n ≥ m, P(n) =⇒ P(n + 1).

Then P(n) is true for all n ≥ m.

We are simply changing the base case. The induction concept is exactly the same as before:

P(m) =⇒ P(m + 1) =⇒ P(m + 2) =⇒ P(m + 3) =⇒ · · ·
As long as you explicitly prove the first claim in the sequence, and you show the induction step, then
all the propositions are true.

Here is an example where we begin with n = 4.

Theorem 5.8. For all integers n ≥ 4, we have 3n > n3.

Proof. We prove by induction. The first case of interest is n = 4, so we choose this to be our base case.
(Base Case) If n = 4 we have 3n = 81 > 64 = n3. The proposition is therefore true for n = 4.
(Induction Step) Fix n ∈ Z≥4 and suppose that 3n > n3. Then

3n+1 = 3 · 3n > 3n3.

To finish the proof, we want to see that this right hand side is at least (n + 1)3. Now

3n3 ≥ (n + 1)3 ⇐⇒ 3 ≥
(

1 +
1
n

)3

This is true for n = 3 and, since the right hand side is decreasing as n increases, it is certainly true
when n ≥ 4. We therefore conclude that

3n > n3 =⇒ 3n+1 > (n + 1)3
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which is the induction step.
By induction, we have shown that 3n > n3 whenever n ∈ Z≥4.

Our next example is reminiscent of sequences and series from elementary calculus. If you follow
the derivation of such a formula given in an elementary calculus text, you’ll probably see liberal use
of ellipsis dots (. . .). When you see ellipses in a proof, it is often because the author is hiding an
induction argument.

Theorem 5.9. For all integers n ≥ 3, we have

n

∑
i=3

1
i(i− 2)

=
3
4
− 2n− 1

2n(n− 1)
. (∗)

Proof. We prove by induction.

(Base Case) When n = 3, (∗) reads
3
∑

i=3

1
i(i−2) =

3
4 − 5

12 . Both sides are equal to 1
3 , and so (∗) is true.

(Induction Step) Assume that (∗) is true for some fixed n ≥ 3. Then

n+1

∑
i=3

1
i(i− 2)

=
n

∑
i=3

1
i(i− 2)

+
1

(n + 1)(n− 1)

=
3
4
− 2n− 1

2n(n− 1)
+

1
(n + 1)(n− 1)

(by the induction hypothesis)

=
3
4
−
[
(2n− 1)(n + 1)− 2n

2(n + 1)n(n− 1)

]
=

3
4
−
[

1 + n− 2n2

2(n + 1)n(n− 1)

]

=
3
4
+

(2n + 1)(1− n)
2(n + 1)n(n− 1)

=
3
4
− 2n + 1

2(n + 1)n

which is exactly (∗) when n is replaced by n + 1.
By induction (∗) holds for all integers n ≥ 3.

Our final example involves a little abstraction.

Theorem 5.10. The interior angles of an n-gon (n-sided polygon) sum to (n− 2)π radians.

The challenge here is to set up the induction step properly. We will take the initial case (n = 3)
that the angles of a triangle sum to π radians as given,17 and merely prove the induction step. The
main logical difficulty comes from the fact that we must consider all n-gons simultaneously. If we
were to write the induction step in the form

∀n ∈ Z≥3, P(n) =⇒ P(n + 1),

17Can you supply a direct proof of this fact?
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then the proposition P(n) would be

P(n) : ∀n-gons Pn, the sum of the interior angles of Pn is (n− 2)π radians.

To prove our induction step for a fixed integer n, we must show that all (n + 1)-gons have the correct
sum of interior angles. We therefore assume that we are given some (n + 1)-gon Pn+1 and proceed
to compute its interior angles in terms of a related n-gon.

Proof. Fix an integer n ≥ 3, and suppose that all n-gons have interior angles summing to (n− 2)π
radians. Suppose we are given an (n + 1)-gon Pn+1. Select a vertex A, and label the adjacent vertices
B and C. Delete A, and join B and C with a straight edge. The result is an n-gon Pn. There are two
cases to consider.18

Case 1: The deleted point A is outside Pn. The sum of the inte-
rior angles of Pn+1 exceeds those of Pn by the α + β + γ = π
radians of the triangle 4ABC. Therefore Pn+1 has interior
angles summing to (n− 2)π + π = [(n + 1)− 2]π radians.

Case 2: The deleted point A is inside Pn. To obtain the sum
of the interior angles of Pn+1, we take the sum of the interior
angles of Pn and do three things:

• Subtract β

• Subtract γ

• Add the reflex angle 2π − α at A

We are therefore adding an additional

A

B C

Pn

γβ
α

Case 1: A outside Pn

A

B C

Pn

γβ

α

Case 2: A inside Pn

−β− γ + (2π − α) = 2π − (α + β + γ) = 2π − π = π

radians. Pn+1 again has interior angles summing to [(n + 1)− 2]π radians.
Note that if A was on the edge ofPn, then our original polygonPn+1 would have had only n sides.

18We are obscuring two subtleties here. It is a fact, though not an obvious one, that it is always possible to choose a
vertex A so that the new polygon Pn doesn’t cross itself. Read about ‘ears’ and ‘mouths’ of polygons and triangulation if
you’re interested. There are also two other, less likely, cases, where deleting a point from an (n + 1)-gon leaves you with
an (n− 1)-gon, or even an (n− 2)-gon. To think it out, try drawing a 12-gon in the shape of a Star of David. Deleting one
of the outer corners creates a 9-gon! Dealing with these cases strictly requires strong induction, so we return to them later.

Aside: Well-ordering more generally
Well-ordering is a fundamental concept whose implications are far beyond what we’re discussing

here. Informally speaking, well-ordering a set A involves listing the elements of A in some order so
that every non-empty subset of A has a first element with respect to that order.
Consider, for example, the set of negative integers Z−. For the purposes of these notes we will always
consider the standard ordering:

· · · < −4 < −3 < −2 < −1.
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Written in the standard order, Z− = {. . . ,−4,−3,−2,−1} is not a well-ordered set. In more ad-
vanced logic course one could consider alternative orderings, and the definition of well-ordered
would change accordingly. If we choose the alternative ordering

Z− = {−1,−2,−3,−4, · · · }, (∗)
then Z− would be well-ordered: if B ⊆ Z− is non-empty and has its elements listed in the same
order as (∗), then B has a first element. Since the principle of mathematical induction depends only
on us having a well-ordered set, we are now permitted to prove theorems of the form ∀n ∈ Z−, P(n),
by induction. The base case is n = −1 and the induction step justifies the chain

P(−1) =⇒ P(−2) =⇒ P(−3) =⇒ · · ·
An extremely important theorem in advanced set theory states that it is possible to well-order every
set. With a slight modification of the process, this massively increases the applicability of induction.
In these notes we keep things simple: well-ordering is always in the sense of Definition 5.5, where
we list the elements of a set in the usual increasing order.

Exercises

5.3.1 Consider the following Theorem. For every natural number n ≥ 2,
(

1− 1
4

)(
1− 1

9

)(
1− 1

16

)
· · ·
(

1− 1
n2

)
=

n + 1
2n

(a) If the Theorem is written in the form ∀n ∈N≥2, P(n), what is P(n)?
(b) Π-notation is used for products in the same way as Σ-notation for sums: for example

5

∏
k=1

(k + 1)k = 21 · 32 · 43 · 54 · 65

Rewrite the statement of the Theorem using Π-notation.
(c) Prove the Theorem by induction (you may use whatever notation you wish).

5.3.2 Recall the geometric series formula from calculus: if r 6= 1 is constant, and n ∈N0, then
n

∑
k=0

rk =
1− rn+1

1− r
(∗)

(a) Here is an incorrect proof by induction. Explain why it is incorrect.

Proof. Let P(n) =
n
∑

k=0
rk = 1−rn+1

1−r .

(Base Case n = 0) P(0) =
0
∑

k=0
rk = r0 = 1 = 1−r0+1

1−r is true.

(Induction Step) Fix n ∈N0 and assume that P(n) is true. Then

P(n + 1) =
n+1

∑
k=0

rk =
n

∑
k=0

rk + rn+1 =
1− rn+1

1− r
+ rn+1
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=
1− rn+1

1− r
+

rn+1 − rn+2

1− r
=

1− rn+2

1− r
, is true.

By induction, (∗) is true for all n ∈N0.

(b) Give a correct proof of (∗).

5.3.3 Here is an argument attempting to justify
n
∑

i=1
i = 1

2 n(n + 1) + 7. What is wrong with it?

Assume that the statement is true for some fixed n. Then

n+1

∑
i=1

i =
n

∑
i=1

i + (n + 1) =
1
2

n(n + 1) + 7 + (n + 1) =
1
2
(n + 1)[(n + 1) + 1] + 7,

hence the statement is true for n + 1 and, by induction, for all n ∈N.

5.3.4 Consider the following ‘proof’ that all human beings have the same age. Where is the flaw in
the argument.

Proof. (Base case n = 1) Clearly, in a set with only 1 person, all the people in the set have the
same age.
(Inductive hypothesis) Suppose that for some integer n ≥ 1 and for all sets with n people, it is
true that all of the people in the set have the same age.
(Inductive step) Let A be a set with n + 1 people, say A = {a1, . . . , an, an+1}, and let

A′ = {a1, . . . , an} and A′′ = {a2, . . . , an+1}.

The inductive hypothesis tells us that all the people in A′ have the same age and all the people
in A′′ have the same age. Since a2 belongs to both sets, then all the people in A have the same
age as a2. We conclude that all the people in A have the same age.
(Conclusion) By induction, the claim holds for all n ≥ 1.

5.3.5 Let P(n) and Q(n) be propositions for each n ∈N.

(a) Assume that m is the smallest natural number such that P(m) is false. Let

A = {n ∈N : n < m}.

What can you say about the elements in the set A, with respect to the property P?

(b) Assume that a is the smallest natural number such that P(a) ∨Q(a) is false. Let

B = {n ∈N : n < a}.

What can you say about the elements in the set B, with respect to the properties P and Q?

(c) Assume that u is the smallest natural number such that P(u) ∧Q(u) is false. Let

C = {n ∈N : n < u}.

What can you say about the elements in the set C, with respect to the properties P and Q?

89



(d) Assume that P(1) is true, but that ‘∀n ∈N, P(n)’ is false. Show that there exists a natural
number k such that the implication P(k) =⇒ P(k + 1) is false.

5.3.6 Prove that if A ⊆ R is a finite set, then A is well-ordered.

5.3.7 In this question we use the fact that N0 is well-ordered to prove the Division Algorithm (Theo-
rem 3.2).

If m ∈ Z and n ∈N, then ∃ unique q, r ∈ Z such that m = qn + r and 0 ≤ r < n.

Let m ∈ Z and n ∈N be given, and define S = {k ∈N0 : k = m− qn for some q ∈ Z}.

(a) Show that S is a non-empty subset of N0.

(b) N0 is well-ordered. By part (a), S has a minimal element r. Prove that 0 ≤ r < n.

(c) Suppose that there are two pairs of integers (q1, r1) and (q2, r2) which satisfy m = qin + ri.
Prove that r1 = r2 and, consequently, that the division algorithm is true.

5.3.8 In this question we consider Peano’s Axioms for the natural numbers:

Initial element: 1 ∈N

Successor elements: There is a successor function f : N → N. For each n ∈ N, the successor
f (n) is also a natural number.

No predecessor of 1 ∀n ∈N, f (n) = 1 is false.

Unique predecessor: f is injective: f (n) = f (m) =⇒ m = n.

Induction: If A ⊆N has the following properties:

• 1 ∈ A,
• ∀a ∈ A, f (a) ∈ A,

then A = N.

The successor function f is simply ‘plus one’ in disguise: f (n) = n + 1.

(a) Suppose you replace N with Z in each of the above axioms. Which axioms are still true
and which are false?

(b) Here we use the notation (m, n) to represent a pair of natural numbers. Let T be the set of
all pairs

T = {(m, n) : m, n ∈N}.

Let f : T → T be the function f (m, n) = (m + 1, n). Letting the pair (1, 1) play the role of
‘1’ in Peano’s axioms, and f be the successor function, decide which of the above axioms
are satisfied by T.

(c) (Hard!) With the same set T as in part (b), take the successor function f : T → T to be

f (m, n) =

{
(m− 1, n + 1) if m ≥ 2,
(m + n, 1) if m = 1.

Which of the above axioms are satisfied by T and f ?
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5.3.9 (Ignore this question if you haven’t studied matrices) Suppose that A =
(

7 12
−2 −3

)
. We prove that

∀n ∈ Z, An =

(−2 −6
1 3

)
+ 3n

(
3 6
−1 −2

)
. (†)

Here A−n = (An)−1 is the inverse of An, and we follow the convention that A0 =
(

1 0
0 1

)
is the

identity matrix.

(a) Prove by induction that (†) holds ∀n ∈N0.

(b) Modify your argument in part (a) to prove that (†) holds ∀n ∈ Z−0 . (Use the fact that, when
written in reverse order, Z−0 = {0,−1,−2,−3,−4, . . .} is a well-ordered set.)

(c) Using what you know about matrix inverses, give a direct proof that (†) holds ∀n ∈ Z−0 .
(If C and D are 2× 2 matrices such that CD =

(
1 0
0 1

)
, then D = C−1.)

(d) Diagonalize the matrix A and thereby give a direct proof of (†) for all integers n.
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5.4 Strong Induction

The principle of mathematical induction as represented in Theorem 5.6 is sometimes known as weak
induction. In weak induction, the induction step requires only that one proposition P(n) is true to
demonstrate the truth of P(n + 1). By contrast, the induction step in strong induction additionally
requires that some, perhaps all, of the propositions coming before P(n) are also true.

Theorem 5.11 (Principle of Strong Induction). Let m be an integer and suppose that P(n) is a proposition
for each n ∈ Z≥m. Also fix an integer l > m. Suppose:

(a) P(m), P(m + 1), . . . , P(l) are true.

(b) ∀n ≥ l, (P(m) ∧ P(m + 1) ∧ · · · ∧ P(n)) =⇒ P(n + 1).

Then P(n) is true for all n ∈ Z≥m.

The statement is a little complicated: what matters is that Z≥m is a well-ordered set. In the
simplest examples, we have m = 1 and Z≥1 = N. The challenge in strong induction is identifying
how many base cases l −m + 1 are needed.

To see this in action, consider the Fibonacci numbers: an excellent source of strong induction
examples.

Definition 5.12. The Fibonacci numbers are the sequence ( fn)∞
n=1 defined by the recurrence relation

{
fn+1 = fn + fn−1 if n ≥ 2,
f1 = f2 = 1

(∗)

Theorem 5.13. ∀n ∈N, fn < 2n.

Proof. For each natural number n, let P(n) be the proposition fn < 2n.
(Base cases n = 1, 2) f1 = 1 < 21 and f2 = 1 < 22, whence P(1) and P(2) are true.
(Induction step) Fix n ≥ 2 and suppose that P(1), . . . , P(n) are true. Then

fn+1 = fn + fn−1 < 2n + 2n−1 < 2n + 2n = 2n+1

which says that P(n + 1) is true.
By strong induction P(n) is true for all n ∈N, and so fn < 2n.

In terms of Theorem 5.11, we have m = 1 and l = 2 with m − l + 1 = 2 base cases. Te reason
we need m = 1 is because the first claim in the Theorem is about the integer 1, namely f1 < 21. We
need two base cases because the recurrence relation (∗) defining the Fibonacci numbers requires the
previous two terms of the sequence to construct the next.
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To help understand strong induction, it is instructive to see why a proof by weak induction would
fail in this setting.

Wrong Proof A. We show, by weak induction, that ∀n ∈N, fn < 2n.
(Base Case n = 1) By definition, f1 = 1 < 21, whence the claim is true for n = 1.
(Induction Step) Fix n ∈ N and assume that fn < 2n. We want to show that fn+1 < 2n+1. By the
recurrence relation, we can write

fn+1 = fn + fn−1. (∗)

The inductive hypothesis tells us that fn < 2n, but what can we say about fn−1? Absolutely nothing!
We are stuck: weak induction fails to prove the theorem.

The incorrect proof tells us why we need strong induction: the recurrence relation defines each
Fibonacci number (except f1 and f2) in terms of the previous two. To make use of the recurrence, our
induction hypothesis must assume something about at least fn and fn−1. Assuming something about
only fn is not enough.

From Wrong Proof A we learned that we needed to prove by strong induction. Now suppose that
we try the following, which looks almost identical to the correct proof.

Wrong Proof B. For each n ∈ N, let P(n) be the proposition fn < 2n. We prove that P(n) is true for
all n ∈N by strong induction.
(Base Case n = 1) By definition, f1 = 1 < 21, whence P(1) is true.
(Induction Step) Fix n ∈ N and assume that P(1), . . . , P(n) are all true. We want to show that
fn+1 < 2n+1. By the recurrence relation, we can write

fn+1 = fn + fn−1 < 2n + 2n−1 < 2 · 2n = 2n+1. (†)

Hence P(n) is true for all n ≥ 1.

Where is the problem with this second incorrect proof? The recursive formula fn+1 = fn + fn−1
only applies if n ≥ 2. If we take n = 1, then it reads f2 = f1 + f0, but f0 is not defined! In the induction
step of Wrong Proof B, we are letting n be any integer ≥ 1. When n = 1 the step (†) is not justified,
and so the proof fails. For (†) to be legitimate, we must have n ≥ 2. This is why, in our correct proof,
we had to prove P(1) and P(2) separately.

The moral here is to try the induction step as scratch work. Your attempt will tell you if you need
strong induction and, if you do, how many base cases are required.
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Strong Induction on Well-ordered Sets

In the next example the first term is suffixed by n = 0. In the language of Theorem 5.11, we have
m = 0 and l = 1 with m− l + 1 = 2 base cases. Just like the Fibonacci example, two base cases are
required because the defining recurrence relation constructs the next term in the sequence from the
two previous terms.

Theorem 5.14. A sequence of integers (an)∞
n=0 is defined by

{
an = 5an−1 − 6an−2, n ≥ 2,
a0 = 0, a1 = 1.

Then an = 3n − 2n for all n ∈N0.

Proof. We prove by strong induction.
(Base cases n = 0, 1) The formula is true in both cases: a0 = 0 = 30 − 20 and a1 = 1 = 31 − 21.
(Induction step) Fix an integer n ≥ 1 and suppose that ak = 3k − 2k for all k ≤ n. Then

an+1 = 5an − 6an−1 = 5(3n − 2n)− 6(3n−1 − 2n−1)

= (15− 6)3n−1 + (10− 6)2n−1 = 3n+1 − 2n+1.

By strong induction an = 3n − 2n is true for all n ∈N0.

Think about why we wrote an+1 = 5an − 6an−1 in the induction step, whereas the statement in the Theorem
reads an = 5an−1 − 6an−2. Does it matter? What does it mean to say that n is a ‘dummy variable’?

In the two previous examples, it might seem that strong induction is something of a logical
overkill. In the induction step we are assuming far more than we need. In both examples, estab-
lishing the truth of P(n + 1) required only the truth of P(n) and P(n − 1). We assumed that the
earlier propositions were also true, but we never used them. Depending on the proof, you might
need two, three or even all of the propositions prior to P(n + 1) to complete the induction step. Once
you are used to strong induction you may feel comfortable slimming a proof down so that you only
mention precisely what you need. For the present, the way we’ve stated the principle is maximally
safe! For some practice with this, see Exercise 5.4.3 where three base cases are needed, and the induc-
tion step requires the three previous propositions P(n), P(n− 1), P(n− 2) to P(n + 1).

In order to see strong induction in all its glory, where the induction step requires all of the previous
propositions, we prove part of the famous Fundamental Theorem of Arithmetic which states that all
natural numbers may be factored into a product of primes: for example 3564 = 22 × 34 × 11.

Definition 5.15. p ∈N≥2 is prime if its only positive divisors are itself and 1. If q ∈N≥2 is not prime,
then it is composite: ∃a, b ∈N≥2 such that q = ab.
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As you read the proof, think carefully about why only one base case is required.

Theorem 5.16. Every natural number n ≥ 2 is either prime, or a product of primes.

Proof. We prove by strong induction.
(Base case n = 2) The only positive divisors of 2 are itself and 1, hence 2 is prime.
(Induction step) Fix n ∈ N≥2 and assume that every natural number k satisfying 2 ≤ k ≤ n is either
prime or a product of primes. There are two possibilities:

• n + 1 is prime. In this case we are done.

• n + 1 is composite. Thus n + 1 = ab for some natural numbers a, b ≥ 2. Clearly a, b ≤ n, and
so, by the induction hypothesis, both are prime or the product of primes. Therefore n + 1 is also
the product of primes.

By strong induction we see that all natural numbers n ≥ 2 are either prime, or a product of primes.

Exercises

5.4.1 Define a sequence (bn)∞
n=1 as follows:

{
bn = bn−1 + bn−2, n ≥ 3,
b1 = 3, b2 = 6.

Prove: ∀ n ∈N, bn is divisible by 3.

5.4.2 Consider the proof of Theorem 5.16.

(a) If the Theorem is written in the form ∀n ∈N≥2, P(n), what is the proposition P(n)?
(b) Explicitly carry out the induction step for the three situations n + 1 = 9, n + 1 = 106

and n + 1 = 45. How many different ways can you perform the calculation for n + 1 =
45? Explain why it is only necessary in the induction step to assume that all integers k
satisfying 2 ≤ k ≤ n+1

2 are prime or products of primes.
(c) Rewrite the proof in the style of Theorem 5.13, explicitly mentioning the propositions P(n),

and thus making the logical flow of strong induction absolutely clear.

5.4.3 Define a sequence (cn)∞
n=0 as follows:

{
cn+1 = 49

8 cn − 225
8 cn−2, n ≥ 2,

c0 = 0, c1 = 2, c2 = 16.

Prove that cn = 5n − 3n for all n ∈N0. Hint: you need three base cases!

5.4.4 Prove that the nth Fibonacci number fn is given by the formula

fn =
φn − φ̂n
√

5
, where φ =

1 +
√

5
2

and φ̂ =
1−
√

5
2

.

φ is the famous Golden ratio. φ and φ̂ are the two solutions to the equation φ = 1 + φ−1.
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5.4.5 In this question we use an alternative definition of prime.19

Definition. p ∈N≥2 is prime if ∀a, b ∈N, p | ab =⇒ p | a or p |b.

Let p be prime, let n ∈N, and let a1, . . . , an be natural numbers such that p divides the product
a1a2 · · · an. Prove by induction that,

∃i ∈ {1, 2, . . . , n} such that p | ai.

Hint: you need to cover two base cases. Why? Think about the induction step first and it will help you
decide how many base cases you need.

5.4.6 Show that for every positive integer n, (3 +
√

5)n + (3−
√

5)n is an even integer.
Hints: Prove simultaneously that (3 +

√
5)n − (3−

√
5)n is an even multiple of

√
5.

Subtract the nth expression from the (n + 1)th in both cases. . .

5.4.7 (Hard!) Return to the proof of Theorem 5.10. Can you make a watertight argument using strong
induction that also covers the two missing cases? Draw a picture to illustrate each case.

19Strictly this is what it means for p to be irreducible. In the ring of integers, prime and irreducible are synonymous. For
the details, take a Number Theory course.
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6 Set Theory, Part II

In this chapter we return to set theory, where we consider more-advanced constructions.

6.1 Cartesian Products

You have been working with Cartesian products for years, referring to a point in the plane R2 by its
Cartesian co-ordinates (x, y). The basic idea is that each of the co-ordinates x and y is a member of the
set R.

Definition 6.1. Let A and B be sets. The Cartesian product of A and B is the set

A× B = {(a, b) : a ∈ A and b ∈ B}.

A× B is exactly the set of ordered pairs (a, b).

Examples. 1. The Cartesian product of the real line R with itself is the xy-plane: rather than
writing R×R which is unwieldy, we write R2.

R2 = R×R = {(x, y) : x, y ∈ R}.

More generally, Rn = R×R× · · ·R︸ ︷︷ ︸
n times

is the set of n-tuples of real numbers:

Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}.

2. Suppose you go to a restaurant where you have a choice of one main course and one side. The
menu might be summarized set-theoretically: consider the sets

Mains = {fish, steak, eggplant, pasta}
Sides = {asparagus, salad, potatoes}

The Cartesian product Mains×Sides is the set of all possible meals made up of one main and
one side. It should be obvious that there are 4× 3 = 12 possible meal choices.

This last example illustrates the following theorem. Indeed it partly explains the use of the word
product in the definition.

Theorem 6.2. If A and B are finite sets, then |A× B| = |A| · |B|.
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Proof. Label the elements of each set and list the elements of A× B lexicographically. If |A| = m and
|B| = n, then we have:

(a1, b1) (a1, b2) (a1, b3) · · · (a1, bn)
(a2, b1) (a2, b2) (a2, b3) · · · (a2, bn)

...
...

...
...

(am, b1) (am, b2) (am, b3) · · · (am, bn)

It should be clear that every element of A× B is listed exactly once. There are m rows and n columns,
thus |A× B| = mn.

Before we go any further, consider the complement of a Cartesian product A× B. If you had to
guess an expression for (A× B)C, you might well try AC × BC. Let us think more carefully.

(x, y) ∈ (A× B)C ⇐⇒ (x, y) 6∈ A× B
⇐⇒ ¬((x, y) ∈ A× B)
⇐⇒ ¬(x ∈ A and y ∈ B)
⇐⇒ x 6∈ A or y 6∈ B

Since the definition of Cartesian product involves and, its negation, by De Morgan’s laws, involves
or. It follows that the complement of a Cartesian product is not a Cartesian product!

As an example of a basic set relationship involving Cartesian products, we prove a theorem.

Theorem 6.3. Let A, B, C, D be sets. Then (A× B) ∪ (C× D) ⊆ (A ∪ C)× (B ∪ D).

Proof. Since we are dealing with Cartesian products, the general element has the form (x, y).

Let (x, y) ∈ (A× B) ∪ (C× D). Then

(x, y) ∈ A× B or (x, y) ∈ C× D.

But then

(x ∈ A and y ∈ B) or (x ∈ C and y ∈ D).

Clearly x ∈ A or x ∈ C, so x ∈ A ∪ C.
Similarly y ∈ B or y ∈ D, so y ∈ B ∪ D.
Therefore (x, y) ∈ (A ∪ C)× (B ∪ D), as required.

A
C

B

D

The picture is an imagining of the theorem, where we assume that the sets A, B, C and D are all
intervals of real numbers. (A× B) ∪ (C× D) is the yellow shaded region, while (A ∪ C)× (B ∪ D)
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is the larger dashed square. Be careful with pictures! The theorem is a statement about any sets,
whereas the picture implicitly assumes that these sets are intervals. While helpful, the picture is not
a proof!

Either by carefully reading the proof or by thinking about the picture, you should be convinced
that the two sets in the theorem are not equal (in general): if x ∈ (A \ C) and y ∈ D, then (x, y) is an
element of the right hand side, but not the left. Is it clear where the point (x, y) lives in the picture?

Exercises

6.1.1 Consider the following subintervals of the real line: A = [2, 5], B = (0, 4).

(a) Express the set (A \ B)C in interval notation, as a disjoint union of intervals.

(b) Draw a picture of the set (A \ B)C × (B \ A).

6.1.2 Rewrite the condition

(x, y) ∈ (AC ∪ B)× (C \ D)

in terms of (some of) the following propositions:

x ∈ A, x 6∈ A, x ∈ B, x 6∈ B, y ∈ C, y 6∈ C, y ∈ D, y 6∈ D.

6.1.3 Let A = [1, 3], B = [2, 4] and C = [2, 3]. Prove or disprove that

(A× B) ∩ (B× A) = C× C.

Hint: Draw the sets A× B, B× A and C× C in the Cartesian plane. The picture will give you a hint
on whether or not the statement is true, but it does not constitute a proof.

6.1.4 A straight line subset of the plane R2 is a subset of the form

Aa,b,c = {(x, y) : ax + by = c}, for some constants a, b, c, with ab 6= 0.

(a) Draw the set A1,2,3. Is it a Cartesian product?

(b) Which straight line subsets in the plane R2 are Cartesian products? Otherwise said, find a
condition on the constants a, b, c for which the set Aa,b,c is a Cartesian product.

6.1.5 Draw a picture, similar to that in Theorem 6.3, which illustrates the fact that

(A× B)C 6= AC × BC.

Using your picture, write the set (A× B)C in the form

(C1 × D1) ∪ (C2 × D2) ∪ · · ·

where each of the unions are disjoint: that is i 6= j =⇒ (Ci × Di) ∩ (Cj × Dj) = ∅. You don’t
have to prove your assertion.

6.1.6 Let E ⊆N×N be the smallest subset which satisfies the following conditions:

• Base case: (1, 1) ∈ E

99



• Generating Rule I: If (a, b) ∈ E then (a, a + b) ∈ E

• Generating Rule II: If (a, b) ∈ E then (b, a) ∈ E

(a) Show in detail that (4, 3) ∈ E.

(b) Show by induction that for every n ∈N, (1, n) ∈ E.

(c) (Very hard!!!) Show that E = {(a, b) ∈ N×N : gcd(a, b) = 1}. Think carefully about how
the Euclidean algorithm works, and what the generating rules might have to do with it. . .

6.1.7 A strict set-theoretic definition requires you to build the ordered pair (a, b) as a set: typically
(a, b) = {a, {a, b}}. One then proves that (a, b) = (c, d) ⇐⇒ a = c and b = d.

(a) One of the axioms of set theory (regularity) says that there is no set a for which a ∈ a. Use
this to prove that the cardinality of (a, b) = {a, {a, b}} is two.

(b) Prove that (a, b) = (c, d) =⇒





a = c and b = d,
or

a = {c, d} and c = {a, b}.
(c) In the second case, prove that there exists a set S such that a ∈ S ∈ a. The axiom of

regularity also says that this is illegal. Conclude that (a, b) = (c, d) ⇐⇒ a = c and b = d.
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6.2 Power Sets

Given a set A, it is often useful to consider the collection of all of the subsets of A. Indeed, we want
to call this collection a set.

Definition 6.4. The power set of A is the set P(A) of all subsets of A. That is,

P(A) = {B : B ⊆ A}.

Otherwise said: B ∈ P(A) ⇐⇒ B ⊆ A.

Examples. 1. Let A = {1, 3, 7}. Then A has the following subsets, listed by how many elements
are in each subset.

0-elements: ∅
1-element: {1}, {3}, {7}
2-elements: {1, 3}, {1, 7}, {3, 7}
3-elements: {1, 3, 7}

Gathering these together, we have the power set:

P(A) =
{

∅, {1}, {3}, {7}, {1, 3}, {1, 7}, {3, 7}, {1, 3, 7}
}

.

2. Consider B =
{

1,
{
{2}, 3

}}
. It is essential that you use different size set brackets to prevent

confusion. B has only two elements, namely 1 and
{
{2}, 3

}
. We can gather the subsets of B in a

table.
0-elements: ∅

1-element: {1},
{{
{2}, 3

}}

2-elements:
{

1,
{
{2}, 3

}}

In the second line, remember that to make a subset out of a single element you must surround
the element with set brackets. Thus 1 ∈ B =⇒ {1} ⊆ B and

{
{2}, 3

}
∈ B =⇒

{{
{2}, 3

}}
⊆ B.

The power set of B is therefore

P(B) =
{

∅, {1},
{{
{2}, 3

}}
,
{

1,
{
{2}, 3

}}}
.

Notation

Be absolutely certain that you understand the difference between ∈ and ⊆. It is easy to become
confused when considering power sets. In the context of the previous example, here are eight propo-
sitions. Which are true and which are false?20

(a) 1 ∈ A (b) 1 ∈ P(A) (c) {1} ∈ A (d) {1} ∈ P(A)
(e) 1 ⊆ A (f) 1 ⊆ P(A) (g) {1} ⊆ A (h) {1} ⊆ P(A)

20Only (a), (d), and (g) are true. Make sure you understand why!

101



As a further exercise in being careful with notation, consider the following theorem.

Theorem 6.5. If A ⊆ B, then P(A) ⊆ P(B).

Proof. Suppose that A ⊆ B and let C ∈ P(A). We must show that C ∈ P(B).
By definition, C ∈ P(A) =⇒ C ⊆ A. Since subset inclusion is transitive (Theorem 4.4), we have

C ⊆ A ⊆ B =⇒ C ⊆ B.

This says that C ∈ P(B). Therefore P(A) ⊆ P(B).

It is very easy to get confused by this theorem. Exercises 6.2.4 and 6.2.5 discuss things further.

Cardinality and Power Sets

Let’s investigate how the cardinality of a set and its power set are related. Consider a few basic
examples where we list all of the subsets, grouped by cardinality.

Set A 0-elements 1-element 2-elements 3-elements |P(A)|
∅ ∅ 1
{a} ∅ {a} 1 + 1 = 2
{a, b} ∅ {a}, {b} {a, b} 1 + 2 + 1 = 4
{a, b, c} ∅ {a}, {b}, {c} {a, b}, {a, c}, {b, c} {a, b, c} 1 + 3 + 3 + 1 = 8

You should have seen this pattern before: we are looking at the first few lines of Pascal’s Triangle.
It should be no surprise that if |A| = 4, then |P(A)| = 1 + 4 + 6 + 4 + 1 = 16. The progression
1, 2, 4, 8, 16, . . . in the final column immediately suggests the following theorem.

Theorem 6.6. Suppose that A is a finite set. Then |P(A)| = 2|A|.

How are we supposed to prove such a theorem for all sets at once? The trick is to think about all
n-element sets simultanously, and prove by induction on the cardinality of A. The basic idea is that
every set with n + 1 elements is the disjoint union of a set with n elements and a single-element set.
The induction step is essentially the observation that an n + 1-element set B has twice the number of
subsets of some n-element set A. It is instructive to see an example of this before writing the proof.

Example. Let B = {1, 2, 3}. Now choose the element 3 ∈ B and delete it to create the smaller set

A = {1, 2} = B \ {3}.

We can split the subsets of B into two groups: those which contain 3 and those which do not. In the
following table we list all of the subsets of B. In the first column are those subsets X which do not
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contain 3. These are exactly the subsets of A. In the second column are the subsets Y = X ∪ {3} of B
which do contain 3.

X X ∪ {3}
∅ {3}
{1} {1, 3}
{2} {2, 3}
{1, 2} {1, 2, 3}

It is clear that B has twice the number of subsets of A.

This method of pairing is exactly mirrored in the proof.

Proof. We prove by induction. For each n ∈N0, let Q(n) be the proposition

|A| = n =⇒ |P(A)| = 2n.

(Base Case) If n = 0, then A = ∅ (Theorem 4.4). But then P(A) = {∅}, whence |P(A)| = 1 = 20.
Therefore Q(0) is true.
(Induction Step) Fix n ∈ N0 and assume that Q(n) is true. That is, assume that any set with n
elements has 2n subsets. Now let B be any set with n + 1 elements. Choose one of the elements b ∈ B
and define A = B \ {b}. Subsets of B are of two types:

1. Subsets X ⊆ B which do not contain b.

2. Subsets Y ⊆ B which contain b.

In the first case, X is really a subset of A. Since |A| = n, the induction hypothesis Q(n) tells us that
there are 2n subsets X of this type. In the second case, we can write Y = X ∪ {b}, where X is again
a subset of A. Since there are 2n subsets X, it follows that there are 2n subsets Y ⊆ B of this form.
Therefore

|P(B)| = 2n + 2n = 2n+1.

By induction, Q(n) is true for all n ∈N0.

Once you understand the proof, you should compare it to the proof of Theorem 5.10 on the in-
terior angles of a polygon. The idea is very similar. Exercise 6.2.8 gives an alternative proof of this
result.

As a final example, we consider the interaction of power sets and Cartesian products. Suppose
that A = {a} and B = {b, c}. Then

A× B = {(a, b), (a, c)}.

The power set P(A× B) therefore contains 22 = 4 elements: indeed

P(A× B) =
{

∅, {(a, b)}, {(a, c)}, {(a, b), (a, c)}
}

.
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The power sets of A and B have 2 and 4 elements respectively:

P(A) = {∅, {a}}, P(B) = {∅, {b}, {c}, {b, c}}.

The Cartesian product of the power sets therefore has 2× 4 = 8 elements:

P(A)×P(B) =
{(

∅, ∅
)
,
(
∅, {b}

)
,
(
∅, {c}

)
,
(
∅, {b, c}

)
,

(
{a}, ∅

)
,
(
{a}, {b}

)
,
(
{a}, {c}

)
,
(
{a}, {b, c}

)}
.

It should be clear from this example not only that P(A× B) 6= P(A)×P(B), but that the elements
of the two sets are completely different. The elements of P(A× B) are sets of ordered pairs, while the
elements of P(A)×P(B) are ordered pairs of sets.

Exercises

6.2.1 Find P(A) and |P(A)| for the following:

(a) A = {1, 2}. (d) A = {∅, 1, {a}}.
(b) A = {1, 2, 3}. (e) A =

{{
1, 2
}

, 3,
{

4, {5}
}}

.

(c) A =
{
(1, 2), (2, 3)

}
. (f) A =

{
(1, 2), 3,

(
4, {5}

)}
.

6.2.2 Let A = {1, 3} and B = {2, 4}.

(a) Draw a picture of the set A× B.

(b) Compute P(A× B).

(c) What is the cardinality of P(A)×P(B)? Don’t compute the set!

6.2.3 Determine whether the following statements are true or false (in (b), the symbol ( means ‘proper
subset’). Justify your answers.

(a) If {7} ∈ P(A), then 7 ∈ A and {7} /∈ A.

(b) Suppose that A, B and C are sets such that A ( P(B) ( C and |A| = 2. Then |C| can be 5,
but |C| cannot be 4.

(c) If a set B has one more element than a set A, then P(B) has at least two more elements
than P(A).

(d) Suppose that the sets A, B, C and D are all subsets of {1, 2, 3} with cardinality two. Then
at least two of these sets are equal.

6.2.4 Here are three incorrect proofs of Theorem 6.5. Explain why each fails.

(a) Let x ∈ P(A). Then x ∈ A. Since A ⊆ B, we have x ∈ B. Therefore x ∈ P(B), and so
P(A) ⊆ P(B).

(b) Let A = {1, 2} and B = {1, 2, 3}. Then P(A) = {∅, {1}, {2}, A}, and
P(B) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, B}. Thus P(A) ⊆ P(B).
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(c) Let x ∈ A. Since A ⊆ B, we have x ∈ B. Since x ∈ A and x ∈ B, we have {x} ∈ P(A), and
{x} ∈ P(B).

6.2.5 Consider the converse of Theorem 6.5. Is it true or false? Prove or disprove your conjecture.

6.2.6 (a) Prove that P(A) ∪ P(B) ⊆ P(A ∪ B). Provide a counter-example to show that we do not
expect equality.

(b) Does anything change if you replace ∪ with ∩ in part (a)? Justify your answer.

6.2.7 Consider the proof of Theorem 6.6. Let B be a set with n + 1 elements, let b ∈ B and let
A = B \ {b}. Prove that the function f : P(A)× {1, 2} → P(B) defined by

f (X, 1) = X, f (X, 2) = X ∪ {b}

is a bijection, and that consequently, by Theorem 4.12, |P(A)× {1, 2}| = |P(B)|.

6.2.8 We use the following notation for the binomial coefficient:21 (n
r) =

n!
r!(n−r)! . This symbol denotes

the number of distinct ways one can choose r objects from a set of n objects.

(a) Prove directly, use the definition of the binomial coefficient, that

If 1 ≤ r ≤ n, then
(

n + 1
r

)
=

(
n
r

)
+

(
n

r− 1

)
.

(b) Prove by induction that ∀n ∈N,
n
∑

r=0
(n

r) = 2n. You will need part (a) in the induction step.

(c) Explain why part (b) provides an alternative proof of Theorem 6.6.

If you found this easy, try proving the binomial theorem: ∀n ∈N, (x + y)n =
n
∑

r=0
(n

r)xryn−r.

21You may have seen this written nCr, or nCr, where the C stands for combination.
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6.3 Indexed Collections of Sets

An indexed family of sets is a collection of sets An, one for each n in some indexing set I. It is very
often the case that I = N or Z. If I is some other set, for example the real numbers R, the label for
the index may be chosen accordingly: e.g. Ax ⊆ R.

Definition 6.7. Given a family of indexed sets A = {An : n ∈ I}, we may form the union and
intersection of the collection:

∪A =
⋃

n∈I

An = {x : x ∈ An for some n ∈ I},

∩A =
⋂

n∈I

An = {x : x ∈ An for all n ∈ I}.

Otherwise said,

x ∈
⋃

n∈I

An ⇐⇒ ∃n ∈ I such that x ∈ An

x ∈
⋂

n∈I

An ⇐⇒ ∀n ∈ I we have x ∈ An

A collection A = {An : n ∈ I} is pairwise disjoint if Am ∩ An = ∅ whenever m 6= n.

When the indexing set is N or Z, it is also common to write, for example,
⋃

n∈N

An as
∞⋃

n=1
An.

The following Theorem is almost immediate given the definitions of union and intersection: can you
supply a formal proof?

Theorem 6.8. Let A = {An : n ∈ I} and let m ∈ I. Then

Am ⊆
⋃

n∈I

An and
⋂

n∈I

An ⊆ Am.

Examples. 1. For each n ∈N, let An = [−n, n]. Each of the sets An is a closed interval. E.g.,

A1 = [−1, 1], A2 = [−2, 2], A3 = [−3, 3].

It should be clear that n ≤ m =⇒ An ⊆ Am. We therefore have a nested sequence of sets:

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

It follows immediately that
⋂

n∈N

An = A1 = [−1, 1].

The union is a little harder. With a little thinking you might hypothesize
⋃

n∈N

An = R. This is

indeed the case, but to prove it we need to return to the definition. Since every interval An is a
subset of R, we automatically have

⋃
n∈N

An ⊆ R. All that remains is to see that R ⊆ ⋃
n∈N

An.

Let x ∈ R. We must show that ∃n ∈ N such that x ∈ An. We construct n explicitly using the
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ceiling function.22 If x ≥ 0, then x ≤ dxe, whence x ∈ Adxe. Similarly, if x < 0, then x ∈ Ad−xe.
For example,

−3.124 ∈ Ad3.124e = A4.

It follows that all real numbers x are in at least one of the sets An, and so
⋃

n∈N

An = R.

2. Let An = (n, n + 1] ⊆ R, for each n ∈ Z. For example,

A3 = (3, 4], and A−17 = (−17,−16].

In this case the sets An are pairwise disjoint, and we have
⋃

n∈Z

An = R, and
⋂

n∈Z

An = ∅.

3. For each n ∈N, let An = {x ∈ R :
∣∣x2 − 1

∣∣ < 1
n}. Before computing the union and intersection

of these sets, it is helpful to write each set as a pair of intervals. Note that

∣∣x2 − 1
∣∣ < 1

n
⇐⇒ − 1

n
< x2 − 1 <

1
n
⇐⇒

√
1− 1

n
< |x| <

√
1 +

1
n

.

Therefore

An =

(
−
√

1 + 1
n ,−

√
1− 1

n

)
∪
(√

1− 1
n ,
√

1 + 1
n

)
.

As the picture suggests, the sets An are nested: A1 ⊇ A2 ⊇ A3 ⊇ · · ·

)( )( √
2−

√
2 0

A1

)( ) ( √
3
2−

√
3
2

√
1
2−

√
1
2

A2

)( ) ( √
4
3−

√
4
3

√
2
3−

√
2
3

A3

)( ) (A4

)( ) (A5

Since A1 is the largest of the nested sets, we see that
⋃

n∈N

An = A1 = (−
√

2, 0) ∪ (0,
√

2). For

the intersection, note that

∀n ∈N, x ∈ An ⇐⇒ ∀n ∈N,
∣∣x2 − 1

∣∣ < 1
n
⇐⇒ x2 − 1 = 0.

It follows that
⋂

n∈N

An = {1,−1}.
22The ceiling dxe is the smallest integer greater than or equal to x. For example d3.124e = 4. The ceiling function is

simply the concept of ‘rounding up’ written in mathematical language. The corresponding function for ‘rounding down’
is the floor: bxc is the greatest integer less than or equal to x.
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Don’t take Limits!

Here we dissect an extremely important example. For each n ∈ N, define the interval An =
[
0 , 1

n

)
.

Let us analyze the collection {An : n ∈ N}. First observe that m ≤ n =⇒ 1
n ≤ 1

m =⇒ An ⊆ Am, so
that the sets are nested:

A1 ⊇ A2 ⊇ A3 ⊇ · · ·

The union is therefore the largest interval A1,

∞⋃

n=1

An = A1 = [0, 1).

Before considering the full intersection, we first compute a finite intersection. Since the sets An are
nested, it follows that any finite intersection is simply the smallest of the listed sets: i.e., for any
constant m ∈N we have

m⋂

n=1

An = Am =
[
0 ,

1
m

)
.

Observe that this is non-empty for every m. What about the infinite intersection? You might be
tempted to take a limit and make an argument such as

∞⋂

n=1

An = lim
m→∞

m⋂

n=1

An = lim
m→∞

[
0 ,

1
m

)
= [0, 0).

Quite apart from the issue that [0, 0) is ugly and could only mean the empty set, we should worry
about whether this is a legitimate use of limits. It isn’t! Moreover, the attempt to use limits produces
an incorrect conclusion: the intersection is in fact non-empty, and we claim the following.

Theorem 6.9.
∞⋂

n=1
An = {0}.

Before we give a formal proof, it is instructive to see a calculation. Let us show, for example, that
2
9 6∈

∞⋂
n=1

An. To prove that 2
9 is not in the intersection of all the An, it is enough to exhibit a single

integer m such that 2
9 6∈ Am. The picture shows that we can choose m = 10: since 1

10 < 2
9 , we have

2
9 6∈ [0, 1

10 ] = A10. Since 2
9 6∈ A10, we conclude that 2

9 6∈
∞⋂

n=1
An.

)[ |
0 1

10
2
9

A10
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Proof. We will prove that x ∈
∞⋂

n=1
An =⇒ x = 0.

Suppose that x ∈
∞⋂

n=1
An. Then x ∈

[
0 , 1

n

)
for all n. Otherwise said,

∀n ∈N, we have 0 ≤ x <
1
n

.

Certainly x = 0 satisfies these inequalities. Suppose, for a contradiction, that x > 0. Since lim
n→∞

1
n = 0,

we can certainly choosea N large enough so that 1
N ≤ x. A contradiction. Thus the intersection

contains no positive elements, and we conclude that

∞⋂

n=1

An = {0}.

aExplicitly, you may choose choose N = d 1
x e, or anything larger.

The outcome of this discussion depends crucially on whether the ends of the intervals An are
open or closed. Consider each of the following modifications in turn. How would the argument for
computing each intersection differ from what we did above?

• If Bn =
(

0 , 1
n

)
, then

∞⋂
n=1

Bn = ∅.

• If Cn =
(

0 , 1
n

]
, then

∞⋂
n=1

Cn = ∅.

• If Dn =
[
0 , 1

n

]
, then

∞⋂
n=1

Dn = {0}.

The moral of these examples is that you cannot naı̈vely apply limits to sets. Be very careful with
infinite unions and intersections, for your intuition can easily lead you astray.

Finite Decimals

Here is another example where ‘taking the limit’ is the incorrect thing to do. This time it is the union
that forces us to be careful.

For each n ∈ N, let An = {decimals 0.a1a2 . . . an of length n}, where each ai ∈ {0, 1, 2, . . . , 9}. For
example 0.134 ∈ A3. Since 0.134 = 0.1340, we also have 0.134 ∈ A4. Once again we have nested
intervals

m ≤ n =⇒ Am ⊆ An,

whence the infinite intersection is simply
⋂

n∈N

An = A1 = {0, 0.1, . . . , 0.9}.
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Consider first a finite union: if m ∈N, then

m⋃

n=1

An = Am = {x ∈ [0, 1) : x has a decimal representation of length ≤ m}.

If one were to take the limit as m → ∞ of the property ‘length m decimal,’ it seems like the infinite
union should be the whole23 interval [0, 1]. This is another incorrect application of limits: one cannot
take the limit of a property! Instead we use the definiton:

x ∈
⋃

n∈N

An ⇐⇒ ∃n ∈N such that x ∈ An

⇐⇒ ∃n ∈N such that x is a decimal of length n.

It follows that
⋃

n∈N

An =
{

x ∈ [0, 1) : x has a finite decimal representation
}

Not only does this mean that there are no irrational numbers in
⋃

n∈N

An, but many rational numbers

are also excluded. For example 1
3 = 0.3333 · · · is not in any set An and is therefore not in the union.

Indexed Unions: Don’t Confuse Sets and Elements

It is easy to confuse, but important to distinguish between the sets

A = {An : n ∈ I} and ∪A =
⋃

n∈I

An.

A is a set whose elements are themselves sets. The second is the collection of all elements in any set
An. Consider the following examples.

Examples. 1. For each n ∈ {1, 2, 3}, let An be the plane {(x, y, z) : x + ny + n2z = 1} ⊆ R3.
A = {A1, A2, A3} has three elements: each of the planes A1, A2, A3 is an object in its own right.
The union ∪A = A1 ∪ A2 ∪ A3 is an infinite set consisting of all the points on the three planes.
For the intersection, a little work with simultaneous equations should convince you that

(x, y, z) ∈
⋂

n∈{1,2,3}
An ⇐⇒





x + y + z = 1
x + 2y + 4z = 1
x + 3y + 9z = 1

⇐⇒ (x, y, z) = (1, 0, 0).

The planes are drawn below.

2. For each m ∈ R∪ {∞}, let Am be the line24 through the origin in R2 with gradient m.
Each element of A is a line: there is one for each possible direction through the origin.
∪A is all of the points that lie on any line through the origin. Since every point can be joined to
the origin with a straight line, the set ∪A = R2 consists of all points in the plane.

23We would include 1 = 0.9999 · · ·
24We include the vertical line A∞.
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It should be clear that all the lines intersect at the origin, and so ∩A = {(0, 0)}.
The collection of lines A = {Am : m ∈ R ∪ {∞}} is the famous projective space P(R2); this is a
very different set from R2!
This example also shows that indexing sets don’t have to be simple sets of integers. It is also
possible to index the same set using I = [0, π). If we define Bθ to be the line through the origin
making an angle θ with the positive x-axis, we would then have Bθ = Atan θ .

Example 1: Three elements, or an infinite
number?

A1

A2
A4

A0.5

A−3

A−0.75

A−0.2
A0

A∞

Example 2: Elements in P(R2)

Aside: The Cantor Set
For a bit of fun, we can use infinite intersections to create self-similar sets, or fractals. Here is a

famous example: the Cantor middle-third set.
Construct a sequence of sets Cn for n ∈ N0 by repeatedly removing the middle third of each of

the intervals at each step, starting with [0, 1].

C0 = [0, 1],

C1 = [0, 1
3 ] ∪ [ 2

3 , 1],

C2 = [0, 1
9 ] ∪ [ 2

9 , 1
3 ] ∪ [ 2

3 , 7
9 ] ∪ [ 8

9 , 1], etc.

0 1
3

2
3 1

The sequence is drawn up to C9, with an animation below. To see the detail for the last few sets,
try zooming in as far as you can.

Define the Cantor set C to be the infinte intersection C =
∞⋂

n=0
Cn. This set has several interesting

properties.

Zero Measure (length) Intuitively, the length of a set of real numbers is the sum of the lengths of all
the intervals contained in the set. Since we start with the interval [0, 1] and remove a third of the set
each time, it should be clear that

length(C0) = 1, length(C1) =
2
3

, length(C2) =

(
2
3

)2

, etc.

Induction then gives us

length(Cn) =

(
2
3

)n

.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Alexander Grahn
//
// 3Dspintool.js
//
// version 20120301
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript')
//
// enables the Spin tool (also accessible via 3D toolbar or context menu)
// upon activation of the 3D scene; the scene then rotates around the upright
// axis while dragging with the mouse
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

runtime.setCurrentTool(runtime.TOOL_NAME_SPIN);





As n→ ∞ this goes to zero, so the Cantor set contains no intervals: it is purely made up of individual
points. This at least seems reasonable from the picture.

Non-emptiness The Cantor set C contains the endpoints of every interval removed at any stage of
its construction. In particular, 1

3n ∈ C for all n ∈ N0, and so C is an infinite set. Indeed it is more than
merely infinite, it is uncountably so, as we shall see in Chapter 8.

Self-similarity If C3 means ‘take all the numbers in the set C and divide them by three,’ and C3 + 2
3

means ‘take all the numbers in C3 and add 2
3 to them,’ then

C = C
3
∪
(C

3
+

2
3

)
. (∗)

Otherwise said, C is made up of two shrunken copies of itself, a classic property of fractals. If you
were to zoom into the Cantor set far enough that you couldn’t see the whole set, you would not know
what the scale was. In the following animation we are repeatedly zooming in on the second (of four)
groups of points.

To get further with the Cantor set, it is necessary to understand exactly what the elements of the
set are. This can be accomplished using the ternary representation. It can be shown that every number
x ∈ [0, 1] may be written in the form25

x = [0.a1a2a3 · · · ]3 =
∞

∑
n=1

an · 3−n =
a1

3
+

a2

32 +
a3

33 + · · ·

where each an ∈ {0, 1, 2}. For example:

[0.12]3 =
1
3
+

2
32 =

5
9

,
64
243

=
2
32 +

1
33 +

1
35 = [0.02101]3, 1 = [0.22222 · · · ]3.

For this last, use the formula for the sum of a geometric series to calculate
∞
∑

n=1
2
( 1

3

)n
= 2 · 1/3

1−1/3 = 1.

The only possibility whereby x can have two ternary expansions is if one of them terminates. The
other will eventually become a sequence of repeating 2’s. For example:26

[0.0222222 · · · ]3 = [0.1]3 =
1
3

and [0.10122222 · · · ]3 = [0.102]3 =
1
3
+

2
27

=
11
27

.

Theorem 6.10. Cn is the set of all numbers x ∈ [0, 1] with a ternary expansion whose first n digits are only
0 or 2. It follows that C is exactly the set of x ∈ [0, 1] with a ternary expansion containing only 0 and 2.

25Analogous to a decimal representation x =
∞
∑

n=1
an · 10−n = a1

10 + a2
102 +

a3
103 + · · · where an ∈ {0, 1, 2, . . . , 9}.

26This is ticklish to prove, as is the corresponding result for decimals: consider 1 = 0.99999999 · · ·
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Proof. We prove by induction.
(Base Case) The proposition is clearly true for C0 = [0, 1], as there is nothing to check.
(Induction Step) Assume that the proposition is true for some fixed n ∈ N0. Analogously to (∗)
above, observe that Cn+1 is built from two shrunken copies of Cn:

Cn+1 =
1
3

Cn ∪
(

1
3

Cn +
2
3

)
.

Multiplication by 1
3 shifts a ternary representation one position to the right.a

Addition of 2
3 adds [0.2]3 to the representation, inserting 2 in the (now empty) first ternary place.

Thus if Cn contains only 0’s and 2’s in its first n entries, Cn+1 contains only 0’s and 2’s in its first n + 1
entries.
By induction the proposition is true for all n ∈N.

aCompare to multiplication of a decimal by 1
10 .

As the Theorem shows, the Cantor set contains a lot of elements. For example:

[0.020202020 · · · ]3 = 2
∞

∑
n=1

3−2n =
2/9

1− 1/9
=

1
4
∈ C.

What is strange is that 1
4 is not the endpoint of any of the open intervals deleted during the construc-

tion of C, and yet we’ve already established that C contains no intervals! Cantor introduced his set
precisely because it was so challenging to the traditional concept of size: C seems to simultaneously
have very few elements and enormously many.

Generalizations and related concepts include Cantor dust C × C, the Sierpiński carpet and gasket,
and the von Koch snowflake.

Exercises

6.3.1 For each integer n, consider the set Bn = {n} ×R.

(a) Draw a picture of
4⋃

n=2
Bn (in the Cartesian plane).

Hint:
4⋃

n=2
Bn = B2 ∪ B3 ∪ B4.

(b) Draw a picture of the set C = [1, 5]× {−2, 2}. Careful! [1, 5] is an interval, while {−2, 2} is
a set containing two points.

(c) Compute
(

4⋃
n=2

Bn

)
∩ C.

(d) Compute
4⋃

n=2
(Bn ∩ C).

(e) Compare
(

4⋃
n=2

Bn

)
∩ C and

4⋃
n=2

(Bn ∩ C). What do you notice?
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6.3.2 For each real number r, define the interval Sr = [r− 1, r + 3]. Let I = {1, 3, 4}. Determine
⋃

r∈I
Sr

and
⋂

r∈I
Sr.

6.3.3 Give an example of four different subsets A, B, C and D of {1, 2, 3, 4} such that all intersections
of two subsets are different.

6.3.4 For each of the following collections of intervals, define an interval An for each n ∈ N such
that indexed collection {An}n∈N is the given collection of sets. Then find both the union and
intersection of the indexed collections of sets.

(a) {[1, 2 + 1), [1, 2 + 1
2 ), [1, 2 + 1

3 ), . . .}
(b) {(−1, 2), (− 3

2 , 4), (− 5
3 , 6), (− 7

4 , 8), . . .}
(c) {( 1

4 , 1), ( 1
8 , 1

2 ), (
1

16 , 1
4 ), (

1
32 , 1

8 ), (
1

64 , 1
16 ), . . .}

6.3.5 For each real number x, let Ax = {3,−2} ∪ {y ∈ R : y > x}. Find
⋃

x∈R

Ax and
⋂

x∈R

Ax.

6.3.6 In Example 2 on page 107, give a formal proof using the ceiling function that
⋃

n∈Z

An = R.

6.3.7 Use Definition 6.7 to prove the following results about nested sets.

(a) A1 ⊇ A2 ⊇ A3 ⊇ · · · =⇒
⋃

n∈N

An = A1.

(b) A1 ⊆ A2 ⊆ A3 ⊆ · · · =⇒
⋂

n∈N

An = A1.

6.3.8 Let C0(R) denote the set of continuous functions f : R→ R which satisfy f (0) = 0.
Let A f = {x ∈ [0, 1] : f (x) = 0} (so, for example, if f : R → R, x 7→ x(2x − 1), then
A f = {0, 1

2}). Prove that

⋃

f∈C0(R)

A f = [0, 1] and
⋂

f∈C0(R)

A f = {0}.

6.3.9 Let An be the set of decimals of length n, as described on page 109.

(a) Prove directly that the cardinality of An is 10n.

(b) Prove by induction that |An| = 10n.

(c) Prove that
∞⋃

n=1
An ⊆ Q.

(d) Prove by contradiction that 1
3 6∈

∞⋃
n=1

An.

6.3.10 Suppose that the following are true:

• ∀n ∈N, An 6= ∅.

• m ≥ n =⇒ Am ⊆ An.
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Prove or disprove the following conjectures:

(a)
293⋃
n=1

An 6= ∅

(b)
293⋂
n=1

An 6= ∅

(c)
⋃

n∈N

An 6= ∅

(d)
⋂

n∈N

An 6= ∅

6.3.11 (Hard) Let An = {m
n ∈ Q : 0 < m < n, m ∈N}, for each n ∈N.

(a) Write down A1, A2, A3, A4 explicitly.

(b) Prove that Am ⊆ Apm for any p ∈N.

(c) Argue that
⋃

n∈N

An = Q∩ (0, 1).

(d) Argue that further
⋃

n∈N

A2n = Q∩ (0, 1).

(e) Extend your proof to show that, for any fixed p ∈N,
⋃

n∈N

Apn = Q∩ (0, 1).
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7 Relations and Partitions

The mathematics of sets is rather basic, at least until one has a notion of how to relate elements of
sets with each other. We are already familiar with examples of this:

1. The usual order of the natural numbers (e.g. 3 < 7) is a way of relating/comparing two elements
of N. Recall that, as sets, order doesn’t matter: {3, 7} = {7, 3}. As ordered pairs however,
(3, 7) 6= (7, 3).

2. A function f : A→ B relates elements in the set A with those in B.

It turns out that the concept of ordered pair is essential to relating elements.

7.1 Relations

Definition 7.1. Let A and B be sets. A (binary) relation R from A to B is a set of ordered pairs

R ⊆ A× B.

A relation on A is a relation from A to itself.
If (x, y) ∈ R we can also write x R y, and say ‘x is related to y.’ Similarly x 6R y means (x, y) 6∈ R.

Examples. 1. R = {(1, 3), (2, 2), (2, 3), (3, 2), (4, 1), (5, 2)} is a relation from N to N. It is also a
relation from {1, 2, 3, 4, 5} to {1, 2, 3}.

2. R =
(
[1, 3)× (3, 4]

)
∪
{
(2t + 1, t2) : t ∈ [ 1

2 , 2]
}

is a relation from R to R. Be careful: it is easy to
confuse interval notation with the notation for ordered pair!

3. The diagonal R = {(a, a) : a ∈ A} is a relation on A, indeed

(x, y) ∈ R ⇐⇒ x = y

defines a relation on any set A. This example is where the term equivalence relation comes from.
x R y ⇐⇒ x = y simply says that R is ‘equals.’

4. If A = {all humans}, we may define R ⊆ A× A by

(a1, a2) ∈ R ⇐⇒ a1, a2 have a parent-child, or a sibling relationship.

In this example, the mathematical use of the word relation is identical to that in English. For
example, I am related to my sister, and my mother is related to me.

5. If A is a set, then ⊆ is a relation on the power set P(A).

When R is a relation between sets of numbers, we can often graph the relation. Examples 1 and 2
above would be graphed as follows:
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1

2

3

4

5N

1 2 3 4 5
N

Example 1.

0

1

2

3

4

5R

0 1 2 3 4 5
R

Example 2.

Not all relations between sets of numbers can be graphed: for example, graphing the relation Q×Q

is impossible!

Definition 7.2. If R ⊆ A× B is a relation, then its inverse R−1 ⊆ B× A is the set

R−1 = {(y, x) ∈ B× A : (x, y) ∈ R}.

To find the elements of R−1, you simply switch the components of each ordered pair in R.
Suppose A = B. We say that R is symmetric if R = R−1.

The following results should seem natural, even if some of the proofs may not be obvious.

Theorem 7.3. Given any relations R, S ⊆ A× A:

1. (R−1)−1 = R

2. R ⊆ S ⇐⇒ R−1 ⊆ S−1

3. (R ∪ S)−1 = R−1 ∪ S−1

4. (R ∩ S)−1 = R−1 ∩ S−1

5. R ∪ R−1 is symmetric

6. R ∩ R−1 is symmetric

Proof. Here are two of the arguments. Try the others yourself.

2. Assume that R ⊆ S, and suppose that (x, y) ∈ R−1. We must prove that (x, y) ∈ S−1. By the
definition of inverse,

(x, y) ∈ R−1 =⇒ (y, x) ∈ R =⇒ (y, x) ∈ S

=⇒ (x, y) ∈ S−1.

Therefore R−1 ⊆ S−1. For the converse, suppose that R−1 ⊆ S−1. Then, by an argument similar
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to the above, we see that (R−1)−1 ⊆ (S−1)−1. Now use 1. to see that

R−1 ⊆ S−1 =⇒ R ⊆ S.

5. By 3, (R ∪ R−1)−1 = R−1 ∪ (R−1)−1 = R−1 ∪ R = R ∪ R−1, and so R ∪ R−1 is symmetric.

Be careful! Several parts of Theorem 7.3 look suspiciously similar to earlier results and it is easy
to get confused. For example, 3. and 4. look almost like De Morgan’s laws, except that ∪ and ∩ do
not switch over. This is why it is important to be able to prove and come up with examples of such
statements. Suppose that you forget which result is correct: you might expect that

(R ∪ S)−1 =





R−1 ∪ S−1

or
R−1 ∩ S−1.

Now that you have two sensible guesses, you should be able to decide the correct one by thinking
about examples and, if necessary, proving it!

Example. Consider the example R = {(1, 3), (2, 2), (2, 3), (3, 2), (4, 1), (5, 2)} from earlier. This is
clearly not symmetric since (1, 3) ∈ R but (3, 1) /∈ R. We compute

R−1 = {(3, 1), (2, 2), (3, 2), (2, 3), (1, 4), (2, 5)},

and observe that

R ∩ R−1 = {(2, 2), (2, 3), (3, 2)} and

R ∪ R−1 = {(1, 3), (3, 1), (2, 2), (2, 3), (3, 2), (4, 1), (1, 4), (5, 2), (2, 5)}

are both symmetric.

1

2

3

4

5N

1 2 3 4 5
N

The relation R ∩ R−1

1

2

3

4

5N

1 2 3 4 5
N

The relation R ∪ R−1

The above pictures should confirm something intuitive: if you are able to graph a symmetric
relation, then the graph will have symmetry about the line y = x.
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Exercises

7.1.1 Draw pictures of the following relations on R.

(a) R = {(x, y) : y ≤ x and y ≤ 2 and y ≤ 2− x}.
(b) S = {(x, y) : (x− 4)2 + (y− 1)2 ≤ 9}.

Also draw the inverse of each relation.

7.1.2 A relation is defined on N by a R b ⇐⇒ a
b ∈ N. Let c, d ∈ N. Under what conditions is it

permissable to write c R−1 d?

7.1.3 Let R ⊆ {1, 2, 3, 4} × {1, 2, 3, 4} be the relation

R = {(1, 3), (1, 4), (2, 2), (2, 4), (3, 1), (3, 2), (4, 4)}.

(a) Compute R−1.

(b) Compute the relations R ∪ R−1 and R ∩ R−1, and check that they are symmetric.

7.1.4 For the relation R = {(x, y) : x ≤ y} defined on N, what is R−1?

7.1.5 Let A be a set with |A| = 4. What is the maximum number of elements that a relation R on A
can contain such that R ∩ R−1 = ∅?

7.1.6 Give formal proofs of the remaining cases (1, 3, 4 & 6) of Theorem 7.3.
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7.2 Functions revisited

Now that we have the language of relations, we can properly define functions. Recall that a function
f : A → B is a rule that assigns one, and only one, element of B to each element of A. We may
therefore view f as a collection of ordered pairs in A× B:

{(a, f (a)) : a ∈ A}.
This set is nothing more than the graph of the function, and, being a set of ordered pairs, it is a relation.

Definition 7.4. Let R ⊆ A× B be a relation from A to B. The domain and range of R are the sets

dom(R) = {a ∈ A : (a, b) ∈ R for some b ∈ B},
range(R) = {b ∈ B : (a, b) ∈ R for some a ∈ A}.

A function from A to B is a relation f ⊆ A× B satisfying the following conditions:

1. dom( f ) = A,

2. (a, b1), (a, b2) ∈ f =⇒ b1 = b2.

The two conditions can be thought of as saying:

1. Every element of A is related to at least one element of B.

2. Every element of A is related to at most one element of B.

Putting these together, we see that a relation R ⊆ A× B is a function if every a ∈ A is the first entry
of one (and only one) ordered pair (a, b) ∈ R. The second condition is the vertical line test, familiar
from calculus.

B

Aa

f (a)

b1 = b2 = f (a): a function

B

Aa

b1

b2

b1 6= b2: not a function

We can also think about injectivity and surjectivity (recall Definition 4.11) in this context. A func-
tion f ⊆ A× B is:

• Injective if no two pairs in f share the same second entry.

• Surjective if every b ∈ B appears as the second entry of at least one pair in f .

• Bijective if every b ∈ B appears as the second entry of one (and only one) ordered pair (a, b) ∈ f .
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Definition 7.5. The inverse of a function f ⊆ A× B is the inverse relation f−1 ⊆ B× A.

Since to compute the inverse relation we simply switch the components of each ordered pair, it
should be clear that

dom( f−1) = range( f ) and range( f−1) = dom( f ).

In general, you should expect the inverse of a function to be merely a relation and not a function in its
own right. Theorem 7.6 will discuss when the inverse relation is a function. The inverse of a function
is usually written in set notation. If V ⊆ B, then we defined the inverse image of V (or pull-back of V)
by

f−1(V) = {a ∈ A : f (a) ∈ V}.

In particular, if b ∈ B, then

f−1({b}) = {a ∈ A : f (a) = b}.

Both are subsets of A. When f−1 is a function, each set f−1({b}) consists of a single point of A (one
for each b ∈ B). Only in this case are we entitled to write f−1(b) = a.

Examples. 1. Let A = B = {1, 2, 3} and f = {(1, 3), (2, 1), (3, 3)}.
Note that dom( f ) = {1, 2, 3} = A, and that each element of A appears exactly once as the first
element in a pair (a, b) ∈ f . This relation therefore satisfies both conditions necessary to be a
function. In more elementary language we would write f (1) = 3, f (2) = 1, and f (3) = 3.

f is not injective, since 3 appears twice as a second entry of an ordered pair in f .
f is not surjective, since 2 never appears as the second entry of an ordered pair in f .

The inverse relation f−1 = {(3, 1), (1, 2), (3, 3)} ⊆ B× A is not a function by dint of failing both
conditions in Definition 7.4.

• dom( f−1) = {1, 3} is not the whole of B.

• (3, 1) ∈ f−1 and (3, 3) ∈ f−1, but 1 6= 3.

The graphs of f and f−1 are shown below.

1

2

3
N

1 2 3
N

f : A→ B

1

2

3
N

1 2 3
N

f−1 ⊆ B× A: not a function
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2. Let A = B = R and f = {(x, x2) : x ∈ R}. This is just the function f (x) = x2.

The inverse is not a function:

f−1 =
{
(x2, x) : x ∈ R

}
=
{
(y,±√y) : y ≥ 0

}
,

since, for example, f−1({4}) = {−2, 2} is not a single-element set.

1

2

3

4R

−2 −1 0 1 2
R

f : A→ B

−2

−1

0

1

2R

1 2 3 4
R

f−1 ⊆ B× A: not a function

3. Let A = B = R and f = {(x, x3) : x ∈ R}. This is the function f (x) = x3.

This time, the inverse is also a function, f−1(y) = 3
√

y:

f−1 =
{
(x3, x) : x ∈ R

}
=
{
(y, 3
√

y) : y ∈ R
}

.

−8

−4

4

8R

−2 −1 1 2
R

f : A→ B
−2

−1

1

2R

−8 −4 4 8
R

f−1 : B→ A is a function

4. Let A = R, B = Q and f =
{
(x, x) : x ∈ Q

}
∪
{
(x, 0) : x 6∈ Q

}
. Then f is a function

f (x) =

{
x if x ∈ Q,
0 if x 6∈ Q.

This is a surjective function since every element of B = Q appears as the second entry in an
ordered pair (a, b) ∈ f .
It is not injective since zero appears more than once as the second entry of an ordered pair. For
example,

(
√

2, 0), (
√

3, 0) ∈ f .

Intuitively this is simply f (
√

3) = f (
√

2).
The inverse relation f−1 is not a function; for example f−1({0}) is the set {0} ∪ (R \Q), not a
single value.
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These examples help to illustrate the following important theorem.

Theorem 7.6. A relation f−1 ⊆ B× A is a function ⇐⇒ f is bijective (both injective and surjective).

Proof. Recalling Definition 7.4, we see that

f−1 is a function ⇐⇒





dom( f−1) = B,
and

(b, a1), (b, a2) ∈ f−1 =⇒ a1 = a2.

The first of these is equivalent to range( f ) = B, and says that f is surjective.
The second is equivalent to (a1, b), (a2, b) ∈ f =⇒ a1 = a2, which says that f is injective.

Equality of functions
There are two competing notions of equality of functions, dependent on what definition you take

as fundamental.

Same domain, same graph, same codomain f = g means that f and g are the same subset of the same
A× B. This notion is preferred by set theorists because it sticks rigidly to the idea that a function
is a relation, and it requires both the domain A and codomain B to be explicit.

Same domain, same graph f = g means that f ⊆ A× B, g ⊆ A× C, and (a, b) ∈ f ⇐⇒ (a, b) ∈ g.
This notion considers fundamental the notion of what a function does, rather than its strict status
as a relation; if two functions do the same thing to elements of the same domain then they are
the same. This looser notion of equality is used more often.

Unfortunately the second notion, while intuitive, has a problem. For example, let

f : R→ R, and g : R→ [−1, 1] satisfy f (x) = g(x) = sin x.

Although f and g have the same graph, the different codomains of f and g mean that these are differ-
ent functions with respect to the first notion. Under the second notion, they are the same. However, g
is surjective while f is not, so don’t we want f and g to be different?!

The same problem does not arise when considering domains. For example, in calculus you might
have compared functions such as

f (x) = x2 + 2, and g(x) =
(x2 + 2)(x− 1)

x− 1
.

The implied domains of these functions are dom( f ) = R and dom(g) = R \ {1}. Even though these
functions have the same graph whenever both are defined, regardless of which notion you choose we
have f 6= g, since the functions have different domains.
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Exercises

7.2.1 Suppose that f ⊆ {1, 2, 3, 4} × {1, 2, 3, 4, 5, 6, 7} is the relation

f = {(1, 1), (2, 3), (3, 5), (4, 7)}.

(a) Show that f is a function f : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6, 7}. Can you find a concise formula
f (x) to describe f ?

(b) Is f injective? Justify your answer.

(c) Suppose that g ⊆ {1, 2, 3, 4} × B is another relation so that the graphs of f and g are iden-
tical: i.e.

{
(a, f (a)) : a ∈ {1, 2, 3, 4}

}
=
{
(a, g(a)) : a ∈ {1, 2, 3, 4}

}
.

as sets. If g is a bijective function, what is B?

7.2.2 Decide whether each of the following relations are functions. For those which are, decide
whether the function is injective and/or surjective.

(a) R = {(x, y) ∈ [−1, 1]× [−1, 1] : x2 + y2 = 1}
(b) S = {(x, y) ∈ [−1, 1]× [0, 1] : x2 + y2 = 1}
(c) T = {(x, y) ∈ [0, 1]× [−1, 1] : x2 + y2 = 1}
(d) U = {(x, y) ∈ [0, 1]× [0, 1] : x2 + y2 = 1}

7.2.3 In Example 2 on page 122, explain why the functon f is neither injective nor surjective in the
same manner as we did for Example 1.

7.2.4 (a) Express the function f : R→ R : x 7→ x4 + 3 as a relation.

(b) What is the inverse relation f−1?

(c) Use Definition 7.4 to prove that the relation f−1 is not a function.

(d) Prove directly from Definition 4.11 that f is not injective and not surjective. Compare your
arguments with your answer to part (c).
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7.3 Equivalence Relations

In mathematics, the notion of equality is not as simple as one might think. The idea of two numbers
being equal is straightforward, but suppose we want to consider two paths between given points as
‘equal’ if and only if they have the same length? Since two ‘equal’ paths might look very different,
is this a good notion of equality? Mathematicians often want to gather together objects that have a
common property and then treat them as if they were a single object. This is done using equivalence
relations and equivalence classes.

First recall the alternative notation for a relation on a set A: if R ⊆ A× A is a relation on A, then
x R y has the same meaning as (x, y) ∈ R. We might read x R y as ‘x is R-related to y.’

Definition 7.7. A relation R on a set A may be described as reflexive, symmetric or transitive if it
satisfies the following properties:

Reflexivity ∀x ∈ A, x R x (every element of A is related to itself)

Symmetry ∀x, y ∈ A, x R y =⇒ y R x (if x is related to y, then y is related to x)

Transitivity ∀x, y, z ∈ A, x R y and y R z =⇒ x R z (if x is related to y, and y is related to z,
then x is related to z)

Symmetry is exactly the same notion as in Definition 7.2.

Examples. 1. Let A = R and let R be ≤. Thus 2 ≤ 3, but 7 � 4. We check whether R satisfies the
above properties.

Reflexivity True. ∀x ∈ R, x ≤ x.

Symmetry False. For example, 2 ≤ 3 but 3 � 2.

Transitivity True. ∀x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z.

2. Let A be the set of lines in the plane and define `1 R `2 ⇐⇒ `1 and `2 intersect.

Reflexivity True. Every line intersects itself, so ` R ` for all ` ∈ A.

Symmetry True. For all lines `1, `2 ∈ A, if `1 intersects `2, then
`2 intersects `1..

Transitivity False. As the picture illustrates, we may let `1 and
`3 be parallel lines, and `2 cross both of these. Then
`1 R `2 and `2 R `3, but `1 6R `3.

`1

`3

`2

Definition 7.8. An equivalence relation is a relation ∼ which is reflexive, symmetric and transitive.

The symbol ∼ is almost universally used for an abstract equivalence relation. It can be read as
‘related to,’ ‘tilde,’ or ‘twiddles.’ The two examples above are not equivalence relations because they
fail one of the three conditions. Here is the simplest equivalence relation.

Example. Equals ‘=’ is an equivalence relation on any set, hence the name!

125



Read the definitions of reflexive, symmetric and transitive until you are certain of this fact. There
are countless other equivalence relations: here are a few.

Examples. 1. For all x, y ∈ Z, let x ∼ y ⇐⇒ x − y is even. We claim that ∼ is an equivalence
relation on Z.

Reflexivity ∀x ∈ Z, x− x = 0 is even, hence x ∼ x.

Symmetry ∀x, y ∈ Z, x ∼ y =⇒ x− y is even =⇒ y− x is even =⇒ y ∼ x.

Transitivity ∀x, y, z ∈ Z, if x ∼ y and y ∼ z, then x− y and y− z are even. But the sum of two
even numbers is even, hence x− z = (x− y) + (y− z) is even, and so x ∼ z.

2. Let A = {all students taking this course}. For all x, y ∈ A, let x ∼ y ⇐⇒ x achieves the same
letter-grade as y. Then ∼ is an equivalence relation on A.

Reflexivity ∀x ∈ A, x ∼ x since everyone scores the same as themself!

Symmetry ∀x, y ∈ A, x ∼ y =⇒ x achieves the same letter-grade as y

=⇒ y achieves the same letter-grade as x

=⇒ y ∼ x

Transitivity ∀x, y, z ∈ A, if x ∼ y and y ∼ z, then x achieves the same as y who achieves the
same as z, whence x achieves the same as z. Thus x ∼ z.

3. For all x, y ∈ Z, let x ∼ y ⇐⇒ x2 ≡ y2 (mod 5). Then ∼ is an equivalence relation on Z.

Reflexivity ∀x ∈ Z, x ∼ x since x2 is always congruent to itself!

Symmetry ∀x, y ∈ Z, x ∼ y =⇒ x2 ≡ y2 (mod 5)

=⇒ y2 ≡ x2 (mod 5)

=⇒ y ∼ x

Transitivity ∀x, y, z ∈ Z, if x ∼ y and y ∼ z, then x2 ≡ y2 and y2 ≡ z2 (mod 5). But then
x2 ≡ z2 (mod 5) and so x ∼ z.

The most important thing to observe with each of these examples is that an equivalence relation
separates elements of a set into subsets where elements share a common property (even/oddness,
letter-grade, etc.). The next definition formalizes this idea.

Definition 7.9. Let ∼ be an equivalence relation on X. The equivalence class of x is the set

[x] = {y ∈ X : y ∼ x}.

X/∼ is the set of all equivalence classes: the quotient of X by ∼, or ‘X mod ∼.’

Let us think about the definition in the context of our examples.

Examples. 1. [0] = {y ∈ Z : y ∼ 0} = {y ∈ Z : y is even} is the set of even numbers. Note that
[0] is also equal to [2], [4], [6], etc.
The other equivalence class is [1] = {y ∈ Z : y− 1 is even}, which is the set of odd numbers.
The quotient set is Z/∼ =

{
[0], [1]

}
=
{
{even numbers}, {odd numbers}

}
.
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2. There is one equivalence class for each letter grade awarded. Each equivalence class con-
tains all the students who obtain a particular letter-grade. If we call the equivalence classes
A+, A, A−, B+, . . . , F, where, say, B = {students obtaining a B-grade}, then

{Students}/
∼ = {A+, A, A−, B+, . . . , F}.

3. The equivalence classes for this example are a little tricky. First observe that

x ≡ y (mod 5) =⇒ x2 ≡ y2 (mod 5),

so that there are at most five equivalence classes; those of 0, 1, 2, 3 and 4. Are they distinct? If
we square each of these modulo 5, we obtain

x (mod 5) 0 1 2 3 4
x2 (mod 5) 0 1 4 4 1

Notice that 1 ∼ 4, so they share an equivalence class. Similarly 2 ∼ 3. Indeed the distinct
equivalence classes are

[0] = {x ∈ Z : x ≡ 0 (mod 5)}
[1] = {x ∈ Z : x ≡ 1, 4 (mod 5)}
[2] = {x ∈ Z : x ≡ 2, 3 (mod 5)}

In this case the quotient is the set

Z/
∼ =

{
[0], [1], [2]

}
.

Here is one further example of an equivalence relation, this time on R2. Be careful with the
notation: R2 = R×R is already a Cartesian product, so a relation on R2 is a subset of R2 ×R2!

Example. Let ∼ be the relation on R2 defined by (x, y) ∼ (v, w) ⇐⇒ x2 + y2 = v2 + w2. We claim
that this is an equivalence relation.

Reflexivity ∀(x, y) ∈ R2, x2 + y2 = x2 + y2.

Symmetry ∀(x, y), (v, w) ∈ R2, (x, y) ∼ (v, w) =⇒ x2 + y2 = v2 + w2

=⇒ v2 + w2 = x2 + y2

=⇒ (v, w) ∼ (x, y)

Transitivity ∀(x, y), (v, w), (p, q) ∈ R2, if (x, y) ∼ (v, w) and (v, w) ∼ (p, q), then x2 + y2 =
v2 + w2 and v2 + w2 = p2 + q2. But then x2 + y2 = p2 + q2 and so (x, y) ∼ (p, q).

∼ is therefore an equivalence relation. But what are the equivalence classes? By definition,

[(x, y)] =
{
(v, w) ∈ R2 : v2 + w2 = x2 + y2}.
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This isn’t particularly helpful. Indeed it is easier to think of
each of these sets as

{
(v, w) ∈ R2 : v2 + w2 is constant

}
.

Each equivalence class is therefore a circle centered at the ori-
gin! Some of the equivalence classes are drawn in the pic-
ture: the class [(1, 0)] is highlighted. Moreover, the quotient
set is

R2/
∼ = {circles centered at the origin}.

−1

1
w

−1 1
v

Exercises

7.3.1 A relation R is antisymmetric if ((x, y) ∈ R) ∧ ((y, x) ∈ R) =⇒ x = y. Give examples of
relations R on A = {1, 2, 3} having the stated property.

(a) R is both symmetric and antisymmetric.
(b) R is neither symmetric nor antisymmetric.
(c) R is transitive but R ∪ R−1 is not transitive.

7.3.2 Let S = {(x, y) ∈ R2 : sin2 x + cos2 y = 1}.
(a) Give an example of two real numbers x, y such that x ∼ y.
(b) Is S reflexive? Symmetric? Transitive? Justify your answers.

7.3.3 Each of the following relations ∼ is an equivalence relation on R2. Identify the equivalence
classes and draw several of them.

(a) (a, b) ∼ (c, d) ⇐⇒ ab = cd.
(b) (v, w) ∼ (x, y) ⇐⇒ v2w = x2y.

7.3.4 (a) Let ∼ be the relation defined on Z by a ∼ b ⇐⇒ a + b is even. Show that ∼ is an
equivalence relation and determine the distinct equivalence classes.

(b) Suppose that ‘even’ is replaced by ‘odd’ in part (a). Which of the properties reflexive,
symmetric, transitive does ∼ possess?

7.3.5 For each of the following relations R on Z, decide whether R is reflexive, symmetric, or transi-
tive, and whether R is an equivalence relation.

(a) a R b ⇐⇒ a ≡ b (mod 3) or a ≡ b (mod 4).
(b) a R b ⇐⇒ a ≡ b (mod 3) and a ≡ b (mod 4).

7.3.6 We call a real number x small if |x| ≤ 1. Let R be the relation on the set of real numbers defined
by

x R y ⇐⇒ x− y is small.

Prove or disprove: R is an equivalence relation on R.
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7.3.7 Let A = {1, 2, 3, 4, 5, 6}. The distinct equivalence classes resulting from an equivalence relation
R on A are {1, 4, 5}, {2, 6}, and {3}. What is R? Give your answer as a subset of A× A.

7.3.8 ⊆ is a relation on any set of sets. Is ⊆ reflexive, symmetric, transitive? Prove your assertions.

7.3.9 Let S be the set of all polynomials of degree at most 3. An element s ∈ S can then be expressed
as

s(x) = ax3 + bx2 + cx + d, where a, b, c, d ∈ R.

A relation R on S is defined by

p R q ⇐⇒ p and q have a common root.

For example p(x) = (x − 1)2 and q(x) = x2 − 1 have the root 1 in common so that p R q.
Determine which of the properties reflexive, symmetric and transitive are possessed by R.

7.3.10 Let A = {2m : m ∈ Z}. A relation ∼ is defined on the set Q+ of positive rational numbers by

a ∼ b ⇐⇒ a
b
∈ A

(a) Show that ∼ is an equivalence relation.

(b) Describe the elements in the equivalence class [3].

7.3.11 A relation is defined on the set A = {a + b
√

2 : a, b ∈ Q, a + b
√

2 6= 0} by x ∼ y ⇐⇒ x
y ∈ Q.

Show that ∼ is an equivalence relation and determine the distinct equivalence classes.

7.3.12 The reflexive, symmetric and transitive closures of a relation R are defined respectively as the
smallest relations containing R which also exhibit the given property. Find each of the three
closures of R = {(1, 2), (2, 3), (3, 3)} ⊆ Z×Z.

7.3.13 Recall the description of the real projective line (page 110): if Am is the line through the origin
with gradient m, then

P(R2) = {Am : m ∈ R∪ {∞}}.

Define a relation on R2
∗ = R2 \ {(0, 0)} by (a, b) ∼ (c, d) ⇐⇒ ad = bc.

(a) Prove that ∼ is an equivalence relation.

(b) Find the equivalence classes of ∼. How do the equivalence classes differ from the lines
Am?

7.3.14 Suppose that R, S are relations on some set X. Define the composition R ◦ S to be the relation

(a, c) ∈ R ◦ S ⇐⇒ ∃b ∈ X such that (a, b) ∈ R and (b, c) ∈ S.

(a) If R = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)} and S = {(1, 2), (1, 3), (2, 1), (3, 3)}, find R ◦ S.

(b) Suppose that R and S are reflexive. Prove that R ◦ S is reflexive.

(c) Suppose that P and Q are symmetric. Prove that (x, y) ∈ P ◦Q ⇐⇒ (y, x) ∈ Q ◦ P.
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(d) Give an example of symmetric relations P, Q such that P ◦ Q is not symmetric. Conclude
that if P, Q are equivalence relations, then P ◦Q need not be an equivalence relation.

7.3.15 (Only for those who have studied Linear Algebra) Let ∼ be the relation on the set of 2 × 2 real
matrices given by A ∼ B ⇐⇒ ∃M such that B = MAM−1.

(a) Prove that ∼ is an equivalence relation.

(b) What is the equivalence class of the identity matrix?

(c) Show that
( −11 15
−5 9

)
∼
(

4 10
0 −6

)
(Hint: think about diagonalizing)

(d) (Hard) Suppose that L : R2 → R2 is a linear map and U ,V are bases of R2. Suppose that
A = [L]U and B = [L]V are the matrix representations of L with respect to the two bases.
Prove that A ∼ B.

(e) (Hard) Suppose that A, B have the same, but distinct, eigenvalues λ1 6= λ2. Prove that
A ∼ B. Again use diagonalization, the challenge here is to make your proof work even when the
eigenvalues are complex numbers.
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7.4 Partitions

Recall the important observation about our equivalence relation examples: every element of the orig-
inal set of objects ends up in exactly one equivalence class. For instance, every integer is either even or
odd but not both. The equivalence classes partition the original set in the same way that cutting a
cake partitions the crumbs: each crumb ends up in exactly one slice. We shall prove in a moment that
equivalence relations always do this. Before doing so we reverse the discussion.

Definition 7.10. Let X be a set and A = {An : n ∈ I} be a collection of non-empty subsets An ⊆ X.
We say that X is partitioned by A if

1. X =
⋃

n∈I
An. (the An together make up X)

2. If Am 6= An, then Am ∩ An = ∅. (distinct An are pairwise disjointa)

We describe the collection A as a partition of X.
aRecall that two sets A, B are disjoint if A ∩ B = ∅: see Definition 4.6. In this definition we don’t require the sets An to

all be different, some could be identical to each other.

Example. Partition the set X = {1, 2, 3, 4, 5} into subsets A1 = {1, 3}, A2 = {2, 4} and A3 = {5}.
Now consider the relation R on X, defined by

R = {(1, 1), (1, 3), (3, 1), (3, 3), (2, 2), (2, 4), (4, 2), (4, 4), (5, 5)}.
What does R have to do with the partition? R was constructed by insisting that

x R y ⇐⇒ x and y are in the same subset An.

Run through your mental checklist: reflexive? symmetric? transitive? Indeed R is an equivalence
relation! Moreover, the equivalence classes of R are exactly the sets A1, A2, A3. For example, because
1 belongs to A1, the element 1 should be related to every other element in A1. Therefore, the pairs
(1, 1) and (1, 3) should be in R.

The example suggests that partitioning a set actually defines an equivalence relation. Combining
this with our previous observation you should be starting to belive that partitions and equivalence
relations are essentially the same thing.

Examples. 1. The integers can be partitioned according to their remainder modulo 3: define

Am = {z ∈ Z : z ≡ m (mod 3)},
then Z = A0 ∪ A1 ∪ A2. This is certainly a partition:

• Every integer z has remainder of 0, 1 or 2 after division by 3, and so every integer is in
some set Am.

• No integer has two distinct remainders modulo 3, so the sets A0, A1, A2 are disjoint.

2. More generally, if n ∈N, then the set of integers Z is partitioned into n sets A0, . . . , An−1 where
Am = {z ∈ Z : z ≡ m (mod n)} is the set of integers with remainder m upon dividing by n.

3. R is partitioned by the sets of rational and irrational numbers: R = Q∪ (R \Q).
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Finally, here is an example of a relation which doesn’t produce a partition.

Example. Let R = {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (4, 3), (4, 4)} be a relation on X = {1, 2, 3, 4}
and define the sets

An = {x ∈ X : (n, x) ∈ R}.

Thus An is the set of all elements of X which are related to n. We quickly see that

A1 = {3, 4}, A2 = {2, 3}, A3 = {1, 2}, A4 = {3, 4}.

The collection of sets An is as follows:

{An}n∈X =
{

A1, A2, A3, A4
}
=
{
{3, 4}, {2, 3}, {1, 2}

}
,

where we only have three sets in the collection since A4 = A1. This collection is not a partition
because, for instance, 2 ∈ {2, 3} ∩ {1, 2}. In the language of the definition, {2, 3} 6= {1, 2} but
{2, 3} ∩ {1, 2} 6= ∅. More importantly, you should convince yourself that R is not an equivalence
relation.

Before we present the fundamental result of the chapter, we prove a lemma.

Lemma 7.11. Suppose that ∼ is an equivalence relation. Then x ∼ y ⇐⇒ [x] = [y].

Proof. (⇐) If [x] = [y], then x ∈ [y], whence x ∼ y.
(⇒) Suppose that x ∼ y. We begin by showing the inclusion [x] ⊆ [y]. Let z ∈ [x], then

z ∼ x and x ∼ y =⇒ z ∼ y =⇒ z ∈ [y]. (Transitivity)

Therefore [x] ⊆ [y]. The argument is symmetric in x and y, so we also have [y] ⊆ [x], and thus
[x] = [y].

Theorem 7.12. Let X be a set.

1. If ∼ is an equivalence relation on X, then X is partitioned by the equivalence classes of ∼.

2. If {An}n∈I is a partition of X, then the relation ∼ on X defined by

x ∼ y ⇐⇒ ∃n ∈ I such that x ∈ An and y ∈ An

is an equivalence relation.
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Each element of X ends up in exactly one subset. In the language of the Theorem, we have

A1 = [a], A2 = [b] = [c], b ∼ c, a � b, a � c.

Some things to consider while reading the proof:

• Keep your eyes on the picture: it’s where your intuition comes from, and it’s how you should
remember the result. The algebra merely confirms that the picture is telling a legitimate story.

• In part 1. of the proof, look for where the reflexive, symmetric and transitive assumptions about
∼ are used. Why do we need ∼ to be an equivalence relation?

• Similarly, in part 2., look for where we use both parts of the defintion of partition. Why are both
assumptions required?

Proof. 1. Assume that ∼ is an equivalence relation on X. To prove that the equivalence classes of
∼ partition X, we must show two things:

(a) That every element of X is in some equivalence class.

(b) That the distinct equivalence classes are pairwise disjoint: if [x] 6= [y], then [x] ∩ [y] = ∅.

For (a), we only need reflexivity: ∀x ∈ X we have x ∼ x. Otherwise said, x ∈ [x], whence every
element of X is in the equivalence class defined by itself.

For (b), we prove by the contrapositive method and show that [x] ∩ [y] 6= ∅ =⇒ [x] = [y].
Assume that [x] ∩ [y] 6= ∅. Then ∃z ∈ [x] ∩ [y]. This gives

z ∼ x and z ∼ y =⇒ x ∼ z and z ∼ y (Symmetry)
=⇒ x ∼ y (Transitivity)
=⇒ [x] = [y] (Lemma 7.11)

We have proved (b) and therefore part 1. of the theorem.

2. Now suppose that {An}n∈I is a partition of X and define ∼ by

x ∼ y ⇐⇒ ∃n ∈ I such that x ∈ An and y ∈ An.

We must prove the reflexivity, symmetry and transitivity of ∼.
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Reflexivity Every x ∈ X is in some An. Thus x ∼ x for all x ∈ X.

Symmetry If x ∼ y, then ∃n ∈ I such that x, y ∈ An. But then y, x ∈ An and so y ∼ x.

Transitivity Let x ∼ y and y ∼ z. Then ∃p, q ∈ I such that x, y ∈ Ap and y, z ∈ Aq. Since
{An}n∈I is a partition and y ∈ Ap ∩ Aq, we necessarily have p = q. Thus x, z ∈ Ap
and so x ∼ z.

Thus ∼ is an equivalence relation.

Reading the proof carefully, you should see that reflexivity comes from the fact that X =
⋃

n∈I
An,

while transitivity is due to the pairwise disjointness of the parts of the partition. Symmetry is essen-
tially free because the definition of ∼ is symmetric in x and y.

Examples of partitions are especially easy to see with curves in the plane. Here we return to the
example on page 127 and describe things in our new language.

Example. For each real number r ≥ 0, define the set

Ar =
{
(x, y) ∈ R2 : x2 + y2 = r2}.

This is simply the circle of radius r centered at the origin. We
check that {Ar}r∈R+

0
is a partition of R2.

• Every point of the plane lies on some circle. Precisely,
(x, y) ∈ A√x2+y2 since

√
x2 + y2 is the distance of (x, y)

from the origin. Thus R2 =
⋃

r∈R+
0

Ar.

• If r1 6= r2, then the concentric circles Ar1 and Ar2 do not
intersect. Thus Ar1 ∩ Ar2 = ∅. −1

1
y

−1 1
x

Now define a relation ∼ on R2 via

(x, y) ∼ (v, w) ⇐⇒ ∃r ≥ 0 such that (x, y), (v, w) both lie on the circle Ar.

By Theorem 7.12 this is an equivalence relation. We can also check explicitly: dropping any mention
of the radius r, we see that

(x, y) ∼ (v, w) ⇐⇒ x2 + y2 = v2 + w2.

This is exactly the equivalence relation described on page 127. The equivalence classes are precisely
the sets Ar. Indeed

[(v, w)] = {(x, y) ∈ R2 : x2 + y2 = v2 + w2} = A√v2+w2

is just the circle of radius
√

v2 + w2.

134



Geometric Examples

The language of equivalence relations and partitions is used heavily in geometry and topology to
describe complex shapes. Here are a couple of examples.

The Möbius Strip Take a rectangle X = [0, 6]× [0, 1] and partition into the following subsets.

• If a point does not lie on the left or right edge of the rectangle, place it in a subset by itself:
{(x, y)} for x 6= 0, 6,

• If a point does lie on the left or right edge of the rectangle, place it in a subset with one point
from the other edge: {(0, y), (6, 1− y)} for any y.

The rectangle is drawn below, where the points on the left and right edges are colored red. The
arrows indicate how the edges are paired up. For example the point (0, 0.8) (high on the left near the
tip of the arrow) is paired with (6, 0.2) (low on the right edge of the rectangle).

These subsets clearly partition the rectangle X. The partitions define an equivalence relation ∼
on X in accordance with Theorem 7.12. Note that there are infinitely many equivalence classes. How
can we interpret the quotient set X/∼?

This is easier to visualize than you might think. Since each point on the left edge of the rectangle
is in an equivalence class with a point on the right edge, we imagine gluing the two edges together
in such a way that the correspoinding points are touching. In the picture, we imagine holding X
like a strip of paper, giving one side a twist, and then gluing the edges together. This is the classic
construction of a Möbius strip.

Rectangle Half twist

Glue arrows to get Möbius strip

The Cylinder One could construct a cylinder similarly to the Möbius strip, by identifying edges of
the rectangle but without applying the half-twist. Instead we do something a little different.

Let X = R2 with equivalence relation ∼ defined by

(a, b) ∼ (c, d) ⇐⇒ a− c ∈ Z and b = d.

The equivalence classes are horizontal strings of points with the same y co-ordinate. If we imagine
wrapping R2 repeatedly around a cylinder of circumference 1, all of the points in a given equivalence

class will now line up. The set of equivalence classes R2/
∼ can therefore be vizualized as the cylinder.
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Alternatively, you may imagine piercing a roll of toilet paper and unrolling it. The single puncture
now becomes a row of (almost!27) equally spaced holes. In the picture, the left hand side is (part of)
the plane R2, displayed so that points in each equivalence class have the same color. The three
horizontal dots are all in the same equivalence class. We roll up the plane into a cyclinder so that all
the points with the same color end up at the same place.

wrap
around

x

y

0 1

More complex shapes can be created by other partitions/relations. If you want a challenge in
visualization, consider why the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ a− c ∈ Z and b− d ∈ Z

on R2 defines a torus (the surface of a ring-doughnut).

Exercises

7.4.1 For each of the collections {An}n∈R, determine whether the collections partition R2. Justify
your answers, and sketch several of the sets An.

(a) An = {(x, y) ∈ R2 : y = 2x + n}.
(b) An = {(x, y) ∈ R2 : y = (x− n)2}.
(c) An = {(x, y) ∈ R2 : xy = n}.
(d) An = {(x, y) ∈ R2 : y4 − y2 = x− n}.

7.4.2 Let X be the set of all humans. If x ∈ X, we define the set

Ax = {people who had the same breakfast or lunch as x}.

(a) Does the collection {Ax}x∈X partition X? Explain.

(b) Is your answer different if the or in the definition of Ax is changed to and?

27Unfortunately for the analogy, toilet paper has purposeful thickness!
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If Jane and Tom had both had the same breakfast and lunch, then AJane = ATom so there are likely many
fewer distinct sets Ax than there are humans!

7.4.3 Let X = {1, 2, 3}. Define the relation R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)} on X.

(a) Which of the properties reflexive, symmetric, transitive does R satisfy?

(b) Compute the sets A1, A2, A3 where An = {x ∈ X : x R n}. Show that {A1, A2, A3} do not
form a partition of X.

(c) Repeat parts (a) and (b) for the relations S and T on X, where

S = {(1, 1), (1, 3), (3, 1), (3, 3)}
T = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)}

Some of the sets A1, A2, A3 might be the same in each of your examples. If, for example, A1 = A3, then
the collection {A1, A2, A3} only contains two sets: {A1, A2}. Is this a partition? Compare with the
example on page 132.

7.4.4 Using the equivalence relation description of the Möbius strip, prove that you may cut a Möbius
strip round the middle and yet still end up with a single loop.
Where would you cut the defining rectangle and how can you tell that you still have one piece?

7.4.5 (Hard!) A Klein bottle can be visualized as follows. Define an equiva-
lence relation ∼ on the unit square X = [0, 1]× [0, 1] so that:

• (0, y) ∼ (1, y) for 0 ≤ y ≤ 1.

• (x, 0) ∼ (1− x, 1) for 0 ≤ x ≤ 1.

The result is the picture: the blue edges are identified in the same di-
rection and the red in the opposite. Attempting to visualize this in 3D
requires a willingness to stretch and distort the square, but results in
the green bottle. The original red an blue arrows have become curves
on the bottle. If you are using Acrobat Reader, click on the bottle and
move it around.

(a) Suppose you cut the Klein bottle along the horizontal dashed line
of the defining square. What is the resulting object?

(b) Now cut the bottle along the vertical dashed line. What do you
get this time?

Can you visualize where the two dashed lines are on the green bottle?
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7.5 Well-definition, Rings and Congruence

We return to our discussion of congruence (recall Section 3.1) in the context of equivalence relations
and partitions. The important observation is that congruence modulo n is an equivalence relation on Z,
each equivalence class being the set of all integers sharing a remainder modulo n.

Theorem 7.13. For each n ∈ N, define x ∼n y ⇐⇒ x ≡ y (mod n). Then ∼n is an equivalence relation
on Z.

The theorem is a restatement of Example 2 on page 131, in conjunction with Theorem 7.12. You
should prove this yourself, as practice in using the definition of equivalence relation.

The equivalence classes are precisely those integers which are congruent modulo n: the integers
which share the same remainder.

[a] = {x ∈ Z : x ≡ a (mod n)}
= {x ∈ Z : x has the same remainder as a when divided by n}
= {x ∈ Z : x− a is divisible by n}

In this language, we may restate what it means for two equivalence classes to be identical.

Theorem 7.14. [a] = [b] ⇐⇒ a ≡ b (mod n) ⇐⇒ ∃k ∈ Z such that b = a + kn.

If the meaning of any of the above is unclear, re-read the previous two sections: they are critically
important!

The equivalence classes of ∼n partition the integers Z. According to Theorem 7.14, there are
exactly n equivalence classes, whence we may describe the quotient set as

Z/
∼n

= {[0], [1], . . . , [n− 1]}.

We use this set to define an extremely important object.

Definition 7.15. Define two operations +n and ·n on the set Z/∼n
as follows:

[x] +n [y] := [x + y], [x] ·n [y] := [x · y].

The ring Zn is the set Z/∼n
together with the operations +n and ·n.

The operation +n (similarly ·n) is telling us how to add equivalence classes, that is, how to produce
a new equivalence class from two old ones. +n is not the same operation as +: we are defining +n
using +. The former combines equivalence classes, while the latter sums integers.

The challenge here is that you have to think of each equivalence class as a single object. When we
write

[3] +8 [6] = [3 + 6] = [9] = [1],
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we are thinking about the sets [3] and [6] as individual objects rather than as collections of elements:
remember that [3] = {. . . ,−5, 3, 11, 19, . . .} is an infinite set! There is, moreover, a matter of choice:
since, for example, [3] = [11] and [6] = [22] we should be able to observe that

[3] +8 [6] = [11] +8 [22].

Is this true? If not, then the operation +8 would not be particularly useful. Thankfully this is not a
problem: according to the defintion of +8, we have

[11] +8 [22] = [11 + 22] = [33] = [1],

exactly as we would wish.

Let us think a little more abstractly. Suppose we are given equivalence classes X and Y, how do
we compute X +n Y? Here is the process.

1. Choose elements x ∈ X and y ∈ Y.

2. Add x and y to get a new element x + y ∈ Z.

3. Then X +n Y is the equivalence class [x + y].

The issue is that there are infinitely many choices for the elements x ∈ X and y ∈ Y. If +n is to make
sense, we must obtain the same equivalence class [x + y] regardless of our choices of x ∈ X and
y ∈ Y.

Definition 7.16. A concept is well-defined if it is independent of all choices used in the definition.

Theorem 7.17. The operations +n and ·n are well-defined.

The choices made in the definitions of +n and ·n were of representative elements x and y of the
equivalence classes [x] and [y]. All representatives of these classes have the form

x + kn ∈ [x] and y + ln ∈ [y]

for some integers k, l. It therefore suffices to prove that

∀k, l ∈ Z, [x + kn] +n [y + ln] = [x] +n [y] and [x + kn] ·n [y + ln] = [x] ·n [y].
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Proof. We prove that +n is well-defined.

[x + kn] +n [y + ln] = [(x + kn) + (y + ln)] (by definition of +n)
= [x + y + (k + l)n]
= [x + y] (by Theorem 7.14)
= [x] +n [y] (by definition of +n)

The argument for ·n is similar.

You should now re-read Theorem 3.8 until you are comfortable that we are doing the same thing!

Aside: Ugly notation
Given the usefulness of Zn, and the cumbersome nature of the above notation, it is customary to

drop the square brackets and subscripts and simply write

Zn = {0, 1, 2, . . . , n− 1}, x + y := x + y (mod n), x · y := xy (mod n).

When using this description of Zn, you should realize that we are working with equivalence classes,
not numbers. In this context, −3 ∈ Z8 makes perfect sense, for it really means [−3] ∈ Z8. This
is percectly fine, since [−3] = [5] as equivalence classes, and so it is legitimate to write −3 = 5 in
Z8. Until you are 100% sure that you know when 3 represents an equivalence class and when it
represents a number, you should keep the brackets in place!

Exercises

7.5.1 Give an explicit proof of Theorem 7.13.

7.5.2 (a) Prove the second half of Theorem 7.17, that ·n is well-defined.
(b) Prove by induction that the operation of raising to the power m ∈N is well-defined in Zn.

I.e., prove that

∀m ∈N, ∀[x] ∈ Z/
∼n

we have [xm] = [x]m.

Be careful! n is fixed, your induction variable is m. What base case(s) do you need?

7.5.3 Consider the relation ∼ defined on Z×N = {(x, y) : x ∈ Z, and y ∈N} by

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

(a) Prove that ∼ is an equivalence relation.
(b) List several elements of the equivalence class of (2, 3). Repeat for the equivalence class of

(−3, 7). What do the equivalence classes have to do with the set of rational numbers Q?

(c) Define operations ⊕ and ⊗ on Z×N/∼ by

[(a, b)]⊕ [(c, d)] = [(ad + bc, bd)], [(a, b)]⊗ [(c, d)] = [(ac, bd)].

Prove that ⊕ and ⊗ are well-defined.

Try to do this question without using division! We will return to this example in the next section.

140



7.6 Functions and Partitions

To complete our discussion of partitions and equivalence relations, we consider how to define func-
tions whose domain is a set of equivalence classes. Take congruence as our motivating example.

Suppose we want to define a function f : Z4 → Z6. Say f (x) = 3x (mod 6). This certainly looks
like a function, but is it? Remember that ‘x’ and ‘3x’ are really equivalence classes, so we should say28

f
(
[x]4

)
= [3x]6, where [x]4 ∈ Z4 and [3x]6 ∈ Z6.

Is this a function? To make sure, we need to check that any representative a ∈ [x]4 gives the same
result. That is, we need to prove that

a ≡ b (mod 4) =⇒ 3a ≡ 3b (mod 6).

This is not so hard:

a ≡ b (mod 4) =⇒ ∃n ∈ Z such that a = b + 4n
=⇒ 3a = 3b + 12n =⇒ 3a ≡ 3b (mod 6).

It might look like a small difference, but attempting to define g : Z4 → Z6 by g(x) = 2x (mod 6)
does not result in a function. If it were, then we should have

a ≡ b (mod 4) =⇒ 2a ≡ 2b (mod 6).

But this is simply not true: for example 4 ≡ 0 (mod 4), but 8 6≡ 0 (mod 6). It might look like g is a
function, but it is not well-defined because [4] = [0] in Z4 and g

(
[4]
)
6= g

(
[0]
)

in Z6.
Just as in Definition 7.16, the process of verifying that a rule really is a function is called checking

well-definition. In general, if we are defining a function

f : X/
∼ → A (∗)

whose domain is a quotient set, then it is usually necessary to construct f by saying what happens to
a representative x of an equivalence class [x]:

f
(
[x]
)
= ‘do something to x’.

We need to make sure that the ‘something’ is independent of the choice of element x.

Definition 7.18. Suppose that f : X/∼ → A is a rule of the form (∗). We say that f is a well-defined
function if

[x] = [y] =⇒ f
(
[x]
)
= f

(
[y]
)
.

If you think carefully, this is nothing more than condition 2 of Definition 7.4.

Examples. 1. Show that f : Zn → Zn defined by f (x) = x2 + 4 (mod n) is well-defined.
We must check that x ≡ y (mod n) =⇒ x2 + 4 ≡ y2 + 4 (mod n). But this is trivial!

28The notation [x]4 is helpful for reminding us which equivalence relation is being applied. When dealing with functions
between different quotient sets, it is easy to become confused.
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2. For which integers k is the rule f : Z4 → Z6 defined by f (x) = kx (mod 6) a well-defined
function?
We require x ≡ y (mod 4) =⇒ kx ≡ ky (mod 6). Now

x ≡ y (mod 4) =⇒ ∃n ∈ Z such that x− y = 4n
=⇒ kx− ky = 4kn.

For f to be well-defined, we need kx − ky = 4kn to be a multiple of 6 independently of x and
y. Thus f is well-defined if and only if 6 | 4kn for all n ∈ Z. This can only be the case if 6 | 4k.
Otherwise said,

f is well-defined ⇐⇒ 6 |4k ⇐⇒ 3 |2k ⇐⇒ 3 | k.

Given that kx ∈ Z6, we need only consider k ∈ {0, 1, 2, 3, 4, 5}: equivalent values of k modulo
6 won’t change the definition of f . It follows that there are only two well-defined functions
f : Z4 → Z6 : x 7→ kx, namely f0(x) = 0 and f3(x) = 3x. Here they are in tabular form.

x 0 1 2 3
f0(x) 0 0 0 0

x 0 1 2 3
f3(x) 0 3 0 3

It is instructive to play with another value of k, say k = 5, and attempt to construct a table:

x 0 1 2 3 4 5 · · ·
f5(x) 0 5 4 3 2 1 · · ·

The problem is that 4 ≡ 0 (mod 4), yet f5(4) 6≡ f5(0) (mod 6). In order to be a function, the
second row must repeat with period four. You should compare this with the examples on page
67 and with Exercise 4.4.11.

Functions on the Cylinder and Torus

Recall our construction on page 135, where we viewed the cylinder as the set R2/
∼ with respect to

the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ a− c ∈ Z and b = d.

We wish to define a function f : R2/
∼ → A whose domain is the cylinder.29 Well-definition requires

that f satisfy

(a, b) ∼ (c, d) =⇒ f
([

(a, b)
])

= f
([

(c, d)
])

.

Since (a, b) ∼ (a + 1, b), we require f
([

(a, b)
])

= f
([

(a + 1, b)
])

, for all a, b ∈ R. Otherwise said,

f
([

(x, y)
])

must be periodic in x with period 1. It is easy to see that

f
([

(x, y)
])

= y2 sin(2πx)

is a suitable choice of function f : R2/
∼ → R.

29 A is any target set you like. We will choose an example with A = R in a moment.
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More generally, to define a function whose domain is the torus

T2 = R2/
∼ where (a, b) ∼ (c, d) ⇐⇒ a− c ∈ Z and b− d ∈ Z,

requires a function which has period 1 in both x and y. The function f
([

(x, y)
])

= sin(2πx) cos(2πy)
is plotted below, with the color on the torus indicating the value of f . It is easier for us to simply
consider the function

F : R2 → R : (x, y) 7→ sin(2πx) cos(2πy).

This is also plotted, with the same color for each value.

The function f : domain T2

The arrows in the two pictures correspond

0

1
y

0 1
x

−1.0

−0.5

0.0

+0.5

+1.0

F(
x,

y)
=

si
n(

2π
x)

co
s(

2π
y)

1
2

1
2

The function F restricted to [0, 1)× [0, 1)

Aside: The Canonical Map
To do this justice, and to give you a taste for the details which are necessary in pure mathematics,

here is the important definition.

Definition 7.19. Suppose that ∼ is an equivalence relation on a set X. The function γ : X → X/∼
defined by γ(x) = [x] is the canonical map.a

aCanonical, in mathematics, just means natural or obvious.

The canonical map has only one purpose; to allow us to construct functions f : X/∼ → A.

Theorem 7.20. Suppose that ∼ is an equivalence relation on X.

1. If f : X/∼ → A is a function, then F : X → A defined by F = f ◦ γ satisfies x ∼ y =⇒ F(x) =
F(y).

2. If F : X → A satisfies x ∼ y =⇒ F(x) = F(y), then there is a unique function f : X/∼ → A
satisfiying F = f ◦ γ.
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Proof. 1. This is trivial: x ∼ y =⇒ [x] = [y] =⇒ γ(x) = γ(y)
=⇒ f (γ(x)) = f (γ(y)) =⇒ F(x) = F(y).

2. f : X/∼ → A can only be the function defined by f ([x]) = F(x). We show that this is well-
defined:

[x] = [y] =⇒ x ∼ y =⇒ F(x) = F(y) =⇒ f ([x]) = f ([y]).

The proof, like much of mathematics, is a masterpiece in concision
that seems to be doing nothing at all. The point is that functions
of the form f : X/∼ → A are difficult to work with. The Theorem
says that we never need to explicitly use such functions, and can
instead work with simpler functions of the form F : X → A. The
only condition is that x ∼ y =⇒ F(x) = F(y). Essentially, F is f
in disguise!

X A

X/∼

F

γ f

This result will be resurrected when you study Groups Rings & Fields as part of the famous First
Isomorphism Theorem.

Exercises

7.6.1 Prove or disprove: f : Z3 → Z5 : x 7→ x3 (mod 5) is well-defined.

7.6.2 (a) Compute (x + 4n)2.

(b) Suppose that ∀n ∈ Z, we have (x + 4n)2 ≡ x2 (mod m). Find all the integers m for which
this is a true statement.

(c) For what m ∈N≥2 is the function f : Z4 → Zm : x 7→ x2 (mod m) well-defined.

7.6.3 A rule f : X/∼ → A is well-defined if [x] = [y] =⇒ f
(
[x]
)
= f

(
[y]
)
.

(a) State what it means for f : X/∼ → A to be injective. What do you observe?

(b) Prove that f : Z7 → Z35 : x 7→ 15x is a well-defined, injective function.

(c) Repeat part (b) for the function f : Z100 → Z300 : x 7→ 9x. Compare your arguments for
well-definition and injectivity.
This forces you to write your argument abstractly, rather than using a table! You may find it useful
that 9 · (−11) ≡ 1 (mod 100).

7.6.4 Define a partition of the sphere S2 =
{
(x, y, z) : x2 + y2 + z2 = 1

}
into subsets of the form

{
(x, y, z), (−x,−y,−z)

}
.

Each subset consists of two points directly opposite each other on the sphere (antipodal points).
Let ∼ be the equivalence relation whose equivalence classes are the above subsets.

(a) f : S2/
∼ → R : [(x, y, z)] 7→ xyz is not well-defined. Explain why.
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(b) Prove that f : S2/
∼ → R3 : [(x, y, z)]→ (yz, xz, xy) is a well-defined function.

The image of this function is Steiner’s famous Roman Surface, another example, like the Klein
Bottle, of a generalization of the Möbius Strip.

7.6.5 Recall Exercise 7.5.3, where we defined an equivalence relation ∼ on Z×N.

(a) Prove that the function f : Z×N/∼ → Q defined by f
([

(x, y)
])

= x
y is a well-defined

bijection.

(b) Prove that f transforms the operations⊕ and⊗ into the usual addition and multiplication
of rational numbers. That is:

f
([

(a, b)
]
⊕
[
(c, d)

])
= f

([
(a, b)

])
+ f

([
(c, d)

])

f
([

(a, b)
]
⊗
[
(c, d)

])
= f

([
(a, b)

])
· f
([

(c, d)
])

The technical term for this is that f :
(

Z×N/∼,⊕,⊗
)
→ (Q,+, ·) is an isomorphism of rings.
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8 Cardinalities of Infinite Sets

8.1 Cantor’s Notion of Cardinality

During the late 1800’s a German mathematician named Georg Cantor almost single-handedly over-
turned the foundations of mathematics. Prior to Cantor, mathematicians had understood a set to
be nothing more than a collection of objects. Via the consideration of certain infinite sets,30 Cantor
demonstrated that this naı̈ve idea is woefully inadequate. Cantor met great resistance from many fa-
mous mathematicians, philosophers, and even religious scholars, who felt his ideas were unnatural
and risked undermining the divine. Despite strong initial antipathy, Cantor’s notion of cardinality is
now universally accepted by mathematicians. More importantly, it led to the creation of axiomatic set
theory and the, still somewhat controversial, modern conception of set. Cantor’s legacy is arguably
the modern axiomatic nature of pure mathematics, where rigor dominates and mathematicians are
obliged to follow logic wherever it might lead, regardless of the bizarre paradoxes which might ap-
pear.

In this chapter we consider the basics of Cantor’s contribution, essentially his extension of the
concept of cardinality to infinite sets.

Recall that if A is a finite set, then |A|, the cardinality of A, is simply the number of elements in
A. This definition obviously does not extend to infinite sets. However, we can provide an alternative
interpretation of cardinality as a tool to compare sizes of sets. This interpretation turns out to apply to
infinite sets. For example, suppose that

A = {fish, dog}, and B = {α, β, γ}.

Even though the elements of the sets A and B are completely different, we may use cardinality to
compare the sizes of A and B: since |A| = 2 and |B| = 3, we may write |A| ≤ |B| to indicate that
B has at least as many elements as A. By Theorem 4.12, this condition is equivalent to the existence
of an injective (one-to-one) map from A to B. For instance, we can choose the function f : A → B
defined by

fish 7−→ α, dog 7−→ β.

In a sense, Theorem 4.12 tells us how to compare cardinalities of finite sets without counting ele-
ments. Cantor’s seemingly innocuous idea was to turn this theorem for finite sets into a definition of
cardinality for infinite sets.

30In particular his middle third set.
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Definition 8.1. The cardinalities of two sets A, B are denoted |A| and |B|. We compare cardinalities as
follows:

• |A| ≤ |B| ⇐⇒ ∃ f : A→ B injective.

• |A| = |B| ⇐⇒ ∃ f : A→ B bijective.

We write |A| < |B| ⇐⇒ |A| ≤ |B| and |A| 6= |B|. That is ∃ f : A → B injective but @g : A → B
bijective.

Cardinality is defined as an abstract property whereby two sets can be compared. To define the
cardinality |A| as an object, we need the following theorem.

Theorem 8.2. On any collection of sets, the relation A ∼ B ⇐⇒ |A| = |B| is an equivalence relation.

The cardinality of a set A is precisely the equivalence class of A with respect to this relation:
|A| := [A]. It is now clear that cardinality partitions any collection of sets: every set has a cardinality,
and no set has more than one cardinality. To get further it is useful to introduce a symbol for the
cardinality of the simplest infinite set.

Countably Infinite Sets

Definition 8.3. The cardinality of the set of natural numbers N is denoted ℵ0, read aleph-nought or
aleph-null. We say that a set A is countably infinite, or denumerablea if |A| = ℵ0.

aSometimes this is shortened to countable, although some authors use countable to mean ‘finite or denumerable,’ i.e.
any A for which |A| ≤ ℵ0. Use countably infinite or denumerable to avoid confusion. ℵ is the first letter of the Hebrew
alphabet.

We will discuss in a moment why we need a new symbol; why ∞ doesn’t suffice. First we consider
an example of Definition 8.1 at work.

Example. Let 2N = {2, 4, 6, 8, 10, . . .} be the set of positive even integers. The function

f : N→ 2N : n 7→ 2n

is a bijection. It follows that |2N| = |N| = ℵ0 and we would say that 2N is denumerable.

This example shows one of the first strange properties of infinite sets: 2N is a proper subset of N,
and yet the two sets are in bijective correspondence with one another! You should feel like you want
to say two contradictory things simultaneously:

• N has the same ‘number of elements’ as 2N.

• N has twice the ‘number of elements’ as 2N.
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If this doesn’t make you feel uncomfortable, then read it again! The remedy to your discomfort is
to appreciate that cardinality and number of elements are different concepts. Replacing ‘number of el-
ements’ with ‘cardinality’ in the two statements makes both true! Indeed it is completely legitimate
to write 2ℵ0 = ℵ0.

Here is another example of the same phenomenum; N has one more element than N≥2 and yet
they have the same cardinality: ℵ0 + 1 = ℵ0.

Example. The function g : N → N≥2 : n 7→ n + 1 is a bijection, whence N≥2 = {2, 3, 4, 5, . . .} is
denumerable.

As practice in using the definition of cardinality, we prove the following.

Theorem 8.4. Suppose that A is a finite set. Then |A| < ℵ0.

Proof. The n = 0 case is left to the Exercises. Suppose that |A| = n ≥ 1 so that we may list the
elements of A as {a1, . . . , an}. We must prove two things:

1. |A| ≤ ℵ0. That is, ∃ f : A→N which is injective.

2. |A| 6= ℵ0. That is, @g : A → N which is bijective. By symmetry this is equivalent to showing
that there is no bijective function h : N→ A.a

For part 1., simply define f by f (ak) = k for each k ∈ {1, 2, 3, . . . , n}. This is injective since the distinct
elements ak of A map to distinct integers.
For part 2., suppose that h : N→ A is bijective. Consider the set

h
(
{1, . . . , n + 1}

)
=
{

h(1), . . . , h(n + 1)
}
⊆ A.

Since A has n elements, by Dirichlet’s box principle, at least two of the values h(1), . . . , h(n + 1) must
be equal. Therefore h is not injective and consequently not bijective. A contradiction.

aIf g : A→N is a bijection, then g−1 : N→ A is also a bijection.

Aside: ℵ0 versus ∞: what’s the difference?
It can be difficult to grasp why ℵ0 and ∞ are not the same thing. The problem is compounded by

references to an ‘infinite number’ of objects any time that the cardinality of a set is not finite. This
loose phrase is commonly used, but risks conflating the concepts of ‘infinite set’ and ‘infinity.’
So what is the difference between ℵ0 and ∞? If there aren’t an ‘infinite number’ of natural numbers,
how many are there? Theorem 8.4 says that ℵ0 is ‘larger than any natural number.’ Is this not what we
mean by infinity? The reason we need a new symbol ℵ0, and why it and ∞ are different, is twofold:

1. As we shall see shortly, there are infinite sets with greater cardinality than ℵ0: in a naı̈ve sense,
there are multiple infinities. The single symbol ∞ is insufficient to distinguish sets with different
cardinalities.
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2. More philosophically, ℵ0 is an object in its own right; an object to which the cardinality of some
set may be equal. Indeed, by Theorem 8.2, ℵ0 is an equivalence class.

By contrast, ∞ is not a object. Think back to where you’ve seen ∞ before. It is mostly used in
interval notation (e.g., [1, ∞)) and when talking about limits: for example lim

x→3
1

(x−3)2 = ∞ is short-

hand for the notion that the function f (x) = 1
(x−3)2 gets unboundedly larger as x approaches

3. The danger with this notation is that you mistakenly think of ∞ as a number: it isn’t! An
elementary calculus student might be tempted to write f (3) = 1

(3−3)2 = ∞, but this makes
absolutely no sense.

Similarly, it is easy to mistake the appearance of ∞ in interval notation for a number: e.g. (2, ∞)
merely means ‘all numbers greater than 2.’ To say ‘greater than 2 and less than infinity’ would
be an error.

The challenge of Cantor’s notion of cardinality is to appreciate that the question, ‘How many
natural numbers are there?,’ is meaningless!

We conclude this section with two important examples of denumerable sets.

Theorem 8.5. The integers Z are denumerable.

Proof. We must construct a bijective function f : N → Z. By experimenting, you may feel it is
enough simply to write down the first few terms of a suitable function:

n 1 2 3 4 5 6 7 8 9 10 · · ·
f (n) 0 1 −1 2 −2 3 −3 4 −4 5 · · ·

With a bit of thinking, it should be obvious what the function is doing, and that it is bijective. For a
bit more formality, we can write

f (n) =

{
1
2 n if n even,
− 1

2 (n− 1) if n odd.

Now we check that this is bijective:

(Injectivity) Let m, n ∈N, and suppose that f (m) = f (n). Without loss of generality, there are three
cases to consider.

(m, n both even) f (m) = f (n) =⇒ m
2 = n

2 =⇒ m = n.

(m, n both odd) f (m) = f (n) =⇒ − 1
2 (m− 1) = − 1

2 (n− 1) =⇒ m = n.

(m even, n odd) f (m) = f (n) =⇒ m
2 = − 1

2 (n− 1) =⇒ m + n = 1. But m, n ∈N, so m + n ≥ 2,
which is a contradiction.

Therefore f is injective.

(Surjectivity) With a little calculation, you should be able to see that, for any z ∈ Z, there exists a
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positive integer n such that f (n) = z, namely:

z =

{
f (2z) if z > 0,
f (1− 2z) if z ≤ 0.

Hence f is surjective.

As you build up examples, you no longer have to compare denumerable sets directly with N. A
set A is denumerable if and only if ∃ f : A → B bijective where B is any other denumerable set. This
holds because the composition of bijective function is also bijective (Theorem 4.15).

Theorem 8.6. The rational numbers Q are denumerable.

Proof. We do this in stages. First we construct a bijection between the positive rational numbers Q+

and the natural numbers N.
For each a, b,∈N, place the fraction a

b in the ath row and bth column of the infinite square as shown
below. Now list the elements by tracing the diagonals as shown, deleting any number that has
already appeared in the list ( 2

2 = 1
1 , 6

4 = 3
2 , etc.).

1
1

...

2
1

...

3
1

...

4
1

...

5
1

...

6
1

...

7
1

...

· · ·
1
2

2
2

3
2

4
2

5
2

6
2

7
2

· · ·
1
3

2
3

3
3

4
3

5
3

6
3

7
3

· · ·
1
4

2
4

3
4

4
4

5
4

6
4

7
4

· · ·
1
5

2
5

3
5

4
5

5
5

6
5

7
5

· · ·
1
6

2
6

3
6

4
6

5
6

6
6

7
6

· · ·
. . .

The infinite square

1
1

...

2
1

...

3
1

...

4
1

...

5
1

...

6
1

...

7
1

...

· · ·
1
2

2
2

3
2

4
2

5
2

6
2

7
2

· · ·
1
3

2
3

3
3

4
3

5
3

6
3

7
3

· · ·
1
4

2
4

3
4

4
4

5
4

6
4

7
4

· · ·
1
5

2
5

3
5

4
5

5
5

6
5

7
5

· · ·
1
6

2
6

3
6

4
6

5
6

6
6

7
6

· · ·
. . .

××
×

×
×

×

×

×

×

×
×

×

×

×

Trace diagonals and delete repeats

We obtain the ordered set

A = {a1, a2, a3, a4, . . .} =
{

1
1

,
2
1

,
1
2

,
1
3

,
3
1

,
4
1

,
3
2

,
2
3

,
1
4

,
1
5

, . . .
}

.

Now define the function f : N→ Q+ by f (n) = an. We claim that this is a bijection.

(Injectivity) Let m = n ∈ N, and suppose that f (n) = f (m). Then am = an. But in the construction
of A we deleted any number which had already appeared in the list. Thus am can only equal an if
m = n.

(Surjectivity) A positive rational number a
b appears in the ath row and bth column of the square

(and in many other places). When constructing A, note that a
b will not be deleted unless it has already
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appeared elsewhere in A. Therefore every positive fraction a
b is in the set A.

To finish things off, extend the function to all rational numbers by

g : Z→ Q : n 7→





f (n) if n > 0,
0 if n = 0,
− f (−n) if n < 0.

Now g : Z→ Q is a bijection, from which we deduce that |Q| = |Z| = ℵ0.

This result should surprise you! Any sensible person should feel that there are far, far more ratio-
nal numbers than integers and yet the two sets have the same cardinality. Bizarre.

There are other denumerable sets that appear to be even larger. For example, we can show that
N×N is denumerable (using almost the same proof as for Q+ except that there are no repeats to
delete). For a much larger-seeming denumerable set, consider the set of algebraic numbers:

{x ∈ R : ∃ a polynomial p with integer coefficients such that p(x) = 0}.

Algebraic numbers are the zeros of polynomials with integer coefficients. Clearly every rational
number a

b is algebraic, since it satisfies p(x) = 0 for p(x) = bx − a. There are many more algebraic
numbers than rational numbers: e.g. 5

√
2− 3 is algebraic since it is a root of the polynomial p(x) =

(x + 3)5 − 2 = 0. Not all real numbers are algebraic however: those which aren’t, such as π and e,
are termed transcendental.

Exercises

8.1.1 Refresh your proof skills by proving that the following functions are bijections:

(a) f : N→ 2N : n 7→ 2n.

(b) g : N→N≥2 : n 7→ n + 1.

8.1.2 Construct a function f : N→ Z≥−3 = {−3,−2,−1, 0, 1, 2, 3, 4, . . .} which proves that the latter
set is denumerable: you must show that your function is a bijection.

8.1.3 Prove that the set 3Z + 2 = {3n + 2 : n ∈ Z} is denumerable.

8.1.4 Show that the set of all triples of the form (n2, 5, n+ 2) with n ∈ 3Z is denumerable by explicitly
providing a bijection with a denumerable set A. (You must check that the set A is denumerable, and
that your map is indeed a bijection.)

8.1.5 Imagine a hotel with an infinite number of rooms: Room 1, Room 2, Room 3, Room 4, etc..
Show that, even if the hotel is full, the guests may be re-accommodated so that there is always
a room free for one additional guest.
Hint: consider the function f : N→N : n 7→ n + 1.

8.1.6 Prove that A ⊆ B =⇒ |A| ≤ |B|. (You need an injective function f : A→ B)

8.1.7 Prove Theorem 8.2. (You need little more than Theorem 4.15 on the composition of bijective functions.)
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8.1.8 Prove that the set N×N is denumerable. You should base your proof on Theorem 8.6.

8.1.9 We know that Q is denumerable, and we saw (Theorem 8.6) that there most exist a bijective
function f : N → Q. Show that g : N×N → Q×Q defined by g(m, n) = ( f (m), f (n)) is a
bijection. Appeal to the previous question to show that Q×Q is denumerable.

8.1.10 Here we consider the n = 0 case of Theorem 8.4. Recall the definition of function in Section 7.2.

(a) If |A| = 0, then A = ∅. Suppose that f : ∅→ N is a function. Use Definition 7.4 to prove
that f = ∅.

(b) State what it means, in the language of Definition 7.4, for a function f : A → N to be
injective. Show that f = ∅ is an injective function.

(c) Suppose that B is a set with |B| ≥ 1. Prove by contradiction that there are no functions
h : B→ ∅. Conclude that 0 < ℵ0.

8.1.11 Suppose that the set An is denumerable for each n ∈ N. We may then list the elements of each
set: An = {an1, an2, an3, an4, . . .}. Now list the elements of the sets A1, A2, A3, . . . as follows:

A1 = {a11, a12, a13, a14, . . .}
A2 = {a21, a22, a23, a24, . . .}
A3 = {a31, a32, a33, a34, . . .}

...

Use this construction to prove that
⋃

n∈N

An is a denumerable set.

This result is often stated, ‘A countable union of countable sets is countable.’

8.1.12 (Hard!) In this question we prove the converse of Theorem 8.4: if |A| < ℵ0, then A is a finite
set. Otherwise said, ℵ0 is the smallest infinite cardinal.
We prove by contradiction. Suppose that A is an infinite set such that |A| < ℵ0. Then there
exists an injective function f : A→N. List the elements of the image of f in increasing order:

Im f = {n1, n2, n3, . . .}.

(a) Prove that Im f is an infinite set.

(b) Show that for all k ∈N, there exists a unique ak ∈ A satisfying f (ak) = nk.

(c) Define g : N→ A by g(k) = ak. Prove that g is a bijection.

(d) Why do we obtain a contradiction?
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8.2 Uncountable Sets

You might think, since Q seems so large, that there can’t be any sets with strictly larger cardinality.
But we haven’t yet thought about the set of real numbers.

Definition 8.7. A set A is uncountable if |A| > ℵ0, that is if there exists an injection f : N→ A but no
bijection g : N→ A.

Theorem 8.8. The interval [0, 1] of real numbers is uncountable.

We denote the cardinality of the interval [0, 1] by the symbol c for continuum. The theorem may
therefore be written c > ℵ0.

Proof. First we require an injective function f : N→ [0, 1]. The function defined by f (n) = 1
n clearly

fits the bill, for

f (n) = f (m) =⇒ 1
n
=

1
m

=⇒ n = m.

Therefore ℵ0 ≤ c.
Next, we prove that there exists no bijection from N to [0, 1], arguing by contradiction. Suppose that
g : N → [0, 1] is a bijection and consider the sequence of values g(1), g(2), g(3), . . . These are real
numbers between 0 and 1, hence they may all be expressed as decimals of the form 0.a1a2a3a4a5 · · · ,
where each ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.a We can write:

g(1) = 0.b11b12b13b14b15b16 · · ·
g(2) = 0.b21b22b23b24b25b26 · · ·
g(3) = 0.b31b32b33b34b35b36 · · ·
g(4) = 0.b41b42b43b44b45b46 · · ·
g(5) = 0.b51b52b53b54b55b56 · · ·

...
By assumption, g is bijective, so it is certainly surjective. It follows that all of the numbers in [0, 1]
appear in the above list of decimals. Since g is injective, there are no repeats in the list. Now define a
new decimal

c = 0.c1c2c3c4c5 · · · where cn =

{
1 if bnn 6= 1,
2 if bnn = 1.

c is a non-terminating decimal whose digits are only 1’s and 2’s: it therefore has no other decimal
representation. Since c disagrees with g(n) at the nth decimal place, we have c 6= g(n), ∀n ≥ 1.
Hence c is not in the above list. However c ∈ [0, 1] and g is surjective with Im g = [0, 1], so we have a
contradiction. We conclude that c 6= ℵ0.
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Putting this together with the first part of the proof, we see that c > ℵ0.

aCertain numbers, like 0.12 = 0.12121212 · · · have a unique decimal representation. Others, like 0.317 = 0.3169999 · · ·
have both a finite decimal representation and an infinite representation that ultimately becomes an infinite sequence of
9’s. For the purposes of this proof it does not matter which representation is chosen when there is a choice. We are forced,
however, to take 1 = 0.999999 · · · , due to our insistence that all elements are written with zero units.

The interval [0, 1] has a strictly larger cardinality than the set of integers. Since [0, 1] ⊆ R, it
follows immediately that the real numbers are also uncountable. Indeed we shall see in a moment
that the real numbers have cardinality c, as does any interval (of positive width). More amazingly,
the Cantor middle-third set (page 111) also has cardinality c, despite seeming vashishingly small.

More advanced ideas

Our countable and uncountable examples are merely scratching the foothills of a truly weird subject.
Here are a couple more ideas.

The following theorem is very useful for being able to compare cardinalities. It allows us to prove
that two sets have the same cardinality without explicitly constructing bijective functions. Injective
functions are usually much easier to build.

Theorem 8.9 (Cantor–Schröder–Bernstein). If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

The theorem seems like it should be obvious, but pause for a moment: it is not a result about
numbers! A and B are sets, and so the theorem must be understood in the context of Definition 8.1. In
this language the theorem becomes:

Suppose that there exist injective functions f : A→ B and g : B→ A.
Then there exists a bijective function h : A→ B.

The proof is beautiful, though a little long to reproduce here. If you are interested it can be found in
any text on set theory. The applications of the theorem are more important to our purposes.

Theorem 8.10. The interval (0, 1) has cardinality c.

It is possible to define a bijection h : (0, 1) → [0, 1], though it is extremely messy. Instead we
construct two injections.

Proof. f : (0, 1)→ [0, 1] : x 7→ x is clearly an injection, whence |(0, 1)| ≤ |[0, 1]| = c. Now define

g : [0, 1]→ (0, 1) : x 7→ 1
2

x +
1
4

.

g is certainly injective (g isn’t surjective, since Im(g) = [ 1
4 , 3

4 ] 6= (0, 1)), and so c ≤ |(0, 1)|.
By the Cantor–Schröder–Bernstein Theorem, the sets (0, 1) and [0, 1] have the same cardinality c.
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By a similar trick, covered in the Exercises, one can see that R also has cardinality c.

For a final idea, we prove Cantor’s Theorem, which says that the power set of a set always has
a strictly larger cardinality than the original set. In Theorem 6.6 we saw that, if A is finite, then
|P(A)| = 2|A| for finite sets. We therefore already believe that Cantor’s Theorem is true for finite
sets. The proof we shall give also works for infinite sets.

The main implication of this is that there is no largest set! We can always make a larger set simply
by taking the power set of what we already have: now rinse and repeat! For example, P(R) has
larger cardinality than R. If you want a set with larger cardinality, why not take P(P(R))? Or
P(P(P(R))). There is no limit to the cardinality of sets.

Theorem 8.11 (Cantor). If A is any set, then |A| � |P(A)|.

Proof. We must show two things:

• ∃ f : A→ P(A) which is injective.

• @g : A→ P(A) which is bijective.

For the first, note that f : a 7→ {a} is a suitable injective function.a

Now suppose for a contradiction that ∃g : A → P(A) which is bijective. For every a ∈ A, g(a) is a
subset of A. Consider the set

X = {a ∈ A : a 6∈ g(a)}.
aThis even works if A = ∅, for then f is itself the ‘empty’ function! If this sort of thinking disturbs you, don’t worry.

We have already proved Cantor’s Theorem for all finite sets, so we only need the proof to work for infinite sets.

This is a difficult set to think about. Before proceeding, let us consider an example. Suppose that
g : {1, 2} → P({1, 2}) is defined by

g(1) = {1, 2}, g(2) = {1}.

Then 1 ∈ g(1) and 2 6∈ g(2), whence the above set is X = {2}. Since we are trying to show that a
bijection g as in the proof does not exist, it is important to note that the function g in our example is
not bijective!

Proof Continued. By assumption, g is bijective, hence it is certainly surjective. Because Im g = P(A),
the set X is in the image of g. Otherwise said, there exists â ∈ A such that g(â) = X. We ask whether â
is an element of X. Think carefully about the definition of X, and observe that

â ∈ X ⇐⇒ â 6∈ g(â) (by the definition of X)
⇐⇒ â 6∈ X (since X = g(â))

Look at what we have: â ∈ X ⇐⇒ â 6∈ X. This is clearly a contradiction! We conclude that no
bijection g : A→ P(A) exists, and so |A| � |P(A)|.
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Cantor’s Theorem played a large part in pushing set theory towards axiomatization. Here is a
conundrum motivated by the theorem: If a ‘set’ is just a collection of objects, then we may consider
the ‘set of all sets.’ Call this A. Now consider the power set of A. Since P(A) is a set of sets, it must
be a subset of A, whence |P(A)| ≤ |A|. However, by Cantor’s Theorem, we have |A| � |P(A))|.
The conclusion is the palpable contradiction

|P(A)| � |P(A)|!
The remedy is a thorough definition of ‘set’ which prevents the collection of all sets from being a set.
This is where axiomatic set theory, and a completely new approach, begins.

Exercises

8.2.1 You may assume that [0, 1] has cardinality c.

(a) Construct an explicit bijection f : [0, 1] → [3, 8] which proves that the interval [3, 8] also
has cardinality c. Try a linear function mapping the endpoints of [0, 1] to the endpoints of [3, 8].

(b) Let a, b ∈ R with a < b. Generalizing the previous example, construct a bijection which
proves that the closed interval [a, b] has cardinality c.

8.2.2 (a) Suppose that g : {1, 2, 3, 4} → P({1, 2, 3, 4}) is defined by

g(1) = {1, 2, 3}, g(2) = {1, 4}, g(3) = ∅, g(4) = {2, 4}.
Compute the set X =

{
a ∈ {1, 2, 3, 4} : a 6∈ g(a)

}
.

(b) Repeat part (a) for g : N→ P(N) : n 7→ {x ∈ 2N : x ≤ n}.
8.2.3 The proof of Cantor’s Theorem makes use of a construction similar to Russell’s Paradox. Let X

be the set of all sets which are not members of themselves: explicitly

X = {A : A 6∈ A}.
(a) Assume that X is a set, and use it to deduce a contradiction: ask yourself if X is a member

of itself.
(b) Russell’s paradox (and indeed the proof of Cantor’s Theorem) is one avatar of an ancient

logical paradox which appears in many guises. For example, suppose that a town has
one hairdresser, and suppose that the hairdresser is the person who cuts the hair of all the
people, and only those people, who do not cut their own hair. Who cuts the hairdresser’s
hair? Can you explain the connection with Russell’s paradox/Cantor’s Theorem?

The point of Russell’s paradox is that we need a definition of ‘set’ which prevents objects like X from
being sets.

8.2.4 Recall the Cantor set as described in the notes, where we proved that C is the set of all num-
bers in [0, 1] possessing a ternary expansion consisting only of zeros and twos. Modeling your
answer on the proof that the interval [0, 1] is uncountable, prove that C is uncountable.

8.2.5 (a) Show that |(0, 1)| ≤ |R \N| ≤ |R|.
(b) Construct a bijection f : (0, 1)→ (−π

2 , π
2 ). (Try a linear function)

(c) Show that g : (−π
2 , π

2 )→ R : x 7→ tan x is a bijection.
(d) Use the Cantor–Schröder–Bernstein Theorem to conclude that |R \N| = |R| = c.
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