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Abstract

In this paper, we show that the failure of the unique branch hypothesis (UBH) for

tame trees (see Definition 5.1) implies that in some homogenous generic extension of

V there is a transitive model M containing Ord∪R such that M � AD+ + Θ > θ0. In

particular, this implies the existence (in V ) of a non-tame mouse. The results of this

paper significantly extend Steel’s earlier results from [16] for tame trees.

In this paper, we establish, using the core model induction, a lower bound for certain

failures of the Unique Branch Hypothesis, (UBH), which is the statement that every iteration

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Mouse, inner model theory, descriptive set theory, hod mouse, core model induction, UBH.



tree that acts on V has at most one cofinal well-founded branch. For the rest of this paper,

all trees considered are nonoverlapping, that is whenever E and F are extenders such that

E is used before F along a branch of the tree, then lh(E) ≤ crit(F ). The following is our

main theorem. Tame trees1 are defined in Definition 5.1: roughly speaking, these are the

trees in which the critical point of any branch embedding is above a strong cardinal which

reflects strong cardinals.

Theorem 0.1 (Main Theorem). Suppose there is a proper class of strong cardinals and UBH

fails for tame trees. Then in a set generic extension of V , there is a transitive inner model

M such that Ord ∪ R ⊆ M and M � AD+ + θ0 < Θ. In particular, there is a non-tame

mouse.

UBH was first introduced by Martin and Steel in [3]. Towards showing UBH, Neeman,

in [5], showed that a certain weakening of UBH called cUBH holds provided there are no

non-bland mice2. However, in [17], Woodin showed that in the presence of supercompact

cardinals UBH can fail for tame trees3. It is, however, still an important open problem

whether UBH holds for trees that use extenders that are 2ℵ0-closed in the models that they

are chosen from. A positive resolution of this problem will lead to the resolution of the

inner model problem for superstrong cardinals and beyond. It is worth remarking that the

aforementioned form of UBH for tame trees will also lead to the resolution of the inner model

problem for superstrong cardinals and beyond. Our work can be viewed as an attempt to

prove UBH for tame trees by showing that its failure is strong consistency-wise.

In this direction, in [16], Steel showed that the failure of UBH for (nonoverlapping)

trees implies that there is an inner model with infinitely many Woodin cardinals. If in

addition UBH fails for some tree T such that δ(T ) is in the image of two branch embeddings

witnessing the failure of UBH for T then Steel obtained an inner model with a strong cardinal

which is a limit of Woodin cardinals. For tame trees (which, as mentioned in the footnote,

include a class of examples constructed by Woodin in [17]), the Main Theorem considerably

strengthens the aforementioned result of Steel and because the proof presented here is via

the core model induction, we expect that it will yield much more: we believe that our proof,

coupled with arguments from [8], will give the existence of a transitive inner model M such

that Ord ∪ R ⊆ M and M � “ADR + Θ is regular”. However, we still do not know if an

1The term “tame trees” is our ad-hod terminology and has nothing to do with the well-established term
“tame” used to define a certain first-order property of premice.

2We will not use this terminology.
3Woodin constructs alternating chains whose branches are well-founded. Extenders of such trees can be

demanded to reflect the set of strong cardinals which reflect strong cardinals. Hence critical points of the
branch embeddings can certainly be demanded to be above the first strong cardinal which reflects strong
cardinals.
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arbitrary failure of UBH implies the existence of a non-tame mouse. Various arguments

presented in this paper resemble the arguments given in [7] and [11], and some familiarity

with those articles will be useful.

The first author’s work was supported by NSF Grant No DMS-1201348. Part of this

paper was written while the second author was visiting the first author who was a Leibniz

Fellow at the Mathematisches Forschungsinstitut Oberwolfach. Finally, the authors would

like to express their gratitude to their kind Rutgers colleagues, Lisa Carbone and Konstantin

Mischaikow, for hosting both authors during the hurricane Sandy. The paper was finished

while both authors were sheltered at their house. Finally, the authors would like to thank

the referee for many helpful comments regarding the content of the paper.

1 Preliminaries

In this paper, we will need to make use of the material presented in Section 1 of [7], most of

which, especially Section 1.1, carries over to the hybrid context by just changing the word

“mouse” with “hybrid mouse”. Because of this, we will only introduce a few main notions

and will use Section 1 of [7] as our main background material. In particular, we assume

that the reader has already translated the material of Section 1.1 of [7] into the language of

hybrid mice.

1.1 Stacking mice

Following the notation of Section 1.3 of [7], we fix some uncountable cardinal λ and as-

sume ZF. Notice that any function f : Hλ → Hλ can be naturally coded by a subset of

P(∪κ<λP(κ)). We then let Code∗λ : HHλ
λ → P(∪κ<λP(κ)) be one such coding. If λ = ω1

then we just write Code∗. Because for α ≤ λ, any (α, λ)-iteration strategy4 for a hybrid

premouse of size < λ is in HHλ
λ , we have that any such strategy is in the domain of Code∗λ.

Suppose Λ ∈ dom(Code∗λ) is a strategy with hull condensation and µ ≤ λ. Recall that we

say F is (µ,Λ)-mouse operator if for some X ∈ Hλ and formula φ in the language of Λ-mice,

whenever Y is such that X ∈ Y , F (Y ) is the minimal µ-iterable Λ-mouse satisfying φ[Y ].

We then let Codeλ be Code∗λ restricted to F ∈ dom(Code∗λ) which are defined by the

following recursion.

1. for some α ≤ λ, F is a (α, λ)-iteration strategy with hull condensation5,

4This is an iteration strategy for stacks of less than α normal trees, each of which has length less than
λ. Typically these are fine-structural n-maximal iteration trees (as defined in [4]), where n is the degree of
soundness of the premouse we iterate. We will suppress this parameter thoughout our paper.

5In this case as well as in cases below α = 0 is allowed.
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2. for some α ≤ λ and for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with hull

condensation, F is a (λ,Λ)-mouse operator,

3. for some α ≤ λ, for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with hull conden-

sation, for some (λ,Λ)-mouse operator G ∈ dom(Code∗λ) and for some β ≤ λ, F is a

(β,Λ)-iteration strategy with hull condensation for some G-mouse M∈ Hλ.

When λ = ω1 then we just write Code instead of Codeω1 . Given an F ∈ dom(Codeλ) we let

MF be, in the case F is an iteration strategy, the structure that F iterates and, in the case

F is a mouse operator, the base of the cone on which F is defined.

Let P ∈ Hλ be a hybrid premouse and for some α ≤ λ, let Σ be (α, λ)-iteration strategy

with hull condensation for P . Suppose now that Γ ⊆ P(∪κ<λP(κ)) is such that Codeλ(Σ) ∈
Γ. Given a Σ-premouse M, we say M is Γ-iterable if |M| < λ and M has a λ-iteration

strategy (or (α, λ)-iteration strategy for some α ≤ λ) Λ such that Codeλ(Λ) ∈ Γ6. We let

MiceΓ,Σ be the set of Σ-premice that are Γ-iterable.

Definition 1.1. Given a Σ-premouseM∈ Hλ, we sayM is countably α-iterable if whenever

π : N →M is a countable submodel ofM, N , as a Σπ-mouse, is α-iterable. When α = ω1+1

then we just say that M is countably iterable. We say M is countably Γ-iterable if whenever

π and N are as above, N is Γ-iterable.

Suppose M is a Σ-premouse. We then let o(M) = Ord ∩ M. We also let M||ξ be

M cutoff at ξ, i.e., we keep the predicate indexed at ξ. We let M|ξ be M||ξ without

the last predicate. We say ξ is a cutpoint of M if there is no extender E on M such

that ξ ∈ (cp(E), lh(E)]. We say ξ is a strong cutpoint if there is no E on M such that

ξ ∈ [cp(E), lh(E)]. We say η < o(M) is overlapped in M if η isn’t a cutpoint of M. Given

η < o(M) we let

OMη = ∪{N /M : ρ(N ) = η and η is not overlapped in N}.

Given a self-wellordered7 a ∈ Hλ we define the stacks over a by

Definition 1.2. 1. LpΣ(a) = ∪{N : N is a countably iterable sound Σ-mouse over a

such that ρ(N ) = a},

2. Kλ,Γ,Σ(a) = ∪{N : N is a countably Γ-iterable sound Σ-mouse over a such that ρ(N ) =

a},
6Recall that iteration strategy for a Σ-mouse must respect Σ. In particular, all Λ-iterates of M are

Σ-premice.
7I.e., self well-ordered, a set a is called self well-ordered if trc(a ∪ {a}) is well-ordered in L1(a).
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3. Wλ,Γ,Σ(a) = ∪{N : N is a Γ-iterable sound Σ-mouse over a such that ρ(N ) = a}.

When Γ = P(∪κ<λP(κ)) then we omit it from our notation. We can define the sequences

〈LpΣ
ξ (a) : ξ < η〉, 〈Kλ,Γ,Σξ (a) : ξ < ν〉, and 〈Wλ,Γ,Σ

ξ (a) : ξ < µ〉 as usual. For Lp operator the

definition is as follows:

1. LpΣ
0 (a) = LpΣ(a),

2. for ξ < η, if LpΣ
ξ (a) ∈ Hλ then LpΣ

ξ+1 = LpΣ(LpΣ
ξ (a)),

3. for limit ξ < η, LpΣ
ξ = ∪α<ξLpΣ

α(a),

4. η is least such that for all ξ < η, LpΣ
ξ (a) is defined.

The other stacks are defined similarly.

1.2 (Γ,Σ)-suitable premice

Again we fix an uncountable cardinal λ such that a large fragment of ZF holds in Vλ. We

also fix Σ ∈ dom(Codeλ) such that Σ is a (α, λ)-iteration strategy with hull condensation

and Γ ⊆ P(∪κ<λP(κ)) such that Codeλ(Σ) ∈ Γ. We now start outlining how to import the

material from Subsection 1.3 of [7]. The most important notion we need from that subsection

is that of (Γ,Σ)-suitable premouse which is defined as follows:

Definition 1.3 ((Γ,Σ)-suitable premouse). A Σ-premouse P is (Γ,Σ)-suitable if there is a

unique cardinal δ such that

1. P � “δ is the unique Woodin cardinal”,

2. o(P) = supn<ω(δ+n)P ,

3. for every η 6= δ, Wλ,Γ,Σ(P|η) � “η isn’t Woodin”.

4. for any η < o(P), OPη =Wλ,Γ,Σ(P|η).

If Γ = P(∪α<λP(a)) then we use λ instead of Γ. In particular, we use λ-suitable to mean

Γ-suitable. We will do the same with all the other notions, such fullness preservation and

short tree iterability, defined in this section

Suppose P is Γ-suitable. Then we let δP be the δ of Definition 1.3. We then proceed as

in Section 1.3 of [7] to define (1) nice iteration tree, (2) (Γ,Σ)-short tree, (3) (Γ,Σ)-maximal

tree, (4) (Γ,Σ)-correctly guided finite stack and (5) the last model of a (Γ,Σ)-correctly

guided finite stack by using Wλ,Γ,Σ operator instead of WΓ operator. Next, we let
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Definition 1.4 (S(Γ,Σ) and F (Γ,Σ)). S(Γ,Σ) = {Q : Q is (Γ,Σ)-suitable}. Also, we let

F (Γ,Σ) be the set of functions f such that dom(f) = S(Γ,Σ) and for each P ∈ S(Γ,Σ),

f(P) ⊆ P and f(P) is amenable to P, i.e., for every X ∈ P, X ∩ f(P) ∈ P.

Given P ∈ S(Γ,Σ) and f ∈ F (Γ,Σ) we let fn(P) = f(P) ∩ P|((δP)+n)P . Then f(P) =

∪n<ωfn(P). We also let

γPf = sup(δP ∩HullP1 ({fn(P) : n < ω})).

Notice that

γPf = δP ∩HullP1 (γPf ∪ {fn(P) : n < ω}).

We then let

HPf = HullP1 (γPf ∪ {fn(P) : n < ω}).

If P ∈ S(Γ,Σ), f ∈ F (Γ,Σ) and i : P → Q is an embedding then we let i(f(P)) =

∪n<ωi(fn(P)).

The following are the next block of definitions that routinely generalize into our context:

(1) (f,Σ)-iterability, (2) ~b = 〈bk : k < m〉 witness (f,Σ)-iterability for ~T = 〈Tk,Pk : k < m〉,
and (3) strong (f,Σ)-iterability. These definitions generalize by using S(Γ,Σ) and f ∈
F (Γ,Σ) instead of S(Γ) and F (Γ).

If P is strongly (f,Σ)-iterable and ~T is a (Γ,Σ)-correctly guided finite stack on P with

last model R then we let

πΣ
P,R,f : HPf → HRf

be the embedding given by any ~b which witnesses the (f,Σ)-iterability of ~T , i.e., fixing ~b

which witnesses f -iterability for ~T ,

πΣ
P,R,f = π~T ,~b � H

P
f .

Clearly, πΣ
P,R,f is independent of ~T and~b. Here we keep Σ in our notation for πΣ

P,R,f because it

depends on a (Γ,Σ)-correct iterations. It is conceivable that R might also be a (Γ,Λ)-correct

iterate of P for another Λ, in which case πΣ
P,R,f might be different from πΛ

P,R,f . However, the

point is that these embeddings agree on HPf . Also, we do not carry Γ in our notation as it

is usually understood from the context.

Given a finite sequence of functions ~f = 〈fi : i < n〉 ∈ F (Γ,Σ), we let ⊕i<nfi ∈ F (Γ,Σ)

be the function given by (⊕i<nfi)(P) = 〈fi(P) : i < n〉. We set ⊕~f = ⊕i<nfi.
We then let
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IΓ,F,Σ = {(P , ~f) : P ∈ S(Γ,Σ), ~f ∈ F<ω and P is strongly ⊕~f -iterable}.

Definition 1.5. Given F ⊆ F (Γ,Σ), we say F is closed if for any ~f ⊆ F<ω there is P such

that (P ,⊕~f) ∈ IΓ,F,Σ and for any ~g ⊆ F<ω, there is a (Γ,Σ)-correct iterate Q of P such that

(Q, ~f ∪ ~g) ∈ IΓ,F,Σ.

Fix now a closed F ⊆ F (Γ,Σ). Let

FΓ,F,Σ = {HPf : (P , f) ∈ IΓ,F,Σ}.

We then define �Γ,F,Σ on IΓ,F,Σ by letting (P , ~f) �Γ,F,Σ (Q, ~g) iff Q is a (Γ,Σ)-correct iterate

of P and ~f ⊆ ~g. Given (P , ~f) �Γ,F,Σ (Q, ~g), we have that

πΣ
P,Q, ~f : HP⊕~f → HQ

⊕~f
.

Notice that if F is closed then �Γ,F,Σ is directed. Let then

M∞,Γ,F,Σ

be the direct limit of (FΓ,F,Σ,�Γ,F,Σ) under πΣ
P,Q, ~f ’s. Given (P , ~f) ∈ IΓ,F,Σ, we let πΣ

P, ~f,∞ :

HP⊕~f →M∞,Γ,F,Σ be the direct limit embedding. Using the proof of Lemma 1.19 of [7], we

get that

Lemma 1.6. M∞,Γ,F,Σ is wellfounded.

Let F be as above and G ⊆ F . The following list is then the next block of definitions

that carry over to our context with no significant changes (see Section 1.4 of [7]): (1) semi

(F,G,Σ)-quasi iteration, (2) the embeddings of the (F,G,Σ)-quasi iteration (in this context,

we will have Σ in the superscripts), (3) (F,G,Σ)-quasi iterations, (4) the last model of (F,G)-

quasi iterations, (5) ~f -guided strategies, (6) a Σ-quasi-self-justifying-system (Σ-qsjs) and (7)

(ω,Γ,Σ)-suitable premice.

1.3 HODΣ under AD+

It turns out that for certain iteration strategies Σ, V HODΣ
Θ of many models of determinacy

can be obtained as M∞,Γ,F,Σ for some Γ and F . For the rest of this section we assume

AD+. Suppose Σ is an iteration strategy of some hod mouse Q and suppose Σ is P(P(ω))-

fullness preserving (see [8]) and has branch condensation (i.e., λ = ω1 from the notation of

Subsections 1.1 and 1.2). Assume further that V = L(P(R)) +MC(Σ)8 + Θ = θΣ and that

8MC(Σ) stands for the Mouse Capturing relative to Σ which says that for x, y ∈ R, x is OD(Σ, y) iff x
is in some Σ-mouse over y.
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P is below “θ is measurable”, i.e., below measurable limit of Woodins. We let Γ = P(P(ω))

and for the duration of this subsection, we drop Γ from our notation. Thus, a Σ-suitable

premouse is a (Γ,Σ)-suitable premouse and etc.

Suppose P is Σ-suitable and A ⊆ R is ODΣ. We say P weakly term captures A if letting

δ = δP , for each n < ω there is a term relation τ ∈ PColl(ω,(δ+n)P ) such that for comeager

many P-generics, g ⊆ Coll(ω, (δ+n)P), τg = P [g] ∩ A. We say P term captures A if the

equality holds for all generics. The following lemma is essentially due to Woodin and the

proof for mice can be found in [9].

Lemma 1.7. Suppose P is Σ-suitable and A ⊆ R is ODΣ. Then P weakly term captures A.

Moreover, there is a Σ-suitable Q which term captures A.

Given a Σ-suitable P and an ODΣ set of reals A, we let τPA,n be the standard name for a

set of reals in PColl(ω,(δ+n)P ) witnessing the fact that P weakly captures A. We then define

fA ∈ F (Γ,Σ) by letting

fA(P) = 〈τPA,n : n < ω〉.

Let FΣ,od = {fA : A ⊆ R ∧ A ∈ ODΣ}.
All the notions we have defined above using f ∈ F (Γ,Σ) can be redefined for ODΣ sets

A ⊆ R using fA as the relevant function. To save some ink, in what follows, we will say

A-iterable instead of fA-iterable and similarly for other notions. Also, we will use A in our

subscripts instead of fA.

The following lemma is one of the most fundamental lemmas used to compute HOD and

it is originally due to Woodin. Again, the proof can be found in [9].

Theorem 1.8. For each f ∈ FΣ,od, there is P ∈ S(Γ,Σ) which is (FΣ,od, f)-quasi iterable.

Let M∞ =M∞,Fod,Σ.

Theorem 1.9 (Woodin, [9]). δM∞ = Θ, M∞ ∈ HODΣ and

M∞|Θ = (V HODΣ
Θ , ~EM∞|Θ, SM∞ ,∈)

where SM∞ is the predicate of M∞ describing Σ.

Finally, if a ∈ Hω1 is self-wellordered then we could define M∞(a) by working with Σ-

suitable premice over a. Everything we have said about Σ-suitable premice can also be said

about Σ-suitable premice over a and in particular, the equivalent of Theorem 1.9 can be

proven using HOD(Σ,a)∪{a} instead of HODΣ and M∞(a) instead of M∞.
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2 The maximal model

The core model induction is a method for constructing models of determinacy while working

under various hypothesis. During the induction one climbs up through the Solovay hierarchy.

This is a hierarchy of axioms which extends AD+ and roughly describes how complicated the

Solovay sequence is. To pass the successor stages of the Solovay hierarchy, (i.e. the stages

where the length of the sequence is a successor) one defines a large enough model, called the

maximal model, and shows that it satisfies AD+. The next step is to then construct a hod

pair beyond the maximal model. In this section our goal is to introduce the maximal model

and prove some correctness results such as Lemma 2.5. For more on the Solovay hierarchy

see [6].

We start by introducing universally Baire iteration strategies and mouse operators. We

assume ZFC. Throughout this paper we fix a canonical method for sets in HC by reals.

Given a real x which is a code of a set in HC, we let Mx be the structure coded by x and let

πx : Mx → Nx be the transitive collapse of Mx. We let WF be the set of reals which code

sets in HC.

Definition 2.1 (uB operators). Suppose Λ ∈ dom(Code) and λ ≥ ω1 is a cardinal. We say

Λ is λ-uB if there are < λ-complementing trees9 (T, S) witnessing that Code(Λ) is < λ-uB

in the following stronger sense: for all x ∈ WF and n,m ∈ x,

(x, n,m) ∈ p[T ] ⇐⇒ πx(m) ∈ Λ(πx(n)).

If g is a < λ-generic then we let Λg be the canonical interpretation of Λ onto V [g], i.e., given

a, b ∈ HCV [g], Λg(a) = b if and only if whenever x ∈ WF V [g] is such that a ∈ Nx and n ∈ x
is such that πx(n) = a then b = πx[{m : (x, n,m) ∈ (p[T ])V [g]}].

If Λ is λ-uB for all λ then we say Λ is uB.

Suppose now λ is an uncountable cardinal, g is a < λ-generic, a ∈ (Hλ)
V [g] and Σ ∈

dom(Code) is λ-uB. Then we define LpΣ,g(a), Wλ,Σ,g(a) and Kλ,Σ,g(a) in V [g] according to

Definition 1.2. The following connects the three stacks defined above.

Proposition 2.2. For every a ∈ HV
λ , Wλ,Σ(a) E Kλ,Σ(a) E LpΣ(a). Moreover, for any

η < λ and V -generic g ⊆ Coll(ω, η) or g ⊆ Coll(ω,< η), Wλ,Σ,g(a) EWλ,Σ(a), Kλ,Σ,g(a) E

Kλ,Σ(a) and LpΣ,g(a) E LpΣ(a).

We are now in a position to introduce the maximal model of AD+.

9This means that the trees project to complements in all < λ-generic extensions.
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Definition 2.3 (Maximal model of AD+). Suppose Σ ∈ Code is λ-uB and µ < λ is a

cardinal. Let g ⊆ Coll(ω,< µ)10 be generic. Then we let Sλ,Σµ,g = L(Kλ,Σ,g(RV [g])).

Thus far strategy mice have been discussed only in situations when the underlying set

was self-wellordered. However, Sλ,Σµ,g is a Σ-mouse over the set of reals. Such hybrid mice

were defined in Section 2.10 of [8]. We say that Sλ,Σµ,g is the λ-Σ-maximal model at µ. Next

we define hod pairs below a cardinal.

Definition 2.4 (Hod pair below λ). Suppose now that (P ,Σ) is a hod pair11 such that

Σ ∈ dom(Code) is λ+-uB. We say (P ,Σ) is a hod pair below λ if Σ has branch condensation

and whenever g ⊆ Coll(ω, λ) is V -generic, in V [g], Σg is ω1-fullness preserving.

The next lemma connects various degrees of iterability. Below, if ξ ∈ Ord and N is a

transitive model of ZFC then we let Nξ = V N
ξ .

For the purposes of the next lemma, suppose µ < λ are such that µ is a strong cardinal

and λ is inaccessible. Let j : V → M be an embedding witnessing that µ is λ+-strong and

let g ⊆ Coll(ω,< µ) and h ⊆ Coll(ω,< j(µ)) be two generics such that g = h∩Coll(ω,< µ).

Let j+ : V [g]→M [h] be the lift of j. Let W = V [g].

Lemma 2.5. Suppose (P ,Σ) is a hod pair below µ and a ∈ Vλ[g] is self-wellordered. Then

Wλ,Σ,g(a) =Wλ,Σ,h∩Coll(ω,<λ)(a) = Kλ,Σ,g(a) = Kµ,Σ,g(a) = (Wj(λ),j(Σ),h(a))M [h].

Proof. We first show thatWλ,Σ,g(a) = Kµ,Σ,g(a). Work in W . ClearlyWλ,Σ,g(a) E Kµ,Σ,g(a).

Let then M E Kµ,Σ,g(a) be such that ρ(M) = a. We want to see that M E Wλ,Σ,g(a). To

see this, notice that by a standard absoluteness argument, there is σ : M → j+(M) such

that σ ∈ M [h], σ(P) = P and M [h] � j(Σg)σ = j(Σg) (this follows from the fact that

Σ has branch condensation). Hence, in M [h], M is ω1 + 1-iterable j(Σg)-mouse. Let in

M [h], Λ ∈M [h] be the unique ω1 + 1-iteration strategy ofM (as a j(Σg)-mouse). It follows

from the homogeneity of the collapse and the uniqueness of Λ that Λ � HW
λ ∈ W . Hence,

M EWλ,Σ,g(a).

To see that Wλ,g(a) = (Wj(λ),j(Σ),h(a))M [h], first suppose M E Wλ,Σ,g(a). Then, in

M [h], j(M) E Wj(λ),j(Σ),h(j+(a)). Since, in M [h], M is embeddable into j+(M) via σ

with the above properties, we get that in M [h], M E Wj(λ),j(Σ),h(a). Next, suppose M E

(Wj(λ),j(Σ),h(a))M [h] is such that ρ(M) = a. It follows from the homogeneity of the collapse

and the uniqueness of the strategy of M that M∈ V [g] and that M EWλ,Σ,g(a).

We thus have that

10In this paper, µ is typically an inaccessible cardinal.
11Hod pairs are in the sense of [8]. They all satisfy that there is no measurable limit of Woodins.
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(1) Wλ,Σ,g(a) = Kµ,Σ,g(a) = (Wj(λ),j(Σ),h(a))M [h].

Finally notice that

(2) (Wj(λ),j(Σ),h(a))M [h] EWλ,Σ,h∩Coll(ω,<λ)(a) EWλ,Σ,g(a) E Kλ,Σ,g(a) E Kµ,Σ,g(a).

(1) and (2) now easily imply the claim.

The following is an easy corollary of Lemma 2.5.

Corollary 2.6. Suppose µ < κ < λ and j : V → M are such that µ and κ are strong

cardinals, λ is inaccessible, j witness that µ is λ-strong and M � “κ is strong cardinal”. Let

(P ,Σ) be a hod pair below µ which is λ-uB. Let g ⊆ Coll(ω,< κ) and h ⊆ Coll(ω,< j(µ))

be generic such that g = h∩Coll(ω,< κ). Let j+ : V [g ∩Coll(ω,< µ)]→M [h] be the lift of

j. Then whenever a ∈ Vλ[g],

Wλ,Σ,g(a) = Kκ,Σ,g(a) =Wλ,Σ,h∩Coll(ω,<λ)(a) = (Wj(λ),j(Σ),h(a))M [h].

Proof. Let k = g ∩ Coll(ω,< µ). Notice that because j(Σ) has a unique extension in M [h],

we have that j+(Σk) � Vλ[g] = Σg. Because κ is a strong cardinal in V , it follows from

Lemma 2.5 that

(1) Wλ,Σ,g(a) = Kκ,Σ,g(a).

Because κ is a strong cardinal in M , it follows from Lemma 2.5 that

(2) Kκ,Σ,g(a) =Wj(λ),j(Σ),g(a) = (Wj(λ),j(Σ),h(a))M [h].

Therefore, Wλ,Σ,g(a) = Kκ,Σ,g(a) = (Wj(λ),j(Σ),h(a))M [h].

3 The core model induction

The goal of this section is to develop some basic notions in order to state Theorem 3.3

which we will use as a black box. Our core model induction is a typical one: we have two

uncountable cardinals κ < λ, the core model induction operators (cmi operators) defined on

bounded subsets of κ can be extended to act on bounded subsets of λ, and for any such cmi

operator F acting on bounded subsets of λ, the minimal F -closed mouse with one Woodin

cardinal exists and is λ-iterable. Having these three conditions is enough to show, by using

11



the scales analysis developed in [13] and [10], that the -λ-maximal model at κ indeed satisfies

AD+. The details of the proof of Theorem 3.3 have appeared, in a less general form, in [9]

and [11].

The mouse operators that are constructed during core model induction have two ad-

ditional properties: they transfer and relativize well. To make these notions precise, fix

Σ ∈ dom(Code) which is λ-uB. Given a Σ-mouse operator F ∈ dom(Codeλ), we say

1. (Relativizes well) F relativizes well if there is a formula φ(u, v, w) such that whenever

X, Y ∈ dom(F ) and N are such that X ∈ L1(Y ) and N is a transitive rudimentarily

closed set such that Y, F (Y ) ∈ N then F (X) ∈ N and F (X) is the unique U such that

N � φ[U,X, F (Y )].

2. (Transfers well) F transfers well if whenever X, Y ∈ dom(F ) are such that X is generic

over L1(Y ) then F (L1(Y )[X]) is obtained from F (Y ) via S-constructions (see Section

2.11 of [8]) and in particular, F (L1(Y ))[X] = F (L1(Y )[X]).

We are now in a position to introduce the core model induction operators that we will

need in this paper.

Definition 3.1 (Core model induction operator). Suppose |R| = κ, (P ,Σ) is a hod pair

below κ+. We say F ∈ dom(Code) is a Σ core model induction operator or just Σ-cmi

operator if one of the following holds:

1. For some α ∈ Ord, letting M = Sκ+,Σ
ω ||α, M � AD+ +MC(Σ) and one of the following

holds:

(a) F is a Σ-mouse operator which transfers and relativizes well.

(b) For some self-wellordered b ∈ HC and some Σ-premouse Q ∈ HCV over b, F

is an (ω1, ω1)-iteration strategy for Q which is (P(R))M -fullness preserving, has

branch condensation and is guided by some ~A = (Ai : i < ω) such that ~A ∈ ODM
b,Σ,x

for some x ∈ b. Moreover, α ends either a weak or a strong gap in the sense of

[10].

(c) For some H ∈ dom(Code), H satisfies a or b above and for some n < ω, F is

x → M#,H
n (x) operator or for some b ∈ HC, F is the ω1-iteration strategy of

M#,H
n (b).

2. For some α ∈ Ord, a ∈ HC and M EWκ+,Σ(a) such that ρ(M) = a letting Λ be M’s

unique strategy, the above conditions hold for F with LΛ
κ+(R) used instead of Sκ+,Σ

ω and

Λ used instead of Σ.
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When Σ = ∅ then we omit it from our notation. Often times, when doing core model

induction, we have two uncountable cardinals κ < λ and we need to show that cmi operators

in V Coll(ω,<κ) can be extended to act on V
Coll(ω,<κ)
λ . This is a weaker notion than being λ-uB.

We also need to know that for any cmi operator F ∈ V Coll(ω,<κ), M#,F
1 -exists. We make

these statements more precise.

Definition 3.2 (Lifting cmi operators). Suppose κ < λ are two cardinals such that κ is an

inaccessible cardinal and suppose (P ,Σ) is a hod pair below κ.

1. Lift(κ, λ,Σ) is the statement that for every generic g ⊆ Coll(ω,< κ), in V [g], for every

every Σg-cmi operator F there is an operator F ∗ ∈ dom(Codeλ) such that F = F ∗ �

HC. In this case we say F is λ-extendable. Such an F ∗ is necessarily unique as can

be easily shown by a Skolem hull argument12. If Lift(κ, λ,Σ) holds, g ⊆ Coll(ω,< κ)

is generic, and F is a Σg-cmi operator then we let F λ be its extended version.

2. We let Proj(κ, λ,Σ)13 be the conjunction of the following statements: Lift(κ, λ,Σ) and

for every generic g ⊆ Coll(ω,< κ), in V [g],

(a) for every Σg-cmi operator F , M#,F
1 exists and is λ-iterable.

(b) for every a ∈ Hω1, Kω1,Σ,g(a) =Wλ,Σ,g(a)

Recall that under AD, if X is any set then θX is the least ordinal which isn’t a surjective

image of R via an ODX function. The following is the core model induction theorem that

we will use.

Theorem 3.3. Suppose κ < λ are two uncountable cardinals and suppose (P ,Σ) is a hod

pair below κ such that Proj(κ, λ,Σ) holds. Then for every generic g ⊆ Coll(ω,< κ), Sλ,Σκ,g �

AD+ + θΣ = Θ.

We will not prove the theorem here as the proof of the theorem is very much like the

proof of the core model induction theorems in [7] (see Theorem 2.4 and Theorem 2.6), [9]

(see Chapter 7) and [11]. To prove the theorem we have to use the scales analysis for Sλ,Σκ,g

which is unpublished but see [10]. Also, the readers familiar with the scales analysis of Lp(R)

as developed by Steel in [13] and [14] should have no problem seeing how the general theory

should be developed. However, there is one point worth going over.

12Suppose H0, H1 ∈ dom(Code
V [g]
λ ) are two extensions of F . Working in V [g], let π : N → Hλ+ [g] be

elementary such that N is countable and H0, H1 ∈ rng(π). Let (H̄0, H̄1) = π−1(H0, H1). Then it follows
from the definition of being a Σ-cmi operator that H̄0 = H0 � N and H̄1 = H � N . However, since
H0 � N = F � N = H1 � N , we get that N � H̄0 = H̄1, contradiction!

13Proj stands for projective determinacy. The meaning is taken from clause (a).
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Suppose we are doing core model induction to prove Theorem 3.3. Fix then g ⊆ Coll(ω,<

κ). During this core model induction, we climb through the levels of Sλ,Σκ,g some of which

project to R but do not satisfy that “Θ = θΣg”. It is then the case that the scales analysis

of [10] cannot help us in producing the next “new” set. However, such levels can never be

problematic for proving that AD+ holds in Sλ,Σκ,g . This follows from the following lemma.

Lemma 3.4. Suppose in V [g], M E Sλ,Σκ,g is such that ρ(M) = R and M � “Θ 6= θΣg”.

Then there is N E Sλ,Σκ,g such that M E N , N � “AD+ + Θ = θΣg”.

Proof. Since M � “Θ 6= θΣg” it follows that P(R)M ∩ (LpΣg(R))M 6= P(R)M. It then

follows that there is some α < o(M) such that ρ(M|α) = R but M|α 6E (LpΣg(R))M.

Let π : N →M|α be such that N is countable and its iteration strategy is not in M. Let

Λ ∈ V [g] be the λ-iteration strategy ofN . Then a core model induction through LΛ(R) shows

that LΛ(R) � AD+ (this is where we needed clause 2 of Definition 3.1). However, its not hard

to see that LΛ(R) � “Θ = θΣg”. It then follows from an unpublished result of the the first

author and Steel that LΛ(R) � P(R) = P(R) ∩ LpΣg(R) (for the case Σg = ∅, see [12]). Let

then K E (LpΣg(R))L
Λ(R) be such that ρ(K) = R, K � Θ = θΣg and Λ � HCV [g] ∈ K (there

is such a K by an easy application of Σ2
1(Code(Σg)) reflection). Since countable submodels

of K are λ-iterable (see clause (b) of Proj(κ, λ,Σ)), we have that K E Sλ,Σκ,g . Also we cannot

have that K /M as otherwise N would have a strategy in M. Therefore, M E K.

We can now do core model induction through the levels of Sλ,Σκ,g as follows. If we have

reached a gap satisfying “Θ = θΣg” then we can use the scales analysis of [10] to go beyond.

If we have reached a level that satisfies “Θ 6= θΣg” then using Lemma 3.4 we can skip through

it and go to the least level beyond it that satisfies “Θ = θΣg”. We leave the rest of the details

to the reader.

One final remark is that under the hypothesis of Theorem 3.3, whenever Λ ∈ V [g] is

an iteration strategy of some Σ-mouse M over some self-wellordered a ∈ HCV [g] with the

property that ρ(M) = a then LΛ(RV [g]) � AD+ (which can be proved by a core model

induction argument through LΛ(RV [g])). It then follows that Sλ,Σκ,g � ‘Θ = θΣg”.

We end this section with the following useful fact on lifting strategies. Among other

things it can be used to show clause (b) of Proj(κ, λ,Σ).

Lemma 3.5 (Lifting cmi operators through strongness embeddings). Suppose κ < λ are

such that κ is a λ-strong cardinal. Then whenever (P ,Σ) is a hod pair below κ, Lift(κ, λ,Σ)

and clause (b) of Proj(κ, λ,Σ) hold.

Proof. Fix an embedding j : V → M witnessing κ is λ-strong. We only show that

Lift(κ, λ,Σ) holds as the proof of clause b of Proj(κ, λ,Σ) is very similar. Let g ⊆ Coll(ω,<
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κ) and h ⊆ Coll(ω,< j(κ)) be V -generic such that g = h ∩ Coll(ω,< κ). We can

then extend j to j+ : V [g] → M [h]. Working in V [g], fix a Σg-cmi operator F . Let

F λ = j+(F ) � Hλ[g]. Fix X ∈ HCV [g] such that V [g] � F ∈ OD{X,Σg}. It then follows that

M [h] � j+(F ) ∈ OD{X,j+(Σg)}. This in turns implies F λ ∈ V [g].

4 A core model induction at a strong cardinal

In this section we present a useful application of Theorem 3.3 which we will later use to

prove our main theorem. Recall that we say µ reflects the set of strong cardinals if for every

λ there is an embedding j : V → M witnessing that µ is λ-strong and for any cardinal

κ ∈ [µ, λ), V � “κ is strong” iff M � “κ is strong”.

Theorem 4.1. Suppose µ < κ < λ are such that λ is an inaccessible cardinal, µ and κ

are strong such that µ reflects the set of strong cardinals and whenever (R,Ψ) is a hod pair

below κ such that λR = 0, Proj(κ, λ,Ψ) holds. Suppose m ⊆ Coll(ω,< κ) is generic. Then

in V [m], there is A ⊆ R such that L(A,R) � θ0 < Θ.

More specifically let g = m ∩ Coll(ω,< µ) and P = (M∞)S
λ
µ,g . Then in V [m], P has

an (ω1, ω1)-iteration strategy Ψ such that Ψ is λ-fullness preserving. Moreover, there is a

stack ~T ∈ HCV [m] on P according to Ψ with last model Q such that π
~T exists and in V [m],

(Q,ΨQ,~T ) is a hod pair below ω1. Finally, in V [m], Ψ is λ-extendible and L(ΨQ,~T ,R) �

AD+ + θ0 < Θ.

Clearly it’s enough to prove the second part of the theorem which we do in a sequence

of lemmas. Fix then µ < κ < λ as in Theorem 4.1. Fix a V -generics m, g as in the Theorem

and let j : V → M be an embedding witnessing that µ is λ+-strong and such that κ is

strong in M . Also fix a V -generic h ⊆ Coll(ω,< j(µ)) such that h ∩ Coll(ω,< κ) = m. It

then follows that j lifts to j+ : V [g] → M [h]. Notice that it follows from our hypothesis,

Theorem 3.3 and Lemma 3.5 that Sλµ,g � AD+ + Θ = θ0.

Let k = h ∩ Coll(ω,< λ), S = Sλµ,g and Γ∗ = (Fod)
S . The following is an immediate

corollary of Lemma 2.5.

Corollary 4.2. For any a ∈ HCV [g], (Lp(a))S =Wλ,g(a).

We will use the next lemma along with Lemma 1.29 of [7] to construct an iteration

strategy for P .

Lemma 4.3. j+[Γ∗] is a qsjs for j+(S(Γ∗)) as witnessed by P .
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Proof. We first prove the following.

Claim. Suppose R ∈ j(S) is such that there are π : P → R and σ : R → j(P) such that

j � P = σ ◦ π. Then R ∈ S(j+(Γ∗)).

Proof. First let T ∈ j+(S) be the tree projecting to the universal (Σ2
1)j

+(S) set. We have

that L[T,P ] � P = H(δP )+ω . Notice that T ∈ V . It then follows that we can lift j � P , π

and σ to

j∗ : L[T,P ]→ L[j(T ), j(P)], π∗ : L[T,P ]→ L[π∗(T ),R] and

σ∗ : L[π∗(T ),R]→ L[j(T ), j(P)].

such that j∗ = σ∗ ◦ π∗. The proof of Lemma 2.21 of [7] now shows that R ∈ j+(S(Γ∗)).

To finish the proof, we need to show that for every A ∈ Γ∗, in j+(S),

(1) P is (j+[Γ∗], j(A))-quasi iterable14.

To see (1), fix A ∈ Γ∗ and fix Q ∈ S(Γ∗) such that in S, Q is (Γ∗, A)-quasi iterable.

Then j+(S) � “Q is (j+(Γ∗), j(A))-quasi iterable”. Since we have that j+(S) � “P is a

(j+(Γ∗), j(A))-quasi iterate of Q”, we have that j+(S) � “P is a (j+(Γ∗), j(A))-quasi iter-

able”. Repeating the argument for every A, we get that

(2) for every A ∈ Γ∗, j+(S) � “P is (j+(Γ∗), j(A))-quasi iterable”.

It follows from (2) that to finish the proof of (1) it’s enough to show that

(3) for everyA ∈ Γ∗, in j+(S), every (j+(Γ∗), j+(A))-quasi iteration is also a (j+[Γ∗], j+(A))-

quasi iteration.

To prove (3), it is enough to show that whenever Q is a j+(Γ∗)-quasi iterate of P then

δQ = ∪B∈j+[Γ∗]H
Q
τQB

. Fix thenQ which is a j+(Γ∗)-quasi iterate of P . Let π = ∪B∈j+[Γ∗]πP,Q,B.

Let W be the transitive collapse of ∪B∈j+[Γ∗]H
Q
τQB

. Let σ : W → Q be the uncollapse map

and τ = ∪B∈j+(Γ∗)πQ,∞,B. Because P = ∪B∈j+[Γ∗]H
P
B , π is total. It then follows that

j � P = τ ◦ (σ−1 ◦ π).

14Technically we should write (j+[Γ∗], {j(A)}) but we abuse notation here.
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The claim then implies that W ∈ S(j+(Γ∗)). This finishes the proof of (1). A similar proof

gives the following.

(4) whenever Q is a j+[Γ∗]-quasi iterate of P and ε : R →Σ1 Q is such that for every

A ∈ Γ∗, τQj+(A) ∈ rng(ε) then R ∈ j+(S(Γ∗)).

The key point again is that the embedding π defined above is total. This finishes the

proof of the lemma.

We can now use Lemma 1.29 of [7] to get a strategy Σ∗ = Σj+[Γ∗]. In our current situation,

there is one important difference with [7]: here Σ∗ may not act on all trees that are in M [h]

as j+[Γ∗] isn’t in M [h]. However, it acts on all stacks that are in Vλ[k]. This is simply

because

F = {B ∩ RV [k] : B ∈ j+[Γ∗]} ∈ V [k].

Also, Σ = Σ∗ � Vλ[m] and Ψ = Σ � Vκ[m].

Lemma 4.4. In V [m], Σ is a (λ, λ)-iteration strategy which is λ-fullness preserving and is

guided by F .

Proof. It is enough to show that Σ is λ-fullness preserving as we have already established

the remaining clauses. That Σ is λ-fullness preserving follows easily from Corollary 2.6.

Next, we show that there is a stack ~T on P according to Ψ with last model Q ∈ HCV [m]

such that π
~T exists and ΨQ,~T has branch condensation. We follow the proof of branch

condensation that first appeared in [2] and also in Chapter 7 of [9] (see especially the proofs

of Lemma 7.9.6 and Lemma 7.9.7 of [9]). Below we summarize what we need in order to

carry out the proof.

Recall that if Λ is a (possibly partial) iteration strategy for a λ-suitable premouse R then

we say Λ has weak-condensation on its domain if whenever R∗ is a Λ-iterate of R such that

the iteration embedding i : R → R∗ exists and R∗∗ is such that there are π : R → R∗∗ and

σ : R∗∗ → R∗ with the property that i = σ ◦ π then R∗∗ is λ-suitable.

Suppose (R, J) is a pair such that R is a transitive set such that for some ν which is a

cardinal in R, R � “V = Hν+ + J is a precipitous ideal on ω1”. We say (R, J) captures Ψ if

in V [m],

1. (R, J) is countable and an iterable pair via taking generic ultrapowers by J and its

images;
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2. P ∈ HCR, Ψ � HCR ∈ R and letting ΨR = Ψ � HCR, R � “no tail of ΨR has branch

condensation”;

3. whenever ξ < ω1 and (Rα, Jα, Gα
15, πα,β : α < β ≤ ξ) is some iteration of (R, J)

of length ξ + 1 then π0,ξ(Ψ
R) has weak-condensation and fullness preservation on its

domain.

The main lemma towards showing that some tail of Ψ has branch condensation is that

Lemma 4.5. In V [m], there is no (R, J) which captures Ψ.

We do not give the proof of the lemma as it can be found in [2] and in Chapter 7 of [9].

We then derive a contradiction by showing that

Lemma 4.6. Suppose no tail of Ψ has branch condensation. Then in V [m], there is a pair

(R, J) which captures Ψ.

Proof. It follows from Theorem 3.3 and Lemma 3.5 that Sλκ,m � AD+ + θ0 = Θ. Let then

Q = MSλκ,m
∞ . It easily follows from the fact that j+(S) � “Q is a Fod-quasi iterate of P”,

from (1) and (2) of Lemma 4.3 and Lemma 4.4 that Q = M∞(P ,Ψ). It then follows that

V � |Q| < κ+.

To finish let π : P → Q be the iteration map according to Ψ. We also let T be the tree

of the universal (Σ2
1)S

λ
κ,m-set, ν = ((2κ)+)V and µ be a κ-complete normal measure on κ.

Working in V [m], let σ : R→ (Hν+)V [m] be such that R is countable and {Ψ,Q, π, T, µ} ∈
rng(σ). Let n ∈ ω be such that Tn projects onto {(x,M) : x ∈ RV [m] ∧M E Wλ,m(x) ∧
ρ(M) = x}. Also let r ∈ ω be such that Tr projects to the set of (x, y, z) such that x codes

a self-wellordered X, y codes an M /Wλ,m(X) such that ρ(M) = X and z is a tree on M
according to the unique iteration strategy of M.

Let then {Ψ̄, Q̄, π̄, T̄, µ̄} = σ−1({Ψ,Q, π, T, µ}), R̄ = σ−1((Hν+)V ) and m̄ = σ−1(m). We

then have that R = R̄[m̄]. Let then J ∈ R be the precipitous ideal on ω1 induced by µ̄. (see

Theorem 22.33 [1]).

Suppose now that no tail of Ψ has branch condensation. It then follows by elementarity

of σ that R � “no tail of σ−1(Ψ) has branch condensation”. Since we already know that in

V [m], (R, J) is countable and iterable, to finish, it remains to show that the (R, J) captures

Ψ.

Let then ΨR = Ψ � HCR = σ−1(Ψ), QR = σ−1(Q) and πR = σ−1(π). Notice that by

the construction of Ψ we have that whenever R is a Ψ-iterate of P via ~T such that the

iteration embedding π
~T -exists then M∞(R,ΨR,~T ) = Q and letting πR,Q be the iteration

15Gα ⊆ (P(ω1)/Jα)Rα is a generic over Rα.
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map, π = πR,Q ◦ π ~T . We then have that

(1) R �“whenever R is a ΨR-iterate of P via ~T such that the iteration embedding π
~T -

exists then M∞(R,ΨR) = QR and letting πR,QR be the iteration map, πR = πR,QR ◦ π
~T ”.

To show that (R, J) captures Ψ, let (Rα, Jα, Gα, πα,β : α < β ≤ ξ) be some iteration of

(R, J) of length ξ+ 1. Let ~T ∈ HCRξ be according to π0,ξ(Ψ
R) with last model R such that

π
~T -exists. We need to show that Sλκ,m � “R is Σ2

1-suitable”. By (1), we have that there is

p : R → π0,ξ(Q) such that π0,ξ(π
R) = p ◦ π ~T .

It follows from the construction of J that π0,ξ � R̄ is actually an iteration of R̄ via µ̄

and there is q : π0,ξ(R̄) → (Hν+)V such that σ � R̄ = q ◦ (π0,ξ � R̄). We then have that

π = (q � (π0,ξ � QR)) ◦ p ◦ π ~T , implying that, by weak condensation of Ψ, that Sλκ,m � “R is

Σ2
1-suitable”. The proof that π0,ξ(Ψ

R) has weak branch condensation is very similar and we

omit it.

It remains to show that iterations according to π0,ξ(Ψ
R) are correctly guided. We do this

only for normal trees as the general case is only notationally more complicated. To show this,

we first consider the case of trees that don’t have fatal drops. Notice that if T ∈ HCV [m] is

a correctly guided tree16 which is according to Ψ and letting b = Ψ(T ), Q(b, T )-exists then

whenever x, y ∈ RV [m] are such that x codesM(T ) and y codes Q(b, T ) then (x, y) ∈ p[Tn].

We then have that

(2) if T ∈ HCR is according to ΨR, is correctly guided and letting b = ΨR(T ), Q(b, T )-

exists then whenever x, y ∈ RR are such that x codes M(T ) and y codes Q(b, T ) then

(x, y) ∈ p[T̄n].

Let now T ∈ HCRξ be according to π0,ξ(Ψ
R) and such that it is correctly guided and if

b = π0,ξ(Ψ
R)(T ) then Q(b, T )-exists. Let x, y ∈ RRξ be such that x codesM(T ) and y codes

Q(b, T ). By (2) we have that (x, y) ∈ p[π0,ξ(T̄n)]. Keeping the above notation, we have that

(x, y) ∈ p[l ◦ π0,ξ(T̄n)] = p[Tn] implying that Q(b, T ) EWλ,m(M(T )).

Lastly we need to take care of trees with fatal drops. Notice that if T ∈ HCV [m] is a

tree which has a fatal drop at (α, η) then letting U be the tail of T after stage α on OM
T
α

η

and letting M E OM
T
α

η be the least such that ρ(M) = η and U is a tree on M above η

then whenever x, y, z ∈ RV [m] are such that x codes MT
α |η, y codes M and z codes U then

(x, y, z) ∈ p[Tr]. It then follows that

16Recall that correctly guided trees do not have fatal drops, see the paragraph before Definition 1.11 of
[7].
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(3) if T ∈ HCR is a tree which has a fatal drop at (α, η) then letting U be the tail of T
after stage α on OM

T
α

η and letting M E OM
T
α

η be the least such that ρ(M) = η and U is a

tree onM above η then whenever x, y, z ∈ RR are such that x codesMT
α |η, y codesM and

z codes U then (x, y, z) ∈ p[T̄r].

The rest of the proof is just like the proof of the case when T doesn’t have a fatal drop

except we now use (3) instead of (2).

Using Lemma 4.6 we can fix ~T ∈ HCV [m] on P according to Ψ with last model Q such

that π
~T -exists and ΨQ,~T has branch condensation. To finish the proof of Theorem 4.1 we

need to show that in V [m], (Q,ΨQ,~T ) is a hod pair below ω1. It would then follow from

Lemma 3.3 that in V [m], L(ΨQ,~T ,R) � AD+. Because in V [m], ΨQ,~T is ω1-fullness preserving,

it follows that L(ΨQ,~T ,R) � AD+ + Θ > θ0. The following lemma then finishes the proof of

Theorem 4.1. Let Λ = ΨQ,~T .

Lemma 4.7. V [m] � (Q,Λ) is a hod pair below ω1.

Proof. Let ν < µ be such that letting l = m ∩ Coll(ω, ν), Q ∈ HCV [l]. We claim that

(1) in V [l] there are κ-complementing trees T, S such that in V [m], (p[T ])V [m] = {(x, n,m) :

x ∈ R, n,m ∈ x and πx(m) ∈ Λ(πx(n))}.

We start our proof of (1) with the following claim.

Claim. The fragment of Λ � HCV [l] which acts on normal trees is κ-uB in V [l].

Proof. Given η ∈ (ν, κ) we let lη = m ∩ Coll(ω,< η). Also, let Pη ∈ V [l] be the result of

generically comparing all R ∈ HCV [lη ] such that V [lη] � “ 
Coll(ω,<κ) R is λ-suitable and λ-

short tree iterable”. Also, let Qη be the Λ-iterate of Q obtained by making Hη[lη] generically

generic for BQη
δQη

. Let πη : Q → Pη and ση : Q → Qη be the iteration embeddings. Let in

V [g], U = {(x, y) ∈ R2 : S � “x codes a and y codes a sound a-mouse projecting to a} and

Z = {(x, y, z) ∈ R3 : S � “x codes a, y codes a sound a-mouse M projecting to a and z

codes a normal tree according to the unique strategy of M}. Then we have that U,Z ∈ Γ∗.

Suppose now that T ∈ HCV [m] is a stack on Q. We then have that T is according to Λ

if and only if for any η ∈ (ν, κ) such that T ∈ HCV [lη ]

1. T doesn’t have a fatal drop and for any limit α < lh(T ) letting b be the branch of

T � α the following holds:
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(a) Q(b, T � α) exists if and only if whenever n ⊆ Coll(ω, δQη) is Qη[T ]-generic

and x ∈ Qη[T ][n] is a real coding M(T � α), there is y ∈ Qη[T ][n] such that

(x, y) ∈ πη(τQU ) and ifM is the mouse coded by y then rud(M) � “δ(T � α) isn’t

Woodin”.

(b) Q(b, T � α) doesn’t exist if and only if there is σ : MT
α → Pη such that πη =

σ ◦ πT0,α.

2. T has a fatal drop at (α, β) and whenever n ⊆ Coll(ω, δQη) is Qη-generic, x ∈ Qη[T ][n]

is a real coding MT
α |β and y ∈ Qη[T ][n] is a real coding OM

T
α

β , there is z ∈ Qη[T ][n]

such that z codes the part of T after stage α and (x, y, z) ∈ πη(τQZ ).

It is not hard to see that if we let φ be the formula expressed by the the clauses above then

club many hulls of (H
V [l]
κ ,Λ � HV [l]

κ ,∈) are generically correct about Λ � HCV [l] and hence,

about φ. More precisely, in V [l], there is a club of X ∈ HV [l]
κ such that letting π : N → X

be the transitive collapse of X then whenever (n, T ) are such that n is generic over N and

T ∈ N [n] is a tree on Q then

Q[n] � φ[T ] if and only if φ[T ].

The claim now follows from Lemma 4.1 of [15].

To finish the proof of (1) we first notice that the claim holds for Λ � HCV [l]. Let then

(T, S) be the κ-complementing trees such that in V [m], p[T ] = {x : x codes T on Q such that

φ[T ]} (see Lemma 4.1 of [15]). The proof of the claim then shows that in V [m], p[T ] = {x : x

codes a tree T according to Λ}. It is now easy to modify (T, S) so that they satisfy (1).

5 On the strength of the failure of the UBH for tame

trees

In this section, we present the proof of our Main Theorem. For the rest of this section we

assume that there is a proper class of strong cardinals. We start by introducing tame trees.

Recall that we say κ reflects the set of strong cardinals (or κ is a strong reflecting strongs)

if for every λ there is an embedding j : V → M witnessing that κ is λ-strong and for any

cardinal µ ∈ [κ, λ), V � “µ is strong” iff M � “µ is strong”.

Definition 5.1 (Tame iteration tree). A normal iteration tree T on V is tame if for all

α < β < lh(T ) such that α = predT (β + 1), MT
α � “∃κ < λ < cp(ETβ ) such that λ is a

strong cardinal and κ is strong reflecting strongs”.
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While our proof will not need the assumption that κ is strong reflecting strongs, we

defined tame trees in this particular way because we believe tame failures of UBH give

inner models of ADR + “Θ is regular”. The full proof of this claim will appear in a future

publication.

Towards a contradiction, we assume that there is a tame iteration tree T on V with two

cofinal well-founded branches b and c and the conlusion of the Main Theorem fails. Let

Mb = MT
b , Mc = MT

c , M = M(T ), δ = δ(T ), δ+
b = (δ+)Mb , δ+

c = (δ+)Mc , πb = πTb and

πc = πTc . Finally, let κ0 < κ1 < κ2 be such that:

• κ0 is the first strong reflecting strongs in V ;

• κ1 is the first strong above κ0 in V ;

• since T is tame, we have that all the extenders used in T have critical point > κ1;

hence we can choose an inaccessible κ2 > κ1 and κ2 is below the critical point of any

extender used in T .

Suppose g ⊆ Coll(ω,< κ1) is V -generic. To make the notation as transparent as possible,

we will confuse our iteration embeddings that act on V with their extensions that act on V [g].

Thus, for instance, πb : V [g]→Mb[g] and etc. Working in V [g], fix a hod pair (P ,Σ) ∈ V [g]

below κ1 such that P ∈ HCV [g] and λP = 0. The next lemma is the key lemma.

Lemma 5.2 (Key Lemma). For every hod pair (P ,Σ) below κ1 such that λP = 0, Proj(κ1, κ2,Σ)

holds.

Given the Key Lemma we can easily get a contradiction by using Theorem 4.1 (applied

with κ0 in place of µ, κ1 in place of κ and κ2 in place of λ). It is then enough to show that

the Key Lemma holds which is what we will do in the next few lemmas. Towards the proof

of the Key Lemma, we fix a hod pair (P ,Σ) below κ1. Since clause (b) of Proj(κ1, κ2,Σ)

follows from Lemma 2.5, we will only establish clause (a).

We will only verify clause (a) of Proj(κ1, κ2,Σ) for Σ-cmi operators defined according

to clause 1 of Definition 3.1 as those defined according to clause 2 of Definition 3.1 can be

handled in a very similar manner. Lets then fix such a Σ-cmi operator F . Notice that it

follows from Lemma 3.5 that for every ξ, both in Mb[g] and in Mc[g], F is ξ-extendable. We

then let Fb and Fc be the two Ord-extensions of F in Mb[g] and Mc[g] respectively.

We say F can be lifted if for any x ∈ HMb[g]

δ+ ∩HMc[g]

δ+ , Fb(x) = Fc(x) and (LpFb(x))Mb[g]

is compatible with (LpFc(x))Mc[g] (i.e., one is an initial segment of the other).

We first present a simple lemma which illustrates some of the key ideas that we will use.
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Lemma 5.3. Suppose x,M ∈ Mb ∩Mc are such that M is a sound x-premouse such that

ρ(M) = x. Then M E LpMb(x) ⇐⇒ M E LpMc(x).

Proof. Suppose N is a countable hull of M in V . Then by an absoluteness argument using

that HC is in both Mb and Mc, N is a countable hull ofM both in Mb and Mc. Hence, the

claim follows.

Unfortunately, the lemma doesn’t immediately generalize to F -mice since the absolute-

ness used in the proof isn’t in general true. Fixing an N as in the proof which is a countable

submodel of M E (LpFb(x))Mb it is still true that N can be realized as a countable hull

of (LpFb(x))Mb and (LpFc(x))Mc in Mb and Mc via certain embeddings jb : N → M and

jc : N →M in Mb and Mc respectively: however, it is not clear, in the case F is an iteration

strategy, that F jb
b and F jc

c (i.e., the pullbacks of Fb and Fc) are the same strategies. The

following lemma in fact shows that they have to be the same.

Lemma 5.4. F can be lifted.

Proof. We already know that F can be extended to Fb and Fc. It remains to show that

whenever x ∈ Mb ∩Mc, Fb(x) = Fc(x) and (LpFb(x))Mb17 and (LpFc(x))Mc are compatible.

We show the second clause as the first is only a special case of it. Assume towards a

contradiction that (LpFb(x))Mb and (LpFc(x))Mc are not compatible. Let Sb = (LpFb(x))Mb

and Sc = (LpFc(x))Mc . Fix an elementary σ : W → Vε[g] for some very large ε18 such that W

is countable in V [g], (T , b, c,P , F, x) ∈ rng(σ) and if (U , d, e,Q, G, y) = σ−1(T , b, c,P , F, x)

then σ[lh(U)] is cofinal in lh(T ). Let η = |P|M [g] = |P|V [g]. Note that η < κ1 by the

definition of P . By our choice of κ1, cp(πb) > η and cp(πc) > η. Since η ∈ rng(σ), let

ν = σ−1(η). Also, let Md =MU
d , Me =MU

e , and (Gd, Ge) = σ−1(Fb, Fc). We now have that

in W , (LpGd(y))Md isn’t compatible with (LpGe(y))Me .

Let σξ : MU
ξ → MσU

ξ be the copy maps. We have that σβ ∈ MσU
0 = V [g] and there

are m : Md → MσU
0 and n : Me → MσU

0 such that σ0 = m ◦ πUβ,d and σ0 = n ◦ πUβ,e. Let

H = σβ(G∗) ∈MσU
β where G∗ = σ−1((πb)

−1(F )) = σ−1((πc)
−1(F )) ∈MU

0

Let Rd = (LpGd(y))Md and Re = (LpGe(y))Me . Finally, let Wd = m(Rd) and We =

n(Re). Notice that σβ � Q = m � Q = n � Q and m(Gd), n(Ge) both extend H. But

now, in V [g] =MσU
0 , Rd and Re can be compared as the both are G+-iterable where G+ is

σ0-pullback of H.

17This means that whenever π : (N ,P∗, x∗) → (M,P, x) is such that M � LpFb(x) and N is countable
transitive, then N has a unique ω1 + 1 Λ-strategy where Λ is such that whenever R is an iterate of N and
U ∈ N is a tree on P∗ according to Λ then Λ(U) = F (πU) ∈ R.

18We will confuse this Vε[g] with V [g] during the proof.
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Next, we show that M [g] � “M#,F
1 exists and is < δ-iterable”. This will complete the

proof of the Key Lemma. Suppose not. Without loss of generality, assume δ+
b ≤ δ+

c . By our

assumption, in M [g], the F -closed core model KF derived from a Kc,F which is constructed

(up to δ) using extenders with critical point > κ2 exists and is 1-small19. The following claim

then gives us a contradiction.

Claim. LpFb(KF ) � δ is Woodin.

Proof. Recall that we assume (δ+)Mb ≤ (δ+)Mc and this along with the proof of Claim 4 of

[16] in turns imply that LpFb(KF ) E LpFc(KF ) and hence LpFb(KF ) ∈ Mb ∩Mc. By the

proof of Theorem 4.1 in [16] and Theorem 2.2 of [3], LpFb(KF ) � δ is Woodin.

The claim and the fact that there is a proper class of strong cardinals (in M [g]) imply

that M [g] � “M],F
1 exists and is < δ-iterable.” By the agreement between V and M , we have

V [g] � “M],F
1 exists and is < κ2-iterable.” This finishes the proof of the Main Theorem.

6 On the strength of ¬UBH without strongs

It is possible to prove a similar lower bound for ¬UBH by somewhat strengthening the

hypothesis yet dropping the assumption that there are proper class of strong cardinals. In

this section, we state the result. Its proof is mostly due to the second author and will appear

elsewhere.

Given an iteration tree T of limit length and α < lh(T ), we let T≥α be T starting from

α and T≤α = T � α + 1. Similarly, we define T<α and T>α.

Theorem 6.1. Suppose T is a normal tree on V with two wellfounded branches b and c

such that if α = sup(b ∩ c) then δ(T ) ∈ rng(πTα,b) ∩ rng(πTα,c) and T≥α ∈ MT
α . Then in

some homogenous extension of V there is a transitive model M such that R, Ord ⊆ M and

M � “AD+ + θ0 < Θ”. In particular, there is a non-tame mouse.

The hypothesis of Theorem 6.1 includes, among other trees, alternating chains.
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