Compactness of ω_1

Nam Trang

University of California, Irvine UCLA Logic Colloquium Jan 20, 2017

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

• κ is a measurable cardinal. Note that $V_{\kappa+1} = V_{\kappa+1}^M$.

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

- κ is a measurable cardinal. Note that $V_{\kappa+1} = V_{\kappa+1}^M$.
- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j''\lambda \subseteq x$ and $(|x| < j(\kappa))^M$, then κ is said to be λ -strongly compact.

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

- κ is a measurable cardinal. Note that $V_{\kappa+1} = V_{\kappa+1}^M$.
- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j''\lambda \subseteq x$ and $(|x| < j(\kappa))^M$, then κ is said to be λ -strongly compact.
- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, $j''\lambda \in M$ (or equivalently $M^{\lambda} \subseteq M$), then κ is λ -supercompact.

Elementary embeddings and large cardinals

Assume ZFC. Let $j: V \to M$ be a (nontrivial) elementary embedding with critical point $crt(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

- κ is a measurable cardinal. Note that $V_{\kappa+1} = V_{\kappa+1}^M$.
- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j''\lambda \subseteq x$ and $(|x| < j(\kappa))^M$, then κ is said to be λ -strongly compact.
- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, $j''\lambda \in M$ (or equivalently $M^{\lambda} \subseteq M$), then κ is λ -supercompact.

We say that κ is supercompact/strongly compact if κ is λ -supercompact/ λ -strongly compact for all λ . Clearly, supercompact \rightarrow strongly compact \rightarrow measurable.

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition μ is a measure on a set X if $\mu:\mathcal{P}(X)\to\{0,1\}$ such that **1** $\mu(X) = 1$

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

 $\mu: \mathcal{P}(X) \rightarrow \{0,1\}$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

 $\mu:\mathcal{P}(X)\to\{0,1\}$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

2) if $\mu(A) = 1$ and $A \subseteq B$ then $\mu(B) = 1$,

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

 $\mu:\mathcal{P}(X)\to\{0,1\}$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

2 if
$$\mu(A) = 1$$
 and $A \subseteq B$ then $\mu(B) = 1$

() if
$$\mu(A) = \mu(B) = 1$$
 then $\mu(A \cap B) = 1$,

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

$$\mu:\mathcal{P}(X)\to\{0,1\}$$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

(2) if
$$\mu(A) = 1$$
 and $A \subseteq B$ then $\mu(B) = 1$

(a) if
$$\mu(A) = \mu(B) = 1$$
 then $\mu(A \cap B) = 1$,

 μ is **nonprincipal** if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$.

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

$$\mu:\mathcal{P}(X) \to \{0,1\}$$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

2 if
$$\mu(A) = 1$$
 and $A \subseteq B$ then $\mu(B) = 1$,

() if
$$\mu(A) = \mu(B) = 1$$
 then $\mu(A \cap B) = 1$,

 μ is nonprincipal if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$. μ is κ -complete if for every $\eta < \kappa$ and for every $\langle A_{\alpha} : \alpha < \eta \rangle \subseteq \mathcal{P}(X)$ such that $\mu(A_{\alpha}) = 1$ for all $\alpha < \eta$,

$$\mu(\cap_{\alpha<\eta}A_{\alpha})=1.$$

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

$$\mu:\mathcal{P}(X) \to \{0,1\}$$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

- 2 if $\mu(A) = 1$ and $A \subseteq B$ then $\mu(B) = 1$,
- () if $\mu(A) = \mu(B) = 1$ then $\mu(A \cap B) = 1$,

 μ is **nonprincipal** if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$. μ is κ -complete if for every $\eta < \kappa$ and for every $\langle A_{\alpha} : \alpha < \eta \rangle \subseteq \mathcal{P}(X)$ such that $\mu(A_{\alpha}) = 1$ for all $\alpha < \eta$,

$$\mu(\cap_{\alpha<\eta}A_{\alpha})=1.$$

 κ is a measurable cardinal if there is a nonprincipal, κ -complete measure on κ .

Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

 μ is a measure on a set X if

$$\mu:\mathcal{P}(X) \to \{0,1\}$$

such that

•
$$\mu(X) = 1$$
 and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,

- 2 if $\mu(A) = 1$ and $A \subseteq B$ then $\mu(B) = 1$,
- () if $\mu(A) = \mu(B) = 1$ then $\mu(A \cap B) = 1$,

 μ is **nonprincipal** if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$. μ is κ -complete if for every $\eta < \kappa$ and for every $\langle A_{\alpha} : \alpha < \eta \rangle \subseteq \mathcal{P}(X)$ such that $\mu(A_{\alpha}) = 1$ for all $\alpha < \eta$,

$$\mu(\cap_{\alpha<\eta}A_{\alpha})=1.$$

 κ is a measurable cardinal if there is a nonprincipal, κ -complete measure on κ .

Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \ge \kappa$. We write

 $\mathcal{P}_{\kappa}(X) = \{ \sigma : \sigma \subseteq X \land |\sigma| < \kappa \}.$

Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \ge \kappa$. We write

$$\mathcal{P}_{\kappa}(X) = \{ \sigma : \sigma \subseteq X \land |\sigma| < \kappa \}.$$

As usual, a measure μ on $\mathcal{P}_{\kappa}(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_{\kappa}(X)$.

Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \ge \kappa$. We write

$$\mathcal{P}_{\kappa}(X) = \{ \sigma : \sigma \subseteq X \land |\sigma| < \kappa \}.$$

As usual, a measure μ on $\mathcal{P}_{\kappa}(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_{\kappa}(X)$.

Definition

• A measure μ is fine if it contains the set $\{\sigma \in \mathcal{P}_{\kappa}(X) : x \in \sigma\}$ for all $x \in X$.

Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \ge \kappa$. We write

$$\mathcal{P}_{\kappa}(X) = \{ \sigma : \sigma \subseteq X \land |\sigma| < \kappa \}.$$

As usual, a measure μ on $\mathcal{P}_{\kappa}(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_{\kappa}(X)$.

Definition

• A measure μ is fine if it contains the set $\{\sigma \in \mathcal{P}_{\kappa}(X) : x \in \sigma\}$ for all $x \in X$.

We say that κ is X-strongly compact if there is a κ -complete fine measure on $\mathcal{P}_{\kappa}(X)$. We say that κ is strongly compact if κ is X-strongly compact for all such X.

Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \ge \kappa$. We write

$$\mathcal{P}_{\kappa}(X) = \{ \sigma : \sigma \subseteq X \land |\sigma| < \kappa \}.$$

As usual, a measure μ on $\mathcal{P}_{\kappa}(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_{\kappa}(X)$.

Definition

• A measure μ is fine if it contains the set $\{\sigma \in \mathcal{P}_{\kappa}(X) : x \in \sigma\}$ for all $x \in X$.

We say that κ is X-strongly compact if there is a κ -complete fine measure on $\mathcal{P}_{\kappa}(X)$. We say that κ is strongly compact if κ is X-strongly compact for all such X.

Strong compactness was introduced by Keisler and Tarski (1963/64) and it turns out that under ZFC, the two notions of strong compactness are equivalent. Without the Axiom of Choice, this is not true.

Compactness ultrafilters (cont.)

Let κ, X be as above. Let μ be a fine, κ -complete measure on $\mathcal{P}_{\kappa}(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ . Then

$$\triangle_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.$$

We say that μ is *normal* if and only if for every sequence $(A_x : x \in X)$ as above,

 $riangle_x A_x \in \mu.$

Compactness ultrafilters (cont.)

Let κ, X be as above. Let μ be a fine, κ -complete measure on $\mathcal{P}_{\kappa}(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ . Then

$$\triangle_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.$$

We say that μ is *normal* if and only if for every sequence $(A_x : x \in X)$ as above,

 $riangle_x A_x \in \mu.$

Definition

Let κ, X be as above. We say that κ is X-supercompact if there is a κ -complete, fine, normal measure on $\mathcal{P}_{\kappa}(X)$.

Compactness ultrafilters (cont.)

Let κ, X be as above. Let μ be a fine, κ -complete measure on $\mathcal{P}_{\kappa}(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ . Then

$$\triangle_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.$$

We say that μ is *normal* if and only if for every sequence $(A_x : x \in X)$ as above,

 $riangle_x A_x \in \mu.$

Definition

Let κ, X be as above. We say that κ is X-supercompact if there is a κ -complete, fine, normal measure on $\mathcal{P}_{\kappa}(X)$.

Supercompactness was introduced by Reinhardt and Solovay (1978). Again, under ZFC, the two notions of supercompactness are equivalent.

Compactness ultrafilters (cont.)

Let κ, X be as above. Let μ be a fine, κ -complete measure on $\mathcal{P}_{\kappa}(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ . Then

$$\triangle_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.$$

We say that μ is *normal* if and only if for every sequence $(A_x : x \in X)$ as above,

 $riangle_x A_x \in \mu.$

Definition

Let κ , X be as above. We say that κ is X-supercompact if there is a κ -complete, fine, normal measure on $\mathcal{P}_{\kappa}(X)$.

Supercompactness was introduced by Reinhardt and Solovay (1978). Again, under ZFC, the two notions of supercompactness are equivalent.

Open problem: (ZFC) Is strong compactness equiconsistent with supercompactness?

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

In particular, we are interested in the following two classes of problems:

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

In particular, we are interested in the following two classes of problems:

- Is "ω₁ is strongly compact" equiconsistent with "ω₁ is supercompact"? More locally, for a given X, is "ω₁ is X-strongly compact" equiconsistent with "ω₁ is X-supercompact"?
- **2** What are the "canonical" (e.g. "minimal") models of " ω_1 is X-compact" for a given X?

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

In particular, we are interested in the following two classes of problems:

- Is "ω₁ is strongly compact" equiconsistent with "ω₁ is supercompact"? More locally, for a given X, is "ω₁ is X-strongly compact" equiconsistent with "ω₁ is X-supercompact"?
- **3** What are the "canonical" (e.g. "minimal") models of " ω_1 is X-compact" for a given X?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

In particular, we are interested in the following two classes of problems:

- Is "ω₁ is strongly compact" equiconsistent with "ω₁ is supercompact"? More locally, for a given X, is "ω₁ is X-strongly compact" equiconsistent with "ω₁ is X-supercompact"?
- **3** What are the "canonical" (e.g. "minimal") models of " ω_1 is X-compact" for a given X?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.

In this talk, focus on " ω_1 is \mathbb{R} -compact", " ω_1 is $\mathcal{P}(\mathbb{R})$ -compact", and " ω_1 is (fully) compact".

X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1 . (Why DC?)

In particular, we are interested in the following two classes of problems:

- Is "ω₁ is strongly compact" equiconsistent with "ω₁ is supercompact"? More locally, for a given X, is "ω₁ is X-strongly compact" equiconsistent with "ω₁ is X-supercompact"?
- **3** What are the "canonical" (e.g. "minimal") models of " ω_1 is X-compact" for a given X?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.

In this talk, focus on " ω_1 is \mathbb{R} -compact", " ω_1 is $\mathcal{P}(\mathbb{R})$ -compact", and " ω_1 is (fully) compact".

Some examples

Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^{\omega}$, the game G_A is determined under AD_X . AD is AD_{ω} .

Some examples

- Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^{\omega}$, the game G_A is determined under AD_X . AD is AD_{ω} .
- Under AD, Solovay shows that ω_1 is a measurable cardinal.

Some examples

Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^{\omega}$, the game G_A is determined under AD_X . AD is AD_{ω} .

Under AD, Solovay shows that ω_1 is a measurable cardinal.

Martin shows that the cone filter \mathcal{F} on the Turing degrees is an ultrafilter. Now define μ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$,

 $A \in \mu \Leftrightarrow$ for a cone of d, $\{x \in \mathbb{R} : x \leq_T d\} \in A$.

Some examples

Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^{\omega}$, the game G_A is determined under AD_X . AD is AD_{ω} .

Under AD, Solovay shows that ω_1 is a measurable cardinal.

Martin shows that the cone filter \mathcal{F} on the Turing degrees is an ultrafilter. Now define μ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$,

 $A \in \mu \Leftrightarrow$ for a cone of d, $\{x \in \mathbb{R} : x \leq_T d\} \in A$.

It is easy to check that μ is countably complete and fine. So ω_1 is \mathbb{R} -strongly compact.

Some examples (cont.)

Now assume $\mathsf{AD}_{\mathbb{R}}$.

Some examples (cont.)

Now assume $AD_{\mathbb{R}}$.

(Solovay) For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$. Play the following game G_A : I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup \{s_i : i < \omega\} \in A$. Then define

 $A \in \mu \Leftrightarrow II$ has a winning strategy in G_A .

Some examples (cont.)

Now assume $AD_{\mathbb{R}}$.

(Solovay) For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$. Play the following game G_A : I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup \{s_i : i < \omega\} \in A$. Then define

 $A \in \mu \Leftrightarrow II$ has a winning strategy in G_A .

Solovay shows that μ is countably complete, fine, and normal.

Some examples (cont.)

Now assume $AD_{\mathbb{R}}$.

(Solovay) For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$. Play the following game G_A : I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup \{s_i : i < \omega\} \in A$. Then define

 $A \in \mu \Leftrightarrow II$ has a winning strategy in G_A .

Solovay shows that μ is countably complete, fine, and normal.

What about measures on $\mathcal{P}_{\omega_1}(X)$ for X "bigger" than \mathbb{R} ?

Some examples (cont.)

Assume $\mathsf{AD}_{\mathbb{R}}+\mathsf{DC}.$ Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

Some examples (cont.)

Assume $\mathsf{AD}_{\mathbb{R}}+\mathsf{DC}.$ Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

By Solovay, DC implies $cof(\Theta) > \omega$. So, let us assume $cof(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

Some examples (cont.)

Assume $AD_{\mathbb{R}} + DC$. Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

By Solovay, DC implies $cof(\Theta) > \omega$. So, let us assume $cof(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_{\alpha} = \{A : w(A) < \alpha\}$, where w(A) is the Wadge rank of A. Let μ_{α} be the measure on $\mathcal{P}_{\omega_1}(\Gamma_{\alpha})$ induced by the Solovay measure (unique by Woodin).

Some examples (cont.)

Assume $AD_{\mathbb{R}} + DC$. Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

By Solovay, DC implies $cof(\Theta) > \omega$. So, let us assume $cof(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_{\alpha} = \{A : w(A) < \alpha\}$, where w(A) is the Wadge rank of A. Let μ_{α} be the measure on $\mathcal{P}_{\omega_1}(\Gamma_{\alpha})$ induced by the Solovay measure (unique by Woodin).

Define μ on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ as:

 $A \in \mu \Leftrightarrow \forall_{\nu}^* \alpha \forall_{\mu_{f(\alpha)}}^* \sigma \ \sigma \in A.$

Some examples (cont.)

Assume $AD_{\mathbb{R}} + DC$. Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

By Solovay, DC implies $cof(\Theta) > \omega$. So, let us assume $cof(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_{\alpha} = \{A : w(A) < \alpha\}$, where w(A) is the Wadge rank of A. Let μ_{α} be the measure on $\mathcal{P}_{\omega_1}(\Gamma_{\alpha})$ induced by the Solovay measure (unique by Woodin).

Define μ on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ as:

$$A \in \mu \Leftrightarrow \forall_{\nu}^* \alpha \forall_{\mu_{f(\alpha)}}^* \sigma \ \sigma \in A.$$

The measure μ is countably complete and fine.

Some examples (cont.)

Assume $AD_{\mathbb{R}} + DC$. Let

 $\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$

By Solovay, DC implies $cof(\Theta) > \omega$. So, let us assume $cof(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_{\alpha} = \{A : w(A) < \alpha\}$, where w(A) is the Wadge rank of A. Let μ_{α} be the measure on $\mathcal{P}_{\omega_1}(\Gamma_{\alpha})$ induced by the Solovay measure (unique by Woodin).

Define μ on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ as:

$$A \in \mu \Leftrightarrow \forall_{\nu}^* \alpha \forall_{\mu_{f(\alpha)}}^* \sigma \ \sigma \in A.$$

The measure μ is countably complete and fine.

So we get ω_1 is $\mathcal{P}(\mathbb{R})$ -strongly compact. To get a normal measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$, we seem to need Θ is measurable. It is known that $AD_{\mathbb{R}} + DC$ is not enough.

Classical constructions of models with ω_1 being \mathbb{R} -compact

Suppose $V \vDash \mathsf{ZFC}+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ , $j: V \to M$ be the μ -ultrapower map, and $G \subseteq Col(\omega, < \kappa)$.

Classical constructions of models with ω_1 being \mathbb{R} -compact

- Suppose $V \vDash \mathsf{ZFC}+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ , $j: V \to M$ be the μ -ultrapower map, and $G \subseteq Col(\omega, < \kappa)$.
- Let $\mathbb{R}_G = \mathbb{R}^{V[G]}$. Define a filter F in V[G] as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}_G)$,

$$A \in F$$
 iff $\Vdash_{Col(\omega, < j(\kappa))}^{V[G]} \mathbb{R}_G \in j(A).$

One can show that $L(\mathbb{R}, F) \vDash$ " ω_1 is \mathbb{R} -supercompact."

Classical constructions of models with ω_1 being \mathbb{R} -compact

- Suppose $V \vDash \mathsf{ZFC}+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ , $j: V \to M$ be the μ -ultrapower map, and $G \subseteq Col(\omega, < \kappa)$.
- Let $\mathbb{R}_G = \mathbb{R}^{V[G]}$. Define a filter F in V[G] as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}_G)$,

$$A \in F$$
 iff $\Vdash_{Col(\omega, < j(\kappa))}^{V[G]} \mathbb{R}_G \in j(A).$

One can show that $L(\mathbb{R}, F) \vDash$ " ω_1 is \mathbb{R} -supercompact."

Though, for example, if $V = L[\mu]$, the minimal model of a measurable cardinal, then $L(\mathbb{R}, F)$ fails to satisfy AD.

With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R} -strongly compact;
- ω_1 is \mathbb{R} -supercompact;
- ZFC+ there is a measurable cardinal.

With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R} -strongly compact;
- ω_1 is \mathbb{R} -supercompact;
- ZFC+ there is a measurable cardinal.

With AD, we have some separation of the two.

Theorem

The following are equiconsistent.

AD.

2 AD + ω_1 is \mathbb{R} -strongly compact.

With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R} -strongly compact;
- ω_1 is \mathbb{R} -supercompact;
- ZFC+ there is a measurable cardinal.

With AD, we have some separation of the two.

Theorem

The following are equiconsistent.

AD.

2 AD + ω_1 is \mathbb{R} -strongly compact.

With or without AD (cont.)

By Woodin, the above are equiconsistent with "ZFC + $\exists \omega$ many Woodin cardinals". \mathbb{R} -supercompactness requires ω^2 many Woodin cardinals.

With or without AD (cont.)

By Woodin, the above are equiconsistent with "ZFC + $\exists \omega$ many Woodin cardinals". \mathbb{R} -supercompactness requires ω^2 many Woodin cardinals.

Theorem (Woodin)

The following are equiconsistent.

- **1** AD + ω_1 is \mathbb{R} -supercompact.
- **2** There are ω^2 many Woodin cardinals.

With or without AD (cont.)

By Woodin, the above are equiconsistent with "ZFC + $\exists \omega$ many Woodin cardinals". \mathbb{R} -supercompactness requires ω^2 many Woodin cardinals.

Theorem (Woodin)

The following are equiconsistent.

- **1** AD + ω_1 is \mathbb{R} -supercompact.
- **2** There are ω^2 many Woodin cardinals.

Corollary

"AD + ω_1 is \mathbb{R} -supercompact" is strictly stronger (consistencywise) than "AD + ω_1 is \mathbb{R} -strongly compact".

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R},\mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R},\mu)$.

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R},\mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R},\mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies "AD + μ witnesses ω_1 is \mathbb{R} -supercompact".

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R},\mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R},\mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies "AD + μ witnesses ω_1 is \mathbb{R} -supercompact".

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R},\mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R},\mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies "AD + μ witnesses ω_1 is \mathbb{R} -supercompact".

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R} -supercompact, let $M_{\sigma} = HOD_{\sigma \cup \{\sigma\}}$ and $M = \prod_{\sigma} M_{\sigma}/\mu$. Then Los theorem holds for this ultraproduct. The key to the proof is the use of normality of μ .

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R}, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R}, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies "AD + μ witnesses ω_1 is \mathbb{R} -supercompact".

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R} -supercompact, let $M_{\sigma} = HOD_{\sigma \cup \{\sigma\}}$ and $M = \prod_{\sigma} M_{\sigma}/\mu$. Then Los theorem holds for this ultraproduct. The key to the proof is the use of normality of μ .

Note: Los theorem fails for the ultrapower embedding induced by μ on V.

Canonical models of ω_1 is \mathbb{R} -supercompact

Under $AD_{\mathbb{R}}$, Woodin (early 1980's) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \vDash$ " μ is a supercompact measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ (under AD).

Without AD, there may be more than one model of the form $L(\mathbb{R}, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980's) conjectured that there is at most one model of the form $L(\mathbb{R}, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies "AD + μ witnesses ω_1 is \mathbb{R} -supercompact".

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R} -supercompact, let $M_{\sigma} = HOD_{\sigma \cup \{\sigma\}}$ and $M = \prod_{\sigma} M_{\sigma}/\mu$. Then Los theorem holds for this ultraproduct. The key to the proof is the use of normality of μ .

Note: Los theorem fails for the ultrapower embedding induced by μ on V.

Assume $AD_{\mathbb{R}} + DC$. Recall that working in a minimal model of $AD_{\mathbb{R}} + DC$ (so $cof(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ by "integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$ ".

 $\mathcal{P}(\mathbb{R})$ -compactness

Assume $AD_{\mathbb{R}} + DC$. Recall that working in a minimal model of $AD_{\mathbb{R}} + DC$ (so $cof(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ by "integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$ ".

Theorem (Trang-Wilson, 2014-2015)

The following are equiconsistent.

- $AD_{\mathbb{R}} + DC$.
- $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is $\mathcal{P}(\mathbb{R})$ -strongly compact.

These theories are strictly weaker than

• $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is $\mathcal{P}(\mathbb{R})$ -supercompact compact.^a

^aWe don't know the exact consistency strength of this theory.

 $\mathcal{P}(\mathbb{R})$ -compactness

Assume $AD_{\mathbb{R}} + DC$. Recall that working in a minimal model of $AD_{\mathbb{R}} + DC$ (so $cof(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ by "integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$ ".

Theorem (Trang-Wilson, 2014-2015)

The following are equiconsistent.

- $AD_{\mathbb{R}} + DC$.
- $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is $\mathcal{P}(\mathbb{R})$ -strongly compact.

These theories are strictly weaker than

• $\mathsf{ZF} + \mathsf{DC} + \omega_1$ is $\mathcal{P}(\mathbb{R})$ -supercompact compact.^a

^aWe don't know the exact consistency strength of this theory.

From ZF + DC + " ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact", one obtains the sharp for a model of AD_R + DC.

 $\mathcal{P}(\mathbb{R})$ -compactness (cont.)

From ZF + DC + " ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact", one obtains the sharp for a model of AD_R + DC.

To see this, note that from the proof of the above theorem, we get a model $L(\Omega^*, \mathbb{R}) \vDash AD_{\mathbb{R}} + DC$, where $\Omega^* \subseteq \mathcal{P}(\mathbb{R})$. Fix a countably complete, fine, normal measure μ on $\mathcal{P}_{\omega_1}(\Omega^*)$. Then note that by normality,

$$\forall^*_{\mu}\sigma \ M_{\sigma} = L(\Omega^*_{\sigma}, \mathbb{R}_{\sigma}) \vDash \mathsf{AD}_{\mathbb{R}} + \mathsf{DC},$$

where we have that $\Omega^* = [\sigma \mapsto \Omega^*_\sigma]_\mu$ and $\mathbb{R} = [\sigma \mapsto \mathbb{R}_\sigma]_\mu$.

 $\mathcal{P}(\mathbb{R})$ -compactness (cont.)

From ZF + DC + " ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact", one obtains the sharp for a model of AD_R + DC.

To see this, note that from the proof of the above theorem, we get a model $L(\Omega^*, \mathbb{R}) \vDash AD_{\mathbb{R}} + DC$, where $\Omega^* \subseteq \mathcal{P}(\mathbb{R})$. Fix a countably complete, fine, normal measure μ on $\mathcal{P}_{\omega_1}(\Omega^*)$. Then note that by normality,

$$\forall_{\mu}^{*}\sigma \ M_{\sigma} = L(\Omega_{\sigma}^{*}, \mathbb{R}_{\sigma}) \vDash \mathsf{AD}_{\mathbb{R}} + \mathsf{DC},$$

where we have that $\Omega^* = [\sigma \mapsto \Omega^*_{\sigma}]_{\mu}$ and $\mathbb{R} = [\sigma \mapsto \mathbb{R}_{\sigma}]_{\mu}$.

Now, $\forall_{\mu}^{*}\sigma$ $(\Omega_{\sigma}^{*}, \mathbb{R}_{\sigma})^{\sharp}$ exists (because ω_{1} is measurable); by normality again, the sharp for $L(\Omega^{*}, \mathbb{R})$ exists. This demonstrates that the theory ZF + DC + " ω_{1} is $\mathcal{P}(\mathbb{R})$ -supercompact" is strictly stronger than ZF + DC + " ω_{1} is $\mathcal{P}(\mathbb{R})$ -strongly compact".

 $\mathcal{P}(\mathbb{R})$ -compactness (cont.)

From ZF + DC + " ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact", one obtains the sharp for a model of AD_R + DC.

To see this, note that from the proof of the above theorem, we get a model $L(\Omega^*, \mathbb{R}) \vDash AD_{\mathbb{R}} + DC$, where $\Omega^* \subseteq \mathcal{P}(\mathbb{R})$. Fix a countably complete, fine, normal measure μ on $\mathcal{P}_{\omega_1}(\Omega^*)$. Then note that by normality,

$$\forall_{\mu}^{*}\sigma \ M_{\sigma} = L(\Omega_{\sigma}^{*}, \mathbb{R}_{\sigma}) \vDash \mathsf{AD}_{\mathbb{R}} + \mathsf{DC},$$

where we have that $\Omega^* = [\sigma \mapsto \Omega^*_{\sigma}]_{\mu}$ and $\mathbb{R} = [\sigma \mapsto \mathbb{R}_{\sigma}]_{\mu}$.

Now, $\forall_{\mu}^{*}\sigma$ $(\Omega_{\sigma}^{*}, \mathbb{R}_{\sigma})^{\sharp}$ exists (because ω_{1} is measurable); by normality again, the sharp for $L(\Omega^{*}, \mathbb{R})$ exists. This demonstrates that the theory ZF + DC + " ω_{1} is $\mathcal{P}(\mathbb{R})$ -supercompact" is strictly stronger than ZF + DC + " ω_{1} is $\mathcal{P}(\mathbb{R})$ -strongly compact".

Some determinacy theories

Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α .

Some determinacy theories

Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α .

The Solovay sequence is a sequence $(\theta_{\alpha} : \alpha \leq \Omega)$ such that

- **(**) θ_0 is the sup of α such that there is an *OD* surjection from \mathbb{R} onto α .
- $\boldsymbol{\Theta}_{\boldsymbol{\Omega}} = \boldsymbol{\Theta}.$
- **(**) θ_{α} is the sup of θ_{β} for $\beta < \alpha$ and α is limit.
- For $\alpha < \Omega$, let A be of Wadge rank $\theta_{\alpha} < \Theta$, $\theta_{\alpha+1}$ is the sup of α such that there is an OD(A) surjection from \mathbb{R} onto α .

Some determinacy theories

Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α .

Definition $(AD + DC_{\mathbb{R}})$

The Solovay sequence is a sequence $(\theta_{\alpha} : \alpha \leq \Omega)$ such that

- **(**) θ_0 is the sup of α such that there is an *OD* surjection from \mathbb{R} onto α .
- $\Theta_{\Omega} = \Theta.$
- **(**) θ_{α} is the sup of θ_{β} for $\beta < \alpha$ and α is limit.
- For $\alpha < \Omega$, let A be of Wadge rank $\theta_{\alpha} < \Theta$, $\theta_{\alpha+1}$ is the sup of α such that there is an OD(A) surjection from \mathbb{R} onto α .

Here are some determinacy theories in increasing strength: (1) AD, (2) $AD^++\Theta > \theta_0$, (3) $AD_{\mathbb{R}}$, (4) $AD_{\mathbb{R}} + DC$, (5) $AD_{\mathbb{R}}+\Theta$ is regular, (6) $AD_{\mathbb{R}}+\Theta$ is measurable, (7) $AD_{\mathbb{R}}+\Theta$ is Mahlo, (8) $AD^++\Theta = \theta_{\alpha+1} + \theta_{\alpha}$ is the largest Suslin cardinal (LSA).

Some determinacy theories

Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α .

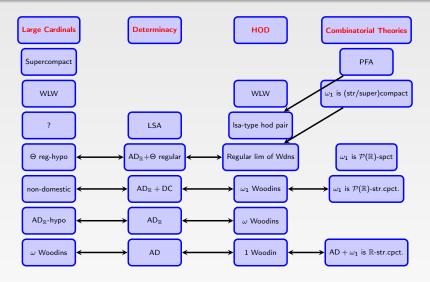
Definition $(AD + DC_{\mathbb{R}})$

The Solovay sequence is a sequence $(\theta_{\alpha} : \alpha \leq \Omega)$ such that

- **(**) θ_0 is the sup of α such that there is an *OD* surjection from \mathbb{R} onto α .
- $\Theta_{\Omega} = \Theta.$
- **(**) θ_{α} is the sup of θ_{β} for $\beta < \alpha$ and α is limit.
- For $\alpha < \Omega$, let A be of Wadge rank $\theta_{\alpha} < \Theta$, $\theta_{\alpha+1}$ is the sup of α such that there is an OD(A) surjection from \mathbb{R} onto α .

Here are some determinacy theories in increasing strength: (1) AD, (2) $AD^++\Theta > \theta_0$, (3) $AD_{\mathbb{R}}$, (4) $AD_{\mathbb{R}} + DC$, (5) $AD_{\mathbb{R}}+\Theta$ is regular, (6) $AD_{\mathbb{R}}+\Theta$ is measurable, (7) $AD_{\mathbb{R}}+\Theta$ is Mahlo, (8) $AD^++\Theta = \theta_{\alpha+1} + \theta_{\alpha}$ is the largest Suslin cardinal (LSA).

Hierarchies



The Chang⁺ model

For each $\lambda \geq \omega$, let \mathcal{F}_{λ} be the club filter on $\mathcal{P}_{\omega_1}(\lambda^{\omega})$, and define the Chang⁺ model $\mathcal{C}^+ = L[\bigcup_{\lambda} \lambda^{\omega}][(\mathcal{F}_{\lambda} : \lambda \in ON)].$

 \mathcal{C}^+ satisfies ZF + DC.

The Chang⁺ model

For each $\lambda \geq \omega$, let \mathcal{F}_{λ} be the club filter on $\mathcal{P}_{\omega_1}(\lambda^{\omega})$, and define the Chang⁺ model

$$\mathcal{C}^+ = L[\bigcup_{\lambda} \lambda^{\omega}][(\mathcal{F}_{\lambda} : \lambda \in ON)].$$

 \mathcal{C}^+ satisfies $\mathsf{ZF}+\mathsf{DC}.$

Theorem (Woodin)

Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \vDash \omega_1$ is supercompact. Furthermore, $C^+ \vDash AD_{\mathbb{R}}$.

The Chang⁺ model

For each $\lambda \geq \omega$, let \mathcal{F}_{λ} be the club filter on $\mathcal{P}_{\omega_1}(\lambda^{\omega})$, and define the Chang⁺ model

$$\mathcal{C}^+ = L[\bigcup_{\lambda} \lambda^{\omega}][(\mathcal{F}_{\lambda} : \lambda \in ON)].$$

 \mathcal{C}^+ satisfies $\mathsf{ZF} + \mathsf{DC}$.

Theorem (Woodin)

Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \vDash \omega_1$ is supercompact. Furthermore, $C^+ \vDash AD_{\mathbb{R}}$.

Theorem

- (Trang) $Con(\omega_1 \text{ is supercompact})$ implies $Con(AD_{\mathbb{R}}+\Theta \text{ is regular})$.
- (Sargyan-Trang) $Con(AD + \omega_1 \text{ is supercompact})$ implies Con(LSA).

The Chang⁺ model

For each $\lambda \geq \omega$, let \mathcal{F}_{λ} be the club filter on $\mathcal{P}_{\omega_1}(\lambda^{\omega})$, and define the Chang⁺ model

$$\mathcal{C}^+ = L[\bigcup_{\lambda} \lambda^{\omega}][(\mathcal{F}_{\lambda} : \lambda \in ON)].$$

 \mathcal{C}^+ satisfies $\mathsf{ZF} + \mathsf{DC}$.

Theorem (Woodin)

Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \vDash \omega_1$ is supercompact. Furthermore, $C^+ \vDash AD_{\mathbb{R}}$.

Theorem

- (Trang) $Con(\omega_1 \text{ is supercompact})$ implies $Con(AD_{\mathbb{R}}+\Theta \text{ is regular})$.
- (Sargyan-Trang) $Con(AD + \omega_1 \text{ is supercompact})$ implies Con(LSA).

 $\begin{array}{l} {\sf ZFC} \text{ and large cardinals} \\ {\sf Two classes of problems} \\ {\sf When } X = \mathbb{R} \\ {\sf Beyond } \mathbb{R}\text{-compactness} \\ {\sf Some questions} \end{array}$

Some questions

Rodriguez's construction of distinct models of the form $L(\mathbb{R},\mu)$ needs a measurable of Mitchell order 2.

 $\begin{array}{l} {\sf ZFC} \text{ and large cardinals} \\ {\sf Two classes of problems} \\ {\sf When } X = \mathbb{R} \\ {\sf Beyond } \mathbb{R}\text{-compactness} \\ {\sf Some questions} \end{array}$

Some questions

Rodriguez's construction of distinct models of the form $L(\mathbb{R},\mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of " ω_1 is \mathbb{R} -supercompact" from a measurable cardinal?

 $\begin{array}{l} {\sf ZFC} \text{ and large cardinals} \\ {\sf Two classes of problems} \\ {\sf When } X = \mathbb{R} \\ {\sf Beyond } \mathbb{R}\text{-compactness} \\ {\sf Some questions} \end{array}$

Some questions

Rodriguez's construction of distinct models of the form $L(\mathbb{R},\mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of " ω_1 is \mathbb{R} -supercompact" from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact?

Some questions

Rodriguez's construction of distinct models of the form $L(\mathbb{R},\mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of " ω_1 is \mathbb{R} -supercompact" from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact?

Conjecture

The following are equiconsistent.

- $ZF + DC + (AD/AD_{\mathbb{R}}) + \omega_1$ is strongly compact.
- $ZF + DC + (AD/AD_{\mathbb{R}}) + \omega_1$ is supercompact.
- ZFC+ there is a proper class of Woodin limits of Woodins.

Some questions

Rodriguez's construction of distinct models of the form $L(\mathbb{R},\mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of " ω_1 is \mathbb{R} -supercompact" from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$ -supercompact?

Conjecture

The following are equiconsistent.

- $ZF + DC + (AD/AD_{\mathbb{R}}) + \omega_1$ is strongly compact.
- $ZF + DC + (AD/AD_{\mathbb{R}}) + \omega_1$ is supercompact.
- ZFC+ there is a proper class of Woodin limits of Woodins.

Thank you!